Distributions. and Probability. Find the sample space of an experiment. Find the probability of an event. Sample Space of an Experiment


 Egbert Marshall
 1 years ago
 Views:
Transcription
1 C Probability and Probability Distributions APPENDIX C.1 Probability A1 C.1 Probability Find the sample space of an experiment. Find the probability of an event. Sample Space of an Experiment When assigning measurements to the uncertainties of everyday life, people often use ambiguous terminology such as fairly certain, probable, and highly unlikely. Probability theory allows you to remove this ambiguity by assigning a number to the likelihood of the occurrence of an event. This number is called the probability that the event will occur. For example, if you toss a fair coin, the probability that it will land heads up is onehalf or 0.5. In probability theory, any happening whose result is uncertain is called an experiment. Each repetition of an experiment is called a trial. The possible results of the experiment are outcomes, the set of all possible outcomes of the experiment is the sample space of the experiment, and any subcollection of a sample space is an event. For instance, when a sixsided die is tossed, the sample space can be represented by the numbers 1 through 6. For this experiment, each of the outcomes is equally likely. To describe sample spaces in such a way that each outcome is equally likely, you must sometimes distinguish between various outcomes in ways that appear artificial. Example 1 illustrates such a situation. Example 1 Finding Sample Spaces Find the sample space for each of the following. a. One coin is tossed. b. Two coins are tossed. SOLUTION CHECKPOINT 1 An experiment consists of tossing a coin and a sixsided die. Find the sample space for the experiment. a. Because the coin will land heads up (denoted by H) or tails up (denoted by T), the sample space is S H, T. b. Because either coin can land heads up or tails up, the possible outcomes are as follows. HH heads up on both coins HT heads up on first coin and tails up on second coin TH tails up on first coin and heads up on second coin TT tails up on both coins So, the sample space is S HH, HT, TH, TT. Note that the list distinguishes between the two cases HT and TH, even though these two outcomes appear to be similar.
2 A2 APPENDIX C Probability and Probability Distributions The Probability of an Event To calculate the probability of an event, count the number of outcomes in the event and in the sample space. The number of equally likely outcomes in event E is denoted by n E, and the number of equally likely outcomes in the sample space S is denoted by n S. The probability that event E will occur is given by n E n S. Increasing likelihood of occurrence The Probability of an Event If an event E has n E equally likely outcomes and its sample space S has n S equally likely outcomes, then the probability of event E is n S. Impossible event (cannot occur) FIGURE C.1 The occurrence of the event is just as likely as it is unlikely. Certain event (must occur) Because the number of outcomes in an event must be less than or equal to the number of outcomes in the sample space, the probability of an event must be a number between 0 and 1. That is, 0 P E 1 as indicated in Figure C.1. If P E 0, event E cannot occur, and E is called an impossible event. If P E 1, event E must occur, and E is called a certain event. Example 2 Finding Probabilities of Events Find the probability of the following events. a. Two coins are tossed. What is the probability that both land heads up? b. A card is drawn from a standard deck of playing cards. What is the probability that it is an ace? SOLUTION STUDY TIP You can write a probability as a fraction, decimal, or percent. For instance, in Example 2(a), the probability of getting two 1 heads can be written as 4, 0.25, or 25%. a. Following the procedure in Example 1(b), let E HH and S HH, HT, TH, TT. The probability of getting two heads is n S 1 4. b. Because there are 52 cards in a standard deck of playing cards and there are 4 aces (one in each suit), the probability of drawing an ace is n S CHECKPOINT 2 A card is drawn from a standard deck of playing cards. What is the probability that it is a face card (king, queen, or jack)?
3 APPENDIX C.1 Probability A3 Example 3 Finding the Probability of an Event Two sixsided dice are tossed. What is the probability that the sum of the dice is 7? (See Figure C.2.) SOLUTION Because there are 6 possible outcomes on each die, you can use the Fundamental Counting Principle to conclude that there are 6 6 or 36 different outcomes when two dice are tossed. To find the probability of rolling a sum of 7, you must first count the number of ways in which this can occur. FIGURE C.2 First die Second die Algebra Review For examples on how to count the number of ways an event can happen, see the Chapter 11 Algebra Review on pages 691 and 692. So, a total of 7 can be rolled in 6 ways, which means that the probability of rolling a 7 is n S CHECKPOINT 3 One sixsided die is tossed twice. What is the probability that the sum of the two tosses is 4? Example 4 Finding the Probability of an Event FIGURE C.3 Twelvesided dice, as shown in Figure C.3, can be constructed (in the shape of regular dodecahedrons) such that each of the numbers from 1 to 6 appears twice on each die. Show that these dice can be used in any game requiring ordinary sixsided dice without changing the probabilities of different outcomes. SOLUTION For an ordinary sixsided die, each of the numbers 1, 2, 3, 4, 5, and 6 occurs only once, so the probability of any particular number is n S 1 6. For one of the twelvesided dice, each number occurs twice, so the probability of any particular number is n S CHECKPOINT 4 One twelvesided die is tossed twice. What is the probability that the sum of the two tosses is 11?
