# Section 6.2 ~ Basics of Probability. Introduction to Probability and Statistics SPRING 2016

Save this PDF as:

Size: px
Start display at page:

Download "Section 6.2 ~ Basics of Probability. Introduction to Probability and Statistics SPRING 2016"

## Transcription

1 Section 6.2 ~ Basics of Probability Introduction to Probability and Statistics SPRING 2016

2 Objective After this section you will know how to find probabilities using theoretical and relative frequency methods and understand how to construct basic probability distributions.

3 Basics of Probability Outcomes the most basic possible results of observations or experiments Ex. ~ There are four outcomes of tossing two coins: HH, HT, TH, or TT Event a collection of one or more outcomes that share a property of interest Ex. ~ Suppose you are only interested in the number of heads that appear when you toss two coins. There would be three events: 0 heads (TT), 1 head (HT or TH), or two heads (HH)

4 Basics of Probability Cont d To express a probability, you use numbers between 0 and 1 inclusive A probability of 0 would represent an event that is impossible Ex. ~ Meeting a married bachelor A probability of 1 would represent an event that is certain to occur Ex. ~ Death and taxes! The probability of an event is written as P(event) Ex. ~ The probability of landing a head on a coin toss would be written as P(H) = 0.5 The scale to the right shows common expressions used to represent probabilities based on their level in comparison to 0 and 1 Ex. ~ A probability of.95 indicates that an event is very likely to occur (95 out of 100 times) Ex. ~ A probability of.30 indicates that an event is unlikely to occur (30 out of 100 times) Ex. ~ A probability of.01 describes an event that is very unlikely to occur (1 out of 100 times)

5 Theoretical Probabilities Theoretical probabilities are probabilities that deal with equally likely outcomes (i.e., tossing a fair coin, rolling a fair die, spinning a roulette wheel, etc.) Calculating theoretical probabilities: Step 1: Count the total number of possible outcomes Step 2: Among all the possible outcomes, count the number of ways the event of interest, A, can occur Step 3: Determine the probability, P(A), from formula: PA ( ) number of ways A can occur total number of outcomes

6 Example 1 Suppose you select a person at random from a large group. What is the probability that the person has a birthday in July? Assume that there are 365 days in a year. Since all birthdays are equally likely, we can use the 3 step process for calculating theoretical probabilities: Step 1: Each possible birthday represents an outcome, so there are 365 possible outcomes Step 2: July has 31 days, so 31 of the 365 possible outcomes represent the event of a July birthday Step 3: The probability that a randomly selected person has a birthday in July is PA ( ) number of ways A can occur total number of outcomes 31 P(July birthday)

7 HOMEWORK Sections 6.1 & 6.2 Pg 236 #1-4, 9-15ODD, 21 Pg 248 #11, 13-18all, 24-26all, 29, 30

8 Warm UP 1. Draw a tree diagram to show ALL OUTCOMES of tossing 3 coins at once. 2. How many EVENTS are there related to the number of heads that appear? Coin #1 Coin #2 Coin #3

9 ROCK, PAPER, SCISSORS Class Average: Fair Game??

10 Theoretical Probabilities Cont d

11 Theoretical Probabilities Cont d Ex. ~ What is the total number of outcomes of tossing three coins? Each coin has 2 outcomes (H or T), and there are 3 coins (3 tosses or processes), so there are 8 possible outcomes (2 3 = 8) when tossing three coins

12 Example 2 x

13 Example 2 (cont d) What is the probability of rolling two 1 s (snake eyes) when two fair dice are rolled? Rolling a single die has 6 equally likely outcomes, so rolling two dice has a total of 36 outcomes (6 2 = 36). Of the 36 outcomes, the event of interest (two 1 s) can only occur one way, so the probability of rolling two 1 s is: 1 P(two 1's) Another way of thinking: 1 st roll * 2 nd roll =

14 Example 3 What is the probability that in a randomly selected family with three children, the oldest child is a boy, the second child is a girl, and the youngest child is a girl? Assume that having boys and girls is equally likely. There are two possible outcomes for each birth: boy or girl For a family with three children, there would be 8 possible outcomes (2 3 = 8) BBB, BBG, BGG, GBB, GBG, GGB, GGG, BGB The probability of the birth order being BGG is: 1 P(BGG) OR: P(BGG)