4 A4 APPENDIX C Probability and Probability Distributions Example 5 The Probability of Winning a Lottery In a state lottery, a player chooses 6 different numbers from 1 to 40. If these six numbers match the six numbers drawn (in any order) by the lottery commission, the player wins (or shares) the top prize. What is the probability of winning the top prize if the player buys one ticket? SOLUTION Because the order of the numbers is not important, use the formula for the number of combinations of 40 elements taken 6 at a time to determine the size of the sample space. n S 40 C 6 If a person buys only one ticket, the probability of winning the top prize is n S 1 3,838, ,838,380 CHECKPOINT 5 A bag contains two green, three yellow, and four red marbles. If two marbles are drawn from the bag without replacement, what is the probability that both marbles are red? CONCEPT CHECK 1. What is an experiment? 2. What is a sample space? 3. To determine the of an event, you can use the formula n S, where n E is the number of equally likely outcomes in the event and n S is the number of equally likely outcomes in the sample space. 4. If P E 0, then E is a(n) event, and if P E 1, then E is a(n) event.
5 APPENDIX C.1 Probability A5 Skills Review C.1 The following warmup exercises involve skills that were covered in earlier sections. You will use these skills in the exercise set for this section. For additional help, review the Chapter 11 Algebra Review on pages 691 and 692. In In Exercises 1 4, write the fraction (a) in lowest terms, (b) as a decimal, and (c) as a percent In Exercises 5 10, evaluate the expression. x 10x ! 8 C C ! 10 C ! 16 C 2 4 C 3 20 C 5 Exercises C.1 In Exercises 1 4, determine the sample space for the experiment. 1. A sixsided die is tossed twice and the sum is recorded. 2. A taste tester has to rank three varieties of yogurt, A, B, and C, according to preference. 3. Two marbles are selected from a bag containing two red marbles, two blue marbles, and one yellow marble. The color of each marble is recorded. 4. Two county supervisors are selected from five supervisors, A, B, C, D and E, to study a recycling plan. Tossing a Coin In Exercises 5 8, find the probability for the experiment of tossing a coin three times. Use the sample space S HHH, HHT, HTH, HTT, THH, THT, TTH, TTT. 5. The probability of getting exactly one tail 6. The probability of getting a head on the first toss 7. The probability of getting at least one head 8. The probability of getting at least two heads Drawing a Card In Exercises 9 12, find the probability for the experiment of selecting 1 card from a standard deck of 52 playing cards. 9. The card is black. 10. The card is a red face card. 11. The card is a 6 or lower. (Aces are low.) 12. The card is not a face card. See for workedout solutions to oddnumbered exercises. Tossing a Die In Exercises 13 18, find the probability for the experiment of tossing a sixsided die twice. 13. The sum is The sum is at least The sum is less than The sum is 2, 3, or The sum is no more than The sum is odd or prime. In Exercises 19 22, a computer generates an integer from 1 through 20 at random. Find the probability of the event. 19. The probability of generating a multiple of The probability of generating a number divisible by The probability of generating a prime number 22. The probability of generating a factor of 24 Drawing Marbles In Exercises 23 26, find the probability for the experiment of drawing two marbles (without replacement) from a bag containing one green, two yellow, and three red marbles. 23. Both marbles are red. 24. Both marbles are yellow. 25. Neither marble is yellow. 26. Neither marble is red.