15 Relative Frequency Probabilities Another method to determine probabilities is to approximate the probability of an event, A, occurring. This is known as the relative frequency (or empirical) method. Ex. ~ If we observe that it rains an average of 100 days per year, we can estimate the probability of it raining on a randomly selected day to be approximately Here is the general rule for this method: Step 1: Repeat or observe a process many times and count the number of times the event of interest, A, occurs. Step 2: Estimate P(A) by formula: PA ( ) number of times A occurred total number of observations

16 Example 4 Geological records indicate that a river has crested above a particular high flood level four times in the past 2,000 years. What is the relative frequency probability that the river will crest above the high flood level next year? 4 1 P(river will flood next year) Because a flood of this magnitude occurs on average once every 500 years, it is called a 500-year flood. The probability of having a flood of this magnitude in any given year is 1/500, or

17 Subjective Probabilities A third method for determining probabilities is subjective probability: to estimate a probability using experience or intuition Ex. ~ You could make a subjective estimate of the probability that a friend will be married in the next year or the probability that getting a good grade in statistics will help you get the job that you want

18 Summary of Different Methods of Finding Probabilities Three approaches to Finding Probability Theoretical probability when all outcomes are equally likely, divide the number of ways an event can occur by the total number of outcomes number of ways A can occur PA ( ) total number of outcomes Relative frequency probability based on observations or experiments. Divide the number of times the event occurred by the total number of observations PA ( ) number of times A occurred total number of observations Subjective probability estimating based on experience or intuition

19 Example 5 Identify the method that resulted in the following statements. a. The chance that you will get married in the next year is zero. Subjective because it s based on a feeling b. Based on government data, the chance of dying in an automobile accident is 1 in 7,000 (per year). Relative frequency probability because it s based on observations on passed automobile accidents c. The chance of rolling a 7 with a twelve-sided die is 1/12. Theoretical probability because it is based on assuming that a fair twelve sided die is equally likely to land on any of its twelve sides.

20 HOMEWORK pg 248 #31, 33, 35, 38

21 Review of Yesterday Theoretical Probability Relative Frequency/Empirical/Experimental Probability Subjective Probability

22 WARM UP a. Describe a fair die. b. Describe a fair coin. c. Describe a standard deck of cards. d. Describe the number of days in each month, the number of days & weeks in one year. e. Describe you dream vacation. Determine the subjective probability of your dream vacation occurring in your lifetime.

23 Determine the probability described Tossing a fair die: 1. P(greater than 3) 2. P(even) 3. P(0) 4. P(greater than 2 and odd) 5. P(even or odd)

24 Determine the probability described 6. Two cards are drawn at random from a standard deck of 52 cards, without replacement. What is the probability of drawing a 8 and a queen in that order? 7. A pair of dice is rolled. What is the probability that you have rolled a sum that is a multiple of 3? 8. A fair die is rolled while a fair coin is tossed. What is the probability of rolling a 7 and tossing heads?

25 Probability of an Event Not Occurring Sometimes you might be interested in finding the probability that a particular event or outcome does not occur Ex. ~ The probability of a wrong answer on a multiple choice question with five possible answers The probability of answering it correctly would be 1/5 = 0.2, so the probability of not answering it correctly would be 4/5 = 0.8 The complement of an event, A, expressed as, consists of all outcomes in which A does not occur. ( A Complement ) A A The sum of the probabilities of A and must be 1, so the probability of can be given by P( A) 1 P( A) A

26 Example 6 In a grocery store the scanning system was successful 384 out of 419 times. What is the probability that the scanner will not work? 384 PA ( ) (Where A = event that scanner works.)

27 Additional Practice 1. What is the probability of choosing a randomly selected card from a standard deck that is NOT a 5? 2. What is the probability that a standard dice is rolled and the outcome is not a multiple of 3? 3. What is the probability that a randomly selected student in a class comprised of 4 freshman, 6 sophomores, 10 juniors and 2 seniors is NOT a senior?

28 Practice With Probability Let s take some time to practice calculating probabilities. With a popsicle stick partner, complete some practice problems. 20 minutes! You will be responsible for explaining at least one of them to the class (random)

29 Probability Distributions A probability distribution is a visual display of the probabilities of certain events occurring in the form of a table or a histogram Ex. ~ Suppose you toss two coins simultaneously. Because each coin can land one of two ways (H or T), there are 4 possible outcomes (HH, TT, HT, & TH). The following table represents the outcomes and probabilities: Out of the 4 outcomes, there are 3 events, 2 heads (HH), 1 head (HT or TH), and 0 heads (TT). These probabilities result in a probability distribution which can represented as a table or a histogram:

30 Probability Distributions Steps to making a probability distribution: Step 1: List all possible outcomes Step 2: Identify outcomes that represent the same event. Find the probability of each event. Step 3: Make a table or a histogram in which one column (or x-axis) represents the events and the other column (or y-axis) represents the probability Example 7: Make a probability distribution table for the number of heads that occur when three coins are tossed simultaneously. Step 1: List all possible outcomes Since there are 3 coins, there are a total of 8 outcomes (2 3 = 8): HHH, HHT, HTH, HTT, THH, THT, TTH, and TTT (refer to p.241 to see how these outcomes were constructed) Step 2: Identify outcomes that represent the same event. Find the probability of each. Since we are interested in the number of heads that occur, there would be 4 events, 0 heads (1/8 =.125), 1 head (3/8 =.375), 2 heads (3/8 =.375), or 3 heads (1/8 =.125)

31 Probability Distributions Example 7 Cont d: Make a probability distribution table for the number of heads that occur when three coins are tossed simultaneously. Step 3: Make a table 3

32 Practice - RIGHT NOW! Construct a table, list or tree diagram that shows all possible outcomes of tossing 3 coins at once. Construct a table showing the probability distribution for the events related to the number of tails that occur. Construct a histogram to show the probability distribution.

33

34 HOMEWORK Pg 237 #10-14even Pg 249 #12, 21, 22, 28, & 6.2 MA TOMORROW!

### Chapter 4 Probability

The Big Picture of Statistics Chapter 4 Probability Section 4-2: Fundamentals Section 4-3: Addition Rule Sections 4-4, 4-5: Multiplication Rule Section 4-7: Counting (next time) 2 What is probability?

### I. WHAT IS PROBABILITY?

C HAPTER 3 PROBABILITY Random Experiments I. WHAT IS PROBABILITY? The weatherman on 0 o clock news program states that there is a 20% chance that it will snow tomorrow, a 65% chance that it will rain and

### Lesson 1. Basics of Probability. Principles of Mathematics 12: Explained! www.math12.com 314

Lesson 1 Basics of Probability www.math12.com 314 Sample Spaces: Probability Lesson 1 Part I: Basic Elements of Probability Consider the following situation: A six sided die is rolled The sample space

### Chapter 6. 1. What is the probability that a card chosen from an ordinary deck of 52 cards is an ace? Ans: 4/52.

Chapter 6 1. What is the probability that a card chosen from an ordinary deck of 52 cards is an ace? 4/52. 2. What is the probability that a randomly selected integer chosen from the first 100 positive

### Counting principle, permutations, combinations, probabilities

Counting Methods Counting principle, permutations, combinations, probabilities Part 1: The Fundamental Counting Principle The Fundamental Counting Principle is the idea that if we have a ways of doing

### Probability: The Study of Randomness Randomness and Probability Models. IPS Chapters 4 Sections 4.1 4.2

Probability: The Study of Randomness Randomness and Probability Models IPS Chapters 4 Sections 4.1 4.2 Chapter 4 Overview Key Concepts Random Experiment/Process Sample Space Events Probability Models Probability

### V. RANDOM VARIABLES, PROBABILITY DISTRIBUTIONS, EXPECTED VALUE

V. RANDOM VARIABLES, PROBABILITY DISTRIBUTIONS, EXPETED VALUE A game of chance featured at an amusement park is played as follows: You pay \$ to play. A penny and a nickel are flipped. You win \$ if either

### Chapter 4 - Practice Problems 1

Chapter 4 - Practice Problems SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. Provide an appropriate response. ) Compare the relative frequency formula

### Chapter 4 & 5 practice set. The actual exam is not multiple choice nor does it contain like questions.

Chapter 4 & 5 practice set. The actual exam is not multiple choice nor does it contain like questions. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

### Construct and Interpret Binomial Distributions

CH 6.2 Distribution.notebook A random variable is a variable whose values are determined by the outcome of the experiment. 1 CH 6.2 Distribution.notebook A probability distribution is a function which

### Probability --QUESTIONS-- Principles of Math 12 - Probability Practice Exam 1 www.math12.com

Probability --QUESTIONS-- Principles of Math - Probability Practice Exam www.math.com Principles of Math : Probability Practice Exam Use this sheet to record your answers:... 4... 4... 4.. 6. 4.. 6. 7..