6 A6 APPENDIX C Probability and Probability Distributions 27. Jury Selection A person is selected at random for jury duty from a list of registered voters from three different counties. Country A has 14,789 registered voters, County B has 17,851 registered voters, and County C has 23,487 registered voters. If only one name is selected, what is the probability that the person chosen is from County C? 28. Order of Arrival Three fire engines, four police cars, and one ambulance are called to the scene of an accident. If they all have an equal chance of arriving at the same time, what is the probability that a police car will arrive first? 29. Random Selection Nine players went to bat in the sixth inning of a baseball game. Four had singles, one had a double, one had a grand slam, and the others struck out. What is the probability that a batter chosen at random struck out? 30. Contract Bidding Ten health insurance companies are bidding for an insurance contract. Three are local companies, three have statewide operations, and four companies have national operations. Only one company will be awarded the contract. If each company is equally likely to win the contract, what is the probability that the contract will be awarded to one of the companies with statewide operations? 31. Data Analysis A study of the effectiveness of a flu vaccine was conducted with a sample of 500 people. Some participants in the study were given no vaccine, some were given one injection, and some were given two injections. The results of the study are listed in the table. No vaccine One injection Two injections Total Flu No flu Total A person is selected at random from the sample. Find the indicated probability (a) The person had two injections. (b) The person did not get the flu. (c) The person got the flu and had one injection. 32. Data Analysis One hundred college students were interviewed to determine their political party affiliations and whether they favored a balancedbudget amendment to the Constitution. The results of the study are listed in the table, where D represents Democrat and R represents Republican. Favor Not Favor Unsure Total D R Total A person is selected at random from the sample. Find the probability that the person described is selected. (a) A person who does not favor the amendment (b) A Republican (c) A Democrat who favors the amendment 33. Alumni Association A college sends a survey to selected members of the class of Of the 1254 people who graduated that year, 672 are women, of whom 124 went on to graduate school. Of the 582 male graduates, 198 went on to graduate school. An alumni member is selected at random. What are the probabilities that the person is (a) female, (b) male, and (c) female and did not attend graduate school? 34. Education In a high school graduating class of 202 students, 95 are on the honor roll. Of these, 71 are going on to college, and of the other 107 students, 53 are going on to college. A student is selected at random from the class. What are the probabilities that the person chosen is (a) on the honor roll, (b) going to college, and (c) on the honor roll, but not going to college? 35. Defective Item A clerk sold an equal number of hats, scarves, gloves, ski masks, and ear muffs. If one of the items was returned because it was defective, what is the probability that it was a hat? 36. Birth Order Each of six motherstobe received 3D ultrasound scans, which showed that four of them will give birth to girls. What is the probability that the first two women to give birth will have boys? 37. Random Selection Four letters and envelopes are addressed to four different people. If the letters are inserted into the envelopes at random, what is the probability that exactly one letter will be inserted in the correct envelope? 38. Random Selection A math teacher chooses 5 students at random from a class of 20 to solve a problem at the board. If 12 students know how to solve the problem, what is the probability that (a) all 5 students picked do not know how to solve the problem, and (b) exactly 3 students picked know how to solve the problem? 39. Defective Units A shipment of 12 microwave ovens contains 3 defective units. A vending company has ordered 4 of these units. Because the microwave ovens are identically packaged, the selection will be at random. What is the probability that (a) all 4 units are good, and (b) exactly 2 units are good?
Lesson 1. Basics of Probability. Principles of Mathematics 12: Explained! www.math12.com 314
Lesson 1 Basics of Probability www.math12.com 314 Sample Spaces: Probability Lesson 1 Part I: Basic Elements of Probability Consider the following situation: A six sided die is rolled The sample space
More informationChapter 6. 1. What is the probability that a card chosen from an ordinary deck of 52 cards is an ace? Ans: 4/52.
Chapter 6 1. What is the probability that a card chosen from an ordinary deck of 52 cards is an ace? 4/52. 2. What is the probability that a randomly selected integer chosen from the first 100 positive
More information2. How many ways can the letters in PHOENIX be rearranged? 7! = 5,040 ways.
Math 142 September 27, 2011 1. How many ways can 9 people be arranged in order? 9! = 362,880 ways 2. How many ways can the letters in PHOENIX be rearranged? 7! = 5,040 ways. 3. The letters in MATH are
More informationChapter 4 & 5 practice set. The actual exam is not multiple choice nor does it contain like questions.
Chapter 4 & 5 practice set. The actual exam is not multiple choice nor does it contain like questions. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
More informationContemporary Mathematics MAT 130. Probability. a) What is the probability of obtaining a number less than 4?
Contemporary Mathematics MAT 30 Solve the following problems:. A fair die is tossed. What is the probability of obtaining a number less than 4? What is the probability of obtaining a number less than
More informationPROBABILITY 14.3. section. The Probability of an Event
4.3 Probability (43) 727 4.3 PROBABILITY In this section In the two preceding sections we were concerned with counting the number of different outcomes to an experiment. We now use those counting techniques
More informationProbability QUESTIONS Principles of Math 12  Probability Practice Exam 1 www.math12.com
Probability QUESTIONS Principles of Math  Probability Practice Exam www.math.com Principles of Math : Probability Practice Exam Use this sheet to record your answers:... 4... 4... 4.. 6. 4.. 6. 7..