### Session 8 Probability

Key Terms for This Session Session 8 Probability Previously Introduced frequency New in This Session binomial experiment binomial probability model experimental probability mathematical probability outcome

### Probability. Sample space: all the possible outcomes of a probability experiment, i.e., the population of outcomes

Probability Basic Concepts: Probability experiment: process that leads to welldefined results, called outcomes Outcome: result of a single trial of a probability experiment (a datum) Sample space: all

### Probability. A random sample is selected in such a way that every different sample of size n has an equal chance of selection.

1 3.1 Sample Spaces and Tree Diagrams Probability This section introduces terminology and some techniques which will eventually lead us to the basic concept of the probability of an event. The Rare Event

### Probability: Terminology and Examples Class 2, 18.05, Spring 2014 Jeremy Orloff and Jonathan Bloom

Probability: Terminology and Examples Class 2, 18.05, Spring 2014 Jeremy Orloff and Jonathan Bloom 1 Learning Goals 1. Know the definitions of sample space, event and probability function. 2. Be able to

### Section 6.2 Definition of Probability

Section 6.2 Definition of Probability Probability is a measure of the likelihood that an event occurs. For example, if there is a 20% chance of rain tomorrow, that means that the probability that it will

### 2. How many ways can the letters in PHOENIX be rearranged? 7! = 5,040 ways.

Math 142 September 27, 2011 1. How many ways can 9 people be arranged in order? 9! = 362,880 ways 2. How many ways can the letters in PHOENIX be rearranged? 7! = 5,040 ways. 3. The letters in MATH are

### Ch5: Discrete Probability Distributions Section 5-1: Probability Distribution

Recall: Ch5: Discrete Probability Distributions Section 5-1: Probability Distribution A variable is a characteristic or attribute that can assume different values. o Various letters of the alphabet (e.g.

### Chapter 4 - Practice Problems 2

Chapter - Practice Problems 2 MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Find the indicated probability. 1) If you flip a coin three times, the

### 36 Odds, Expected Value, and Conditional Probability

36 Odds, Expected Value, and Conditional Probability What s the difference between probabilities and odds? To answer this question, let s consider a game that involves rolling a die. If one gets the face

### Question: What is the probability that a five-card poker hand contains a flush, that is, five cards of the same suit?

ECS20 Discrete Mathematics Quarter: Spring 2007 Instructor: John Steinberger Assistant: Sophie Engle (prepared by Sophie Engle) Homework 8 Hints Due Wednesday June 6 th 2007 Section 6.1 #16 What is the

### Review for Test 2. Chapters 4, 5 and 6

Review for Test 2 Chapters 4, 5 and 6 1. You roll a fair six-sided die. Find the probability of each event: a. Event A: rolling a 3 1/6 b. Event B: rolling a 7 0 c. Event C: rolling a number less than

### Section 6-5 Sample Spaces and Probability

492 6 SEQUENCES, SERIES, AND PROBABILITY 52. How many committees of 4 people are possible from a group of 9 people if (A) There are no restrictions? (B) Both Juan and Mary must be on the committee? (C)

### Chapter 14 From Randomness to Probability

Chapter 14 From Randomness to Probability 199 Chapter 14 From Randomness to Probability 1. Sample spaces. a) S = { HH, HT, TH, TT} All of the outcomes are equally likely to occur. b) S = { 0, 1, 2, 3}

### Key Concept. Properties

MAT 155 Statistical Analysis Dr. Claude Moore Cape Fear Community College Chapter 6 Normal Probability Distributions 6 1 Review and Preview 6 2 The Standard Normal Distribution 6 3 Applications of Normal

### UNIT 7A 118 CHAPTER 7: PROBABILITY: LIVING WITH THE ODDS

11 CHAPTER 7: PROBABILITY: LIVING WITH THE ODDS UNIT 7A TIME OUT TO THINK Pg. 17. Birth orders of BBG, BGB, and GBB are the outcomes that produce the event of two boys in a family of. We can represent

### Probability distributions

Probability distributions (Notes are heavily adapted from Harnett, Ch. 3; Hayes, sections 2.14-2.19; see also Hayes, Appendix B.) I. Random variables (in general) A. So far we have focused on single events,