More informationV. RANDOM VARIABLES, PROBABILITY DISTRIBUTIONS, EXPECTED VALUE
V. RANDOM VARIABLES, PROBABILITY DISTRIBUTIONS, EXPETED VALUE A game of chance featured at an amusement park is played as follows: You pay $ to play. A penny and a nickel are flipped. You win $ if either
More informationChapter 4  Practice Problems 1
Chapter 4  Practice Problems SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. Provide an appropriate response. ) Compare the relative frequency formula
More informationPROBABILITY. Thabisa Tikolo STATISTICS SOUTH AFRICA
PROBABILITY Thabisa Tikolo STATISTICS SOUTH AFRICA Probability is a topic that some educators tend to struggle with and thus avoid teaching it to learners. This is an indication that teachers are not yet
More informationProbability. A random sample is selected in such a way that every different sample of size n has an equal chance of selection.
1 3.1 Sample Spaces and Tree Diagrams Probability This section introduces terminology and some techniques which will eventually lead us to the basic concept of the probability of an event. The Rare Event
More informationChapter 4 Probability
The Big Picture of Statistics Chapter 4 Probability Section 42: Fundamentals Section 43: Addition Rule Sections 44, 45: Multiplication Rule Section 47: Counting (next time) 2 What is probability?
More informationFind the indicated probability. 1) If a single fair die is rolled, find the probability of a 4 given that the number rolled is odd.
Math 0 Practice Test 3 Fall 2009 Covers 7.5, 8.8.3 MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Find the indicated probability. ) If a single
More informationMAT 1000. Mathematics in Today's World
MAT 1000 Mathematics in Today's World We talked about Cryptography Last Time We will talk about probability. Today There are four rules that govern probabilities. One good way to analyze simple probabilities
More informationI. WHAT IS PROBABILITY?
C HAPTER 3 PROBABILITY Random Experiments I. WHAT IS PROBABILITY? The weatherman on 0 o clock news program states that there is a 20% chance that it will snow tomorrow, a 65% chance that it will rain and
More informationRemember to leave your answers as unreduced fractions.
Probability Worksheet 2 NAME: Remember to leave your answers as unreduced fractions. We will work with the example of picking poker cards out of a deck. A poker deck contains four suits: diamonds, hearts,
More informationSection 65 Sample Spaces and Probability
492 6 SEQUENCES, SERIES, AND PROBABILITY 52. How many committees of 4 people are possible from a group of 9 people if (A) There are no restrictions? (B) Both Juan and Mary must be on the committee? (C)
More informationAP Stats  Probability Review
AP Stats  Probability Review Multiple Choice Identify the choice that best completes the statement or answers the question. 1. I toss a penny and observe whether it lands heads up or tails up. Suppose
More informationSession 8 Probability
Key Terms for This Session Session 8 Probability Previously Introduced frequency New in This Session binomial experiment binomial probability model experimental probability mathematical probability outcome
More information36 Odds, Expected Value, and Conditional Probability
36 Odds, Expected Value, and Conditional Probability What s the difference between probabilities and odds? To answer this question, let s consider a game that involves rolling a die. If one gets the face
More informationHoover High School Math League. Counting and Probability
Hoover High School Math League Counting and Probability Problems. At a sandwich shop there are 2 kinds of bread, 5 kinds of cold cuts, 3 kinds of cheese, and 2 kinds of dressing. How many different sandwiches
More informationChapter 4  Practice Problems 2
Chapter  Practice Problems 2 MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Find the indicated probability. 1) If you flip a coin three times, the
More informationBasic concepts in probability. Sue Gordon
Mathematics Learning Centre Basic concepts in probability Sue Gordon c 2005 University of Sydney Mathematics Learning Centre, University of Sydney 1 1 Set Notation You may omit this section if you are
More informationSection 6.2 Definition of Probability
Section 6.2 Definition of Probability Probability is a measure of the likelihood that an event occurs. For example, if there is a 20% chance of rain tomorrow, that means that the probability that it will
More informationMULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
Ch.  Problems to look at Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Provide an appropriate response. 1) A coin is tossed. Find the probability
More informationBasic Probability Theory I
A Probability puzzler!! Basic Probability Theory I Dr. Tom Ilvento FREC 408 Our Strategy with Probability Generally, we want to get to an inference from a sample to a population. In this case the population
More informationDetermine the empirical probability that a person selected at random from the 1000 surveyed uses Mastercard.
Math 120 Practice Exam II Name You must show work for credit. 1) A pair of fair dice is rolled 50 times and the sum of the dots on the faces is noted. Outcome 2 4 5 6 7 8 9 10 11 12 Frequency 6 8 8 1 5
More informationProbability And Odds Examples
Probability And Odds Examples. Will the Cubs or the Giants be more likely to win the game? What is the chance of drawing an ace from a deck of cards? What are the possibilities of rain today? What are
More informationProbability. Sample space: all the possible outcomes of a probability experiment, i.e., the population of outcomes
Probability Basic Concepts: Probability experiment: process that leads to welldefined results, called outcomes Outcome: result of a single trial of a probability experiment (a datum) Sample space: all
More informationA probability experiment is a chance process that leads to welldefined outcomes. 3) What is the difference between an outcome and an event?