### The Casino Lab STATION 1: CRAPS

The Casino Lab Casinos rely on the laws of probability and expected values of random variables to guarantee them profits on a daily basis. Some individuals will walk away very wealthy, while others will

### Probability Review Solutions

Probability Review Solutions. A family has three children. Using b to stand for and g to stand for, and using ordered triples such as bbg, find the following. a. draw a tree diagram to determine the sample

### AP Statistics 7!3! 6!

Lesson 6-4 Introduction to Binomial Distributions Factorials 3!= Definition: n! = n( n 1)( n 2)...(3)(2)(1), n 0 Note: 0! = 1 (by definition) Ex. #1 Evaluate: a) 5! b) 3!(4!) c) 7!3! 6! d) 22! 21! 20!

### Chapter 4: Probability and Counting Rules

Chapter 4: Probability and Counting Rules Learning Objectives Upon successful completion of Chapter 4, you will be able to: Determine sample spaces and find the probability of an event using classical

### PROBABILITY. Thabisa Tikolo STATISTICS SOUTH AFRICA

PROBABILITY Thabisa Tikolo STATISTICS SOUTH AFRICA Probability is a topic that some educators tend to struggle with and thus avoid teaching it to learners. This is an indication that teachers are not yet

### Probabilistic Strategies: Solutions

Probability Victor Xu Probabilistic Strategies: Solutions Western PA ARML Practice April 3, 2016 1 Problems 1. You roll two 6-sided dice. What s the probability of rolling at least one 6? There is a 1

### The Central Limit Theorem Part 1

The Central Limit Theorem Part. Introduction: Let s pose the following question. Imagine you were to flip 400 coins. To each coin flip assign if the outcome is heads and 0 if the outcome is tails. Question:

### A probability experiment is a chance process that leads to well-defined outcomes. 3) What is the difference between an outcome and an event?

Ch 4.2 pg.191~(1-10 all), 12 (a, c, e, g), 13, 14, (a, b, c, d, e, h, i, j), 17, 21, 25, 31, 32. 1) What is a probability experiment? A probability experiment is a chance process that leads to well-defined

### MAT 1000. Mathematics in Today's World

MAT 1000 Mathematics in Today's World We talked about Cryptography Last Time We will talk about probability. Today There are four rules that govern probabilities. One good way to analyze simple probabilities

### Basic Probability Theory I

A Probability puzzler!! Basic Probability Theory I Dr. Tom Ilvento FREC 408 Our Strategy with Probability Generally, we want to get to an inference from a sample to a population. In this case the population

### MATH 140 Lab 4: Probability and the Standard Normal Distribution

MATH 140 Lab 4: Probability and the Standard Normal Distribution Problem 1. Flipping a Coin Problem In this problem, we want to simualte the process of flipping a fair coin 1000 times. Note that the outcomes

### Ch. 13.3: More about Probability

Ch. 13.3: More about Probability Complementary Probabilities Given any event, E, of some sample space, U, of a random experiment, we can always talk about the complement, E, of that event: this is the

### number of favorable outcomes total number of outcomes number of times event E occurred number of times the experiment was performed.

12 Probability 12.1 Basic Concepts Start with some Definitions: Experiment: Any observation of measurement of a random phenomenon is an experiment. Outcomes: Any result of an experiment is called an outcome.

### PROBABILITY. The theory of probabilities is simply the Science of logic quantitatively treated. C.S. PEIRCE

PROBABILITY 53 Chapter 3 PROBABILITY The theory of probabilities is simply the Science of logic quantitatively treated. C.S. PEIRCE 3. Introduction In earlier Classes, we have studied the probability as

### SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

Math 1342 (Elementary Statistics) Test 2 Review SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. Find the indicated probability. 1) If you flip a coin

### Probability and Counting Rules

blu3496x_ch04.qxd 7/6/06 0:49 AM Page 77 B&W CONFIRMINGS C H A P T E R 4 Probability and Counting Rules Objectives Outline After completing this chapter, you should be able to 4 Determine sample spaces

### AMS 5 CHANCE VARIABILITY

AMS 5 CHANCE VARIABILITY The Law of Averages When tossing a fair coin the chances of tails and heads are the same: 50% and 50%. So if the coin is tossed a large number of times, the number of heads and

### Introduction to Probability

3 Introduction to Probability Given a fair coin, what can we expect to be the frequency of tails in a sequence of 10 coin tosses? Tossing a coin is an example of a chance experiment, namely a process which