Ch 4.2 pg.191~(110 all), 12 (a, c, e, g), 13, 14, (a, b, c, d, e, h, i, j), 17, 21, 25, 31, 32. 1) What is a probability experiment? A probability experiment is a chance process that leads to welldefined
More informationDecision Making Under Uncertainty. Professor Peter Cramton Economics 300
Decision Making Under Uncertainty Professor Peter Cramton Economics 300 Uncertainty Consumers and firms are usually uncertain about the payoffs from their choices Example 1: A farmer chooses to cultivate
More informationBayesian Tutorial (Sheet Updated 20 March)
Bayesian Tutorial (Sheet Updated 20 March) Practice Questions (for discussing in Class) Week starting 21 March 2016 1. What is the probability that the total of two dice will be greater than 8, given that
More informationBasic Probability. Probability: The part of Mathematics devoted to quantify uncertainty
AMS 5 PROBABILITY Basic Probability Probability: The part of Mathematics devoted to quantify uncertainty Frequency Theory Bayesian Theory Game: Playing Backgammon. The chance of getting (6,6) is 1/36.
More informationMathematical goals. Starting points. Materials required. Time needed
Level S2 of challenge: B/C S2 Mathematical goals Starting points Materials required Time needed Evaluating probability statements To help learners to: discuss and clarify some common misconceptions about
More informationStats Review Chapters 56
Stats Review Chapters 56 Created by Teri Johnson Math Coordinator, Mary Stangler Center for Academic Success Examples are taken from Statistics 4 E by Michael Sullivan, III And the corresponding Test
More informationMULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
Practice Test Chapter 9 Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Find the odds. ) Two dice are rolled. What are the odds against a sum
More informationSHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.
Math 1342 (Elementary Statistics) Test 2 Review SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. Find the indicated probability. 1) If you flip a coin
More informationChapter 5 A Survey of Probability Concepts
Chapter 5 A Survey of Probability Concepts True/False 1. Based on a classical approach, the probability of an event is defined as the number of favorable outcomes divided by the total number of possible
More informationMath 150 Sample Exam #2
Problem 1. (16 points) TRUE or FALSE. a. 3 die are rolled, there are 1 possible outcomes. b. If two events are complementary, then they are mutually exclusive events. c. If A and B are two independent
More informationProbabilistic Strategies: Solutions
Probability Victor Xu Probabilistic Strategies: Solutions Western PA ARML Practice April 3, 2016 1 Problems 1. You roll two 6sided dice. What s the probability of rolling at least one 6? There is a 1
More informationnumber of favorable outcomes total number of outcomes number of times event E occurred number of times the experiment was performed.
12 Probability 12.1 Basic Concepts Start with some Definitions: Experiment: Any observation of measurement of a random phenomenon is an experiment. Outcomes: Any result of an experiment is called an outcome.
More informationFundamentals of Probability
Fundamentals of Probability Introduction Probability is the likelihood that an event will occur under a set of given conditions. The probability of an event occurring has a value between 0 and 1. An impossible
More information1 Combinations, Permutations, and Elementary Probability
1 Combinations, Permutations, and Elementary Probability Roughly speaking, Permutations are ways of grouping things where the order is important. Combinations are ways of grouping things where the order
More informationPROBABILITY. Chapter. 0009T_c04_133192.qxd 06/03/03 19:53 Page 133
0009T_c04_133192.qxd 06/03/03 19:53 Page 133 Chapter 4 PROBABILITY Please stand up in front of the class and give your oral report on describing data using statistical methods. Does this request to speak
More informationCounting principle, permutations, combinations, probabilities
Counting Methods Counting principle, permutations, combinations, probabilities Part 1: The Fundamental Counting Principle The Fundamental Counting Principle is the idea that if we have a ways of doing
More information2. Three dice are tossed. Find the probability of a) a sum of 4; or b) a sum greater than 4 (may use complement)
Probability Homework Section P4 1. A twoperson committee is chosen at random from a group of four men and three women. Find the probability that the committee contains at least one man. 2. Three dice
More informationChapter 13 & 14  Probability PART
Chapter 13 & 14  Probability PART IV : PROBABILITY Dr. Joseph Brennan Math 148, BU Dr. Joseph Brennan (Math 148, BU) Chapter 13 & 14  Probability 1 / 91 Why Should We Learn Probability Theory? Dr. Joseph
More informationProbability: Terminology and Examples Class 2, 18.05, Spring 2014 Jeremy Orloff and Jonathan Bloom
Probability: Terminology and Examples Class 2, 18.05, Spring 2014 Jeremy Orloff and Jonathan Bloom 1 Learning Goals 1. Know the definitions of sample space, event and probability function. 2. Be able to
More informationProbability and Venn diagrams UNCORRECTED PAGE PROOFS
Probability and Venn diagrams 12 This chapter deals with further ideas in chance. At the end of this chapter you should be able to: identify complementary events and use the sum of probabilities to solve
More informationEDEXCEL FUNCTIONAL SKILLS PILOT
EEXEL FUNTIONAL SKILLS PILOT Maths Level hapter 7 Working with probability SETION K Measuring probability 9 Remember what you have learned 3 raft for Pilot Functional Maths Level hapter 7 Pearson Education
More informationThe study of probability has increased in popularity over the years because of its wide range of practical applications.
6.7. Probability. The study of probability has increased in popularity over the years because of its wide range of practical applications. In probability, each repetition of an experiment is called a trial,
More informationIntroduction to Probability
3 Introduction to Probability Given a fair coin, what can we expect to be the frequency of tails in a sequence of 10 coin tosses? Tossing a coin is an example of a chance experiment, namely a process which
More informationLecture 13. Understanding Probability and LongTerm Expectations
Lecture 13 Understanding Probability and LongTerm Expectations Thinking Challenge What s the probability of getting a head on the toss of a single fair coin? Use a scale from 0 (no way) to 1 (sure thing).
More informationFormula for Theoretical Probability
Notes Name: Date: Period: Probability I. Probability A. Vocabulary is the chance/ likelihood of some event occurring. Ex) The probability of rolling a for a sixfaced die is 6. It is read as in 6 or out
More informationDefinition and Calculus of Probability
In experiments with multivariate outcome variable, knowledge of the value of one variable may help predict another. For now, the word prediction will mean update the probabilities of events regarding the
More informationThe Casino Lab STATION 1: CRAPS
The Casino Lab Casinos rely on the laws of probability and expected values of random variables to guarantee them profits on a daily basis. Some individuals will walk away very wealthy, while others will
More informationWhat Do You Expect?: Homework Examples from ACE
What Do You Expect?: Homework Examples from ACE Investigation 1: A First Look at Chance, ACE #3, #4, #9, #31 Investigation 2: Experimental and Theoretical Probability, ACE #6, #12, #9, #37 Investigation
More informationPattern matching probabilities and paradoxes A new variation on Penney s coin game
Osaka Keidai Ronshu, Vol. 63 No. 4 November 2012 Pattern matching probabilities and paradoxes A new variation on Penney s coin game Yutaka Nishiyama Abstract This paper gives an outline of an interesting
More informationMULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
Ch. 4 Discrete Probability Distributions 4.1 Probability Distributions 1 Decide if a Random Variable is Discrete or Continuous 1) State whether the variable is discrete or continuous. The number of cups
More informationMath 210. 1. Compute C(1000,2) (a) 499500. (b) 1000000. (c) 2. (d) 999000. (e) None of the above.
Math 210 1. Compute C(1000,2) (a) 499500. (b) 1000000. (c) 2. (d) 999000. 2. Suppose that 80% of students taking calculus have previously had a trigonometry course. Of those that did, 75% pass their calculus
More informationExam. Name. How many distinguishable permutations of letters are possible in the word? 1) CRITICS
Exam Name How many distinguishable permutations of letters are possible in the word? 1) CRITICS 2) GIGGLE An order of award presentations has been devised for seven people: Jeff, Karen, Lyle, Maria, Norm,
More informationSTAT 319 Probability and Statistics For Engineers PROBABILITY. Engineering College, Hail University, Saudi Arabia
STAT 319 robability and Statistics For Engineers LECTURE 03 ROAILITY Engineering College, Hail University, Saudi Arabia Overview robability is the study of random events. The probability, or chance, that
More informationName Please Print MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
Review Problems for MidTerm 1, Fall 2012 (STA120 Cal.Poly. Pomona) Name Please Print MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Determine whether
More informationCONDITIONAL PROBABILITY AND TWOWAY TABLES
CONDITIONAL PROBABILITY AND 7.2. 7.2.3 TWOWAY TABLES The probability of one event occurring, knowing that another event has already occurred is called a conditional probability. Twoway tables are useful
More information4.4 Conditional Probability
4.4 Conditional Probability It is often necessary to know the probability of an event under restricted conditions. Recall the results of a survey of 100 Grade 12 mathematics students in a local high school.