### Pattern matching probabilities and paradoxes A new variation on Penney s coin game

Osaka Keidai Ronshu, Vol. 63 No. 4 November 2012 Pattern matching probabilities and paradoxes A new variation on Penney s coin game Yutaka Nishiyama Abstract This paper gives an outline of an interesting

### Probability and statistical hypothesis testing. Holger Diessel holger.diessel@uni-jena.de

Probability and statistical hypothesis testing Holger Diessel holger.diessel@uni-jena.de Probability Two reasons why probability is important for the analysis of linguistic data: Joint and conditional

### Introduction and Overview

Introduction and Overview Probability and Statistics is a topic that is quickly growing, has become a major part of our educational program, and has a substantial role in the NCTM Standards. While covering

### Decision Making Under Uncertainty. Professor Peter Cramton Economics 300

Decision Making Under Uncertainty Professor Peter Cramton Economics 300 Uncertainty Consumers and firms are usually uncertain about the payoffs from their choices Example 1: A farmer chooses to cultivate

### Fundamentals of Probability

Fundamentals of Probability Introduction Probability is the likelihood that an event will occur under a set of given conditions. The probability of an event occurring has a value between 0 and 1. An impossible

### Probability And Odds Examples

Probability And Odds Examples. Will the Cubs or the Giants be more likely to win the game? What is the chance of drawing an ace from a deck of cards? What are the possibilities of rain today? What are

### The overall size of these chance errors is measured by their RMS HALF THE NUMBER OF TOSSES NUMBER OF HEADS MINUS 0 400 800 1200 1600 NUMBER OF TOSSES

INTRODUCTION TO CHANCE VARIABILITY WHAT DOES THE LAW OF AVERAGES SAY? 4 coins were tossed 1600 times each, and the chance error number of heads half the number of tosses was plotted against the number

### Introductory Probability. MATH 107: Finite Mathematics University of Louisville. March 5, 2014

Introductory Probability MATH 07: Finite Mathematics University of Louisville March 5, 204 What is probability? Counting and probability 2 / 3 Probability in our daily lives We see chances, odds, and probabilities

### 1. The sample space S is the set of all possible outcomes. 2. An event is a set of one or more outcomes for an experiment. It is a sub set of S.

1 Probability Theory 1.1 Experiment, Outcomes, Sample Space Example 1 n psychologist examined the response of people standing in line at a copying machines. Student volunteers approached the person first

### + Section 6.2 and 6.3

Section 6.2 and 6.3 Learning Objectives After this section, you should be able to DEFINE and APPLY basic rules of probability CONSTRUCT Venn diagrams and DETERMINE probabilities DETERMINE probabilities

### PROBABILITY 14.3. section. The Probability of an Event

4.3 Probability (4-3) 727 4.3 PROBABILITY In this section In the two preceding sections we were concerned with counting the number of different outcomes to an experiment. We now use those counting techniques

### STAT 319 Probability and Statistics For Engineers PROBABILITY. Engineering College, Hail University, Saudi Arabia

STAT 319 robability and Statistics For Engineers LECTURE 03 ROAILITY Engineering College, Hail University, Saudi Arabia Overview robability is the study of random events. The probability, or chance, that

### MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Exam Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Provide an appropriate response. 1) A coin is tossed. Find the probability that the result

### Probability and Hypothesis Testing

B. Weaver (3-Oct-25) Probability & Hypothesis Testing. PROBABILITY AND INFERENCE Probability and Hypothesis Testing The area of descriptive statistics is concerned with meaningful and efficient ways of

### Math/Stats 425 Introduction to Probability. 1. Uncertainty and the axioms of probability

Math/Stats 425 Introduction to Probability 1. Uncertainty and the axioms of probability Processes in the real world are random if outcomes cannot be predicted with certainty. Example: coin tossing, stock

### Bayesian Tutorial (Sheet Updated 20 March)

Bayesian Tutorial (Sheet Updated 20 March) Practice Questions (for discussing in Class) Week starting 21 March 2016 1. What is the probability that the total of two dice will be greater than 8, given that

### STAT 35A HW2 Solutions

STAT 35A HW2 Solutions http://www.stat.ucla.edu/~dinov/courses_students.dir/09/spring/stat35.dir 1. A computer consulting firm presently has bids out on three projects. Let A i = { awarded project i },

### Statistical Inference. Prof. Kate Calder. If the coin is fair (chance of heads = chance of tails) then

Probability Statistical Inference Question: How often would this method give the correct answer if I used it many times? Answer: Use laws of probability. 1 Example: Tossing a coin If the coin is fair (chance

### Probability Theory on Coin Toss Space

Probability Theory on Coin Toss Space 1 Finite Probability Spaces 2 Random Variables, Distributions, and Expectations 3 Conditional Expectations Probability Theory on Coin Toss Space 1 Finite Probability

### Discrete Mathematics and Probability Theory Fall 2009 Satish Rao, David Tse Note 10

CS 70 Discrete Mathematics and Probability Theory Fall 2009 Satish Rao, David Tse Note 10 Introduction to Discrete Probability Probability theory has its origins in gambling analyzing card games, dice,

### In the situations that we will encounter, we may generally calculate the probability of an event

What does it mean for something to be random? An event is called random if the process which produces the outcome is sufficiently complicated that we are unable to predict the precise result and are instead

### 6.3 Conditional Probability and Independence

222 CHAPTER 6. PROBABILITY 6.3 Conditional Probability and Independence Conditional Probability Two cubical dice each have a triangle painted on one side, a circle painted on two sides and a square painted

### Chapter 13 & 14 - Probability PART

Chapter 13 & 14 - Probability PART IV : PROBABILITY Dr. Joseph Brennan Math 148, BU Dr. Joseph Brennan (Math 148, BU) Chapter 13 & 14 - Probability 1 / 91 Why Should We Learn Probability Theory? Dr. Joseph

### AP Stats - Probability Review

AP Stats - Probability Review Multiple Choice Identify the choice that best completes the statement or answers the question. 1. I toss a penny and observe whether it lands heads up or tails up. Suppose

### MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Ch. - Problems to look at Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Provide an appropriate response. 1) A coin is tossed. Find the probability

### Homework Assignment #2: Answer Key

Homework Assignment #2: Answer Key Chapter 4: #3 Assuming that the current interest rate is 3 percent, compute the value of a five-year, 5 percent coupon bond with a face value of \$,000. What happens if

### Name Please Print MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Review Problems for Mid-Term 1, Fall 2012 (STA-120 Cal.Poly. Pomona) Name Please Print MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Determine whether

### Chapter 7 Probability. Example of a random circumstance. Random Circumstance. What does probability mean?? Goals in this chapter

Homework (due Wed, Oct 27) Chapter 7: #17, 27, 28 Announcements: Midterm exams keys on web. (For a few hours the answer to MC#1 was incorrect on Version A.) No grade disputes now. Will have a chance to

### PROBABILITY SECOND EDITION

PROBABILITY SECOND EDITION Table of Contents How to Use This Series........................................... v Foreword..................................................... vi Basics 1. Probability All

### MA 1125 Lecture 14 - Expected Values. Friday, February 28, 2014. Objectives: Introduce expected values.

MA 5 Lecture 4 - Expected Values Friday, February 2, 24. Objectives: Introduce expected values.. Means, Variances, and Standard Deviations of Probability Distributions Two classes ago, we computed the

### Chapter 16: law of averages

Chapter 16: law of averages Context................................................................... 2 Law of averages 3 Coin tossing experiment......................................................

### Mathematical goals. Starting points. Materials required. Time needed

Level S2 of challenge: B/C S2 Mathematical goals Starting points Materials required Time needed Evaluating probability statements To help learners to: discuss and clarify some common misconceptions about

### Discrete Mathematics and Probability Theory Fall 2009 Satish Rao, David Tse Note 13. Random Variables: Distribution and Expectation

CS 70 Discrete Mathematics and Probability Theory Fall 2009 Satish Rao, David Tse Note 3 Random Variables: Distribution and Expectation Random Variables Question: The homeworks of 20 students are collected

### Chapter 7 Probability and Statistics

Chapter 7 Probability and Statistics In this chapter, students develop an understanding of data sampling and making inferences from representations of the sample data, with attention to both measures of

### Discrete Mathematics for CS Fall 2006 Papadimitriou & Vazirani Lecture 22

CS 70 Discrete Mathematics for CS Fall 2006 Papadimitriou & Vazirani Lecture 22 Introduction to Discrete Probability Probability theory has its origins in gambling analyzing card games, dice, roulette

### Lecture 14. Chapter 7: Probability. Rule 1: Rule 2: Rule 3: Nancy Pfenning Stats 1000

Lecture 4 Nancy Pfenning Stats 000 Chapter 7: Probability Last time we established some basic definitions and rules of probability: Rule : P (A C ) = P (A). Rule 2: In general, the probability of one event

### Probability OPRE 6301

Probability OPRE 6301 Random Experiment... Recall that our eventual goal in this course is to go from the random sample to the population. The theory that allows for this transition is the theory of probability.