More informationSection 7C: The Law of Large Numbers
Section 7C: The Law of Large Numbers Example. You flip a coin 00 times. Suppose the coin is fair. How many times would you expect to get heads? tails? One would expect a fair coin to come up heads half
More informationPROBABILITY SECOND EDITION
PROBABILITY SECOND EDITION Table of Contents How to Use This Series........................................... v Foreword..................................................... vi Basics 1. Probability All
More informationExam Style Questions. Revision for this topic. Name: Ensure you have: Pencil, pen, ruler, protractor, pair of compasses and eraser
Name: Exam Style Questions Ensure you have: Pencil, pen, ruler, protractor, pair of compasses and eraser You may use tracing paper if needed Guidance 1. Read each question carefully before you begin answering
More information6. Let X be a binomial random variable with distribution B(10, 0.6). What is the probability that X equals 8? A) (0.6) (0.4) B) 8! C) 45(0.6) (0.
Name: Date:. For each of the following scenarios, determine the appropriate distribution for the random variable X. A) A fair die is rolled seven times. Let X = the number of times we see an even number.
More informationProbability distributions
Probability distributions (Notes are heavily adapted from Harnett, Ch. 3; Hayes, sections 2.142.19; see also Hayes, Appendix B.) I. Random variables (in general) A. So far we have focused on single events,
More informationMethods Used for Counting
COUNTING METHODS From our preliminary work in probability, we often found ourselves wondering how many different scenarios there were in a given situation. In the beginning of that chapter, we merely tried
More informationChapter 4: Probability and Counting Rules
Chapter 4: Probability and Counting Rules Learning Objectives Upon successful completion of Chapter 4, you will be able to: Determine sample spaces and find the probability of an event using classical
More informationStandard 12: The student will explain and evaluate the financial impact and consequences of gambling.
TEACHER GUIDE 12.1 GAMBLING PAGE 1 Standard 12: The student will explain and evaluate the financial impact and consequences of gambling. Risky Business Priority Academic Student Skills Personal Financial
More informationhttps://assessment.casa.uh.edu/assessment/printtest.htm PRINTABLE VERSION Quiz 10
1 of 8 4/9/2013 8:17 AM PRINTABLE VERSION Quiz 10 Question 1 Let A and B be events in a sample space S such that P(A) = 0.34, P(B) = 0.39 and P(A B) = 0.19. Find P(A B). a) 0.4872 b) 0.5588 c) 0.0256 d)
More informationProbability Black Line Masters
Probability Black Line Masters Draft (NSSAL) C. David Pilmer 2008 This resource is the intellectual property of the Adult Education Division of the Nova Scotia Department of Labour and Advanced Education.
More informationQuestion: What is the probability that a fivecard poker hand contains a flush, that is, five cards of the same suit?
ECS20 Discrete Mathematics Quarter: Spring 2007 Instructor: John Steinberger Assistant: Sophie Engle (prepared by Sophie Engle) Homework 8 Hints Due Wednesday June 6 th 2007 Section 6.1 #16 What is the
More informationGrade 7 Mathematics. Unit 7. Data Analysis. Estimated Time: 18 Hours
Grade 7 Mathematics Data Analysis Estimated Time: 18 Hours [C] Communication [CN] Connections [ME] Mental Mathematics and Estimation [PS] Problem Solving [R] Reasoning [T] Technology [V] Visualization
More informationQuiz CHAPTER 16 NAME: UNDERSTANDING PROBABILITY AND LONG TERM EXPECTATIONS
Quiz CHAPTER 16 NAME: UNDERSTANDING PROBABILITY AND LONG TERM EXPECTATIONS 1. Give two examples of ways that we speak about probability in our every day lives. NY REASONABLE ANSWER OK. EXAMPLES: 1) WHAT
More informationPROBABILITY. The theory of probabilities is simply the Science of logic quantitatively treated. C.S. PEIRCE
PROBABILITY 53 Chapter 3 PROBABILITY The theory of probabilities is simply the Science of logic quantitatively treated. C.S. PEIRCE 3. Introduction In earlier Classes, we have studied the probability as
More informationProbability and Statistics is one of the strands tested on the California Standards Test.
Grades 34 Probability and Statistics is one of the strands tested on the California Standards Test. Probability is introduced in 3 rd grade. Many students do not work on probability concepts in 5 th grade.
More informationProbability and Hypothesis Testing
B. Weaver (3Oct25) Probability & Hypothesis Testing. PROBABILITY AND INFERENCE Probability and Hypothesis Testing The area of descriptive statistics is concerned with meaningful and efficient ways of
More information10410 Year 9 mathematics: holiday revision. 2 How many nines are there in fiftyfour?