### Using Probability Language

-NEM-WBAns-CH 7/0/0 :8 PM Page 7 CHAPTER Using Probability Language Use probability language to describe predictions.. Make a check mark under the probability word that would apply for each sentence. For

### Machine Learning Math Essentials

Machine Learning Math Essentials Jeff Howbert Introduction to Machine Learning Winter 2012 1 Areas of math essential to machine learning Machine learning is part of both statistics and computer science

### Statistics 100A Homework 2 Solutions

Statistics Homework Solutions Ryan Rosario Chapter 9. retail establishment accepts either the merican Express or the VIS credit card. total of percent of its customers carry an merican Express card, 6

### 4.1 4.2 Probability Distribution for Discrete Random Variables

4.1 4.2 Probability Distribution for Discrete Random Variables Key concepts: discrete random variable, probability distribution, expected value, variance, and standard deviation of a discrete random variable.

### Probabilities. Probability of a event. From Random Variables to Events. From Random Variables to Events. Probability Theory I

Victor Adamchi Danny Sleator Great Theoretical Ideas In Computer Science Probability Theory I CS 5-25 Spring 200 Lecture Feb. 6, 200 Carnegie Mellon University We will consider chance experiments with

### Basic Probability Theory II

RECAP Basic Probability heory II Dr. om Ilvento FREC 408 We said the approach to establishing probabilities for events is to Define the experiment List the sample points Assign probabilities to the sample

### Elementary Statistics and Inference. Elementary Statistics and Inference. 16 The Law of Averages (cont.) 22S:025 or 7P:025.

Elementary Statistics and Inference 22S:025 or 7P:025 Lecture 20 1 Elementary Statistics and Inference 22S:025 or 7P:025 Chapter 16 (cont.) 2 D. Making a Box Model Key Questions regarding box What numbers

### Formula for Theoretical Probability

Notes Name: Date: Period: Probability I. Probability A. Vocabulary is the chance/ likelihood of some event occurring. Ex) The probability of rolling a for a six-faced die is 6. It is read as in 6 or out

### Basic Probability. Probability: The part of Mathematics devoted to quantify uncertainty

AMS 5 PROBABILITY Basic Probability Probability: The part of Mathematics devoted to quantify uncertainty Frequency Theory Bayesian Theory Game: Playing Backgammon. The chance of getting (6,6) is 1/36.

### Project Maths. Mathematics Resources for Students. Junior Certificate Strand 1. Statistics and Probability

Project Maths Mathematics Resources for Students Junior Certificate Strand 1 Statistics and Probability NCCA 2009 PROJECT MATHS - Mathematics Resources for Students Introduction This material is designed

### Stat 20: Intro to Probability and Statistics

Stat 20: Intro to Probability and Statistics Lecture 16: More Box Models Tessa L. Childers-Day UC Berkeley 22 July 2014 By the end of this lecture... You will be able to: Determine what we expect the sum

### Section 5-3 Binomial Probability Distributions

Section 5-3 Binomial Probability Distributions Key Concept This section presents a basic definition of a binomial distribution along with notation, and methods for finding probability values. Binomial

### X X AP Statistics Solutions to Packet 7 X Random Variables Discrete and Continuous Random Variables Means and Variances of Random Variables

AP Statistics Solutions to Packet 7 Random Variables Discrete and Continuous Random Variables Means and Variances of Random Variables HW #44, 3, 6 8, 3 7 7. THREE CHILDREN A couple plans to have three

### Binomial random variables

Binomial and Poisson Random Variables Solutions STAT-UB.0103 Statistics for Business Control and Regression Models Binomial random variables 1. A certain coin has a 5% of landing heads, and a 75% chance

### Determine the empirical probability that a person selected at random from the 1000 surveyed uses Mastercard.

Math 120 Practice Exam II Name You must show work for credit. 1) A pair of fair dice is rolled 50 times and the sum of the dots on the faces is noted. Outcome 2 4 5 6 7 8 9 10 11 12 Frequency 6 8 8 1 5