DAY 1 Mental questions 1 Multiply seven by seven. 49 2 How many nines are there in fiftyfour? 54 9 = 6 6 3 What number should you add to negative three to get the answer five? 8 4 Add two point five to
More informationUsing Probability Language
NEMWBAnsCH 7/0/0 :8 PM Page 7 CHAPTER Using Probability Language Use probability language to describe predictions.. Make a check mark under the probability word that would apply for each sentence. For
More informationAMS 5 CHANCE VARIABILITY
AMS 5 CHANCE VARIABILITY The Law of Averages When tossing a fair coin the chances of tails and heads are the same: 50% and 50%. So if the coin is tossed a large number of times, the number of heads and
More informationProbability and statistical hypothesis testing. Holger Diessel holger.diessel@unijena.de
Probability and statistical hypothesis testing Holger Diessel holger.diessel@unijena.de Probability Two reasons why probability is important for the analysis of linguistic data: Joint and conditional
More informationJan 17 Homework Solutions Math 151, Winter 2012. Chapter 2 Problems (pages 5054)
Jan 17 Homework Solutions Math 11, Winter 01 Chapter Problems (pages 0 Problem In an experiment, a die is rolled continually until a 6 appears, at which point the experiment stops. What is the sample
More informationProbability definitions
Probability definitions 1. Probability of an event = chance that the event will occur. 2. Experiment = any action or process that generates observations. In some contexts, we speak of a datagenerating
More informationPrestatistics. Review #3. Find the square root. 1) 144 A) 72 B) 12 C) 12 D) Not a real number. 2) A) 312 B) 25 C) 25 D) Not a real number
Prestatistics Review #3 Find the square root. 1) 144 A) 72 B) 12 C) 12 D) Not a real number 2)  625 A) 312 B) 25 C) 25 D) Not a real number 3) 0.25 A) 0.005 B) 0.05 C) 5 D) 0.5 Find the cube root.
More informationIntroductory Probability. MATH 107: Finite Mathematics University of Louisville. March 5, 2014
Introductory Probability MATH 07: Finite Mathematics University of Louisville March 5, 204 What is probability? Counting and probability 2 / 3 Probability in our daily lives We see chances, odds, and probabilities
More informationCh. 13.2: Mathematical Expectation
Ch. 13.2: Mathematical Expectation Random Variables Very often, we are interested in sample spaces in which the outcomes are distinct real numbers. For example, in the experiment of rolling two dice, we
More informationLecture Note 1 Set and Probability Theory. MIT 14.30 Spring 2006 Herman Bennett
Lecture Note 1 Set and Probability Theory MIT 14.30 Spring 2006 Herman Bennett 1 Set Theory 1.1 Definitions and Theorems 1. Experiment: any action or process whose outcome is subject to uncertainty. 2.
More informationThe Procedures of Monte Carlo Simulation (and Resampling)
154 Resampling: The New Statistics CHAPTER 10 The Procedures of Monte Carlo Simulation (and Resampling) A Definition and General Procedure for Monte Carlo Simulation Summary Until now, the steps to follow
More informationMath 3C Homework 3 Solutions
Math 3C Homework 3 s Ilhwan Jo and Akemi Kashiwada ilhwanjo@math.ucla.edu, akashiwada@ucla.edu Assignment: Section 2.3 Problems 2, 7, 8, 9,, 3, 5, 8, 2, 22, 29, 3, 32 2. You draw three cards from a standard
More information111 Permutations and Combinations
Fundamental Counting Principal 111 Permutations and Combinations Using the Fundamental Counting Principle 1a. A makeyourownadventure story lets you choose 6 starting points, gives 4 plot choices, and
More informationContemporary Mathematics Online Math 1030 Sample Exam I Chapters 1214 No Time Limit No Scratch Paper Calculator Allowed: Scientific
Contemporary Mathematics Online Math 1030 Sample Exam I Chapters 1214 No Time Limit No Scratch Paper Calculator Allowed: Scientific Name: The point value of each problem is in the lefthand margin. You
More informationMA 1125 Lecture 14  Expected Values. Friday, February 28, 2014. Objectives: Introduce expected values.
MA 5 Lecture 4  Expected Values Friday, February 2, 24. Objectives: Introduce expected values.. Means, Variances, and Standard Deviations of Probability Distributions Two classes ago, we computed the
More informationCombinations and Permutations
Combinations and Permutations What's the Difference? In English we use the word "combination" loosely, without thinking if the order of things is important. In other words: "My fruit salad is a combination
More informationMath 118 Study Guide. This study guide is for practice only. The actual question on the final exam may be different.
Math 118 Study Guide This study guide is for practice only. The actual question on the final exam may be different. Convert the symbolic compound statement into words. 1) p represents the statement "It's
More informationMULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
Exam Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Provide an appropriate response. 1) A coin is tossed. Find the probability that the result
More information