# Trapezoid Rule. y 2. y L

Save this PDF as:

Size: px
Start display at page:

## Transcription

1 Trapezoid Rule and Simpson s Rule c 2002, 2008, 200 Donald Kreider and Dwigt Lar Trapezoid Rule Many applications of calculus involve definite integrals. If we can find an antiderivative for te integrand, ten we can evaluate te integral fairly easily. Wen we cannot, we turn to numerical metods. Te numerical metod we will discuss ere is called te Trapezoid Rule. Altoug we often can carry out te calculations by and, te metod is most effective wit te use of a computer or programmable calculator. But at te moment let s not concern ourselves wit tese details. We will describe te metod first, and ten consider ways to implement it. f y 2 y 0 y y 3 a = x 0 x x 2 x 3 = b Te general idea is to use trapezoids instead of rectangles to approximate te area under te grap of a function. A trapezoid looks like a rectangle except tat it as a slanted line for a top. Working on te interval [a, b], we subdivide it into n subintervals of equal widt = (b a)/n. Tis gives rise to te partition a = x 0 x x 2 x n = b, were for eac j, x j = a + j, 0 j n. Moreover, we let y j = f(x j ), 0 j n. Tat is, te vertical edges go from te x-axis to te grap of f. Consult te sketc above were we ave sown a finite number of subintervals. If we are going to use trapezoids instead of rectangles as our basic area elements, ten we ave to ave a formula for te area of a trapezoid. y R - y L y R y L Wit reference to te sketc above, te area of a trapezoid consists of te area of te rectangle plus te area of te triangle, or y L + (/2)(y R y L ) = (y L + y R )/2. So, te area is times te average of te lengts of te two vertical edges. Now, we return to te original problem of finding te definite integral of a function f defined on te interval [a, b]. We define te Trapezoid Rule as follows.

2 Definition: Te n-subinterval trapezoid approximation to b f(x) dx is given by a T n = 2 (y 0 + 2y + 2y 2 + 2y y n + y n ) = n y 0 + y n + 2 y j 2 j= To see were te formula comes from, let s carry out te process of adding te areas of te trapezoids. Refer to te original sketc, and use te formula we derived for te area of a trapezoid. Note tat wen we add te areas of te trapezoids starting on te left, te area of te first, second, and tird are: 2 (y 0 + y ) 2 (y + y 2 ) 2 (y 2 + y 3 ) So, y 0 and y 3, te first and te last, eac appear once; and all te oter y j s appear exactly twice. We can see from tis example tat tere will be a similar pattern no matter te number of trapezoids: Te first and te last vertical edge appears once, and all oter vertical edges appear two times wen we sum te areas of te trapezoids. Tis is exactly wat te Trapezoid Rule entails in te formula above. Example : Find T 5 for 2 and x j = + j/5, 0 j 5. x dx. We can readily determine tat f(x) = /x, = /5 (so /2 = /0), /5 /5 /5 /5 /5 So, T 5 = ( + ( )) Example 2: Find T 5 for 0 x2 dx. Tat is, we are going to approximate one-quarter of te area of a circle of radius. Te exact answer is π/4, or approximately Note tat = /5, y 0 = and y 5 = 0. Tus, or about T 5 = j2 25 j= Simpson s Rule Anoter tecnique for approximating te value of a definite integral is called Simpson s Rule. Wereas te main advantage of te Trapezoid rule is its rater easy conceptualization and derivation, Simpson s rule 2

3 approximations usually acieve a given level of accuracy faster. Moreover, te derivation of Simpson s rule is only marginally more difficult. Bot rules are examples of wat we refer to as numerical metods. In te Trapezoid rule metod, we start wit rectangular area-elements and replace teir orizontal-line tops wit slanted lines. Te area-elements used to approximate, say, te area under te grap of a function and above a closed interval ten become trapezoids. Simpson s metod replaces te slanted-line tops wit parabolas. Toug two points determine te equation of a line, tree are required for a parabola. We also need to develop a formula for te area of a parabolic-top area-element if te sum of suc areas is to become te Simpson approximation. Suppose we consider a parabola y = Ax 2 + Bx + C wit its axis parallel to te y-axis and passing troug tree equally spaced points (, y L ), (0, y M ), and (, y R ). Ten substituting te tree points into te equation gives tree equations in te tree unknowns A, B, C. y L = A 2 B + C y M = C y R = A 2 + B + C Solving tese tree equations by adding te first to te last, and ten by subtracting te last from te first, yields: 2A 2 = y L + y R 2y M B = y R y L 2 C = y M Next, we compute te area under te parabola y = Ax 2 + Bx + C and above te interval [, ] for te values of A, B, and C we just found: 3

4 Ax 2 + Bx + C dx = ) (A x3 3 + B x2 2 + Cx = 3 2A3 + 2C ( ) = 3 2A2 + 2C ( ) = 3 (y L + y R 2y M ) + 2y M = 3 (y L + y R 2y M + 6y M ) = 3 (y L + y R + 4y M ) Te above formula olds for te area of a parabolic topped area element wit base of lengt 2 and vertical edges of lengt y L on te left and y R on te rigt. Te eigt at te midpoint is y M. Now, let n be an even positive integer, and suppose we divide an interval [a, b] into n equal parts eac of lengt = b a n. And suppose f is a function defined on [a, b]. As before we label te resulting partition a = x 0 x x 2 x n = b, were for eac j, x j = a + j, 0 j n. And again, we let y j = f(x j ), 0 j n. Tat is, te vertical edges go from te x-axis to te grap of f. Next, start at te left endpoint a of te interval and erect a parabolic-top area-element on te first two subintervals. Te base of tis area-element goes from x 0 to x 2, and we use as vertical sides te lines tat intersect te grap at (x 0, y 0 ) on te left and (x 2, y 2 ) on te rigt. Te point (x, y ) on te grap of f at te midpoint of te interval gives te tird point we need to determine te parabola tat forms te top of te area-element. From te formula we developed above, te area of tis area-element is equal to 3 (y 0 + y 2 + 4y ). If we repeat tis process using te next two subintervals tat go from x 2 to x 4, ten te area of te resulting parabolic-top element will be (from an application of te formula above) 3 (y 2 + y 4 + 4y 3 ). Tus, te sum of te areas of te two parabolic-top elements equals 3 (y 0 + 4y + 2y 2 + 4y 3 + y 4 ). We continue in tis way until we ave calculated te areas of te n 2 parabolic-top area elements and added tem togeter. A pattern begins to emerge in te form of te sum of te areas of te n 2 parabolic-top area-elements. Te sum will equal 3 multiplied by: y 0 + y n, i.e. te sum of te eigts of te leftmost and rigtmost vertical edges; plus 4 times te sum of te odd-indexed eigts; plus 2 times te sum of te even-indexed eigts because tese edges belong to two successive area-elements, one on te left and te oter on te rigt. Tis explains te form of te Simpson s Rule approximation wic we now state Definition: Let n be even. Te n-subinterval Simpson approximation to b f(x) dx is given by a S n = 3 (y 0 + 4y + 2y 2 + 4y 3 + 2y y n 2 + 4y n + y n ) = (y 0 + y n + 4 y odd + 2 ) y even 3 Example 3: Find S 4 for 2 x dx. Te exact answer is ln 2, or approximately In Example we found tat T 5 is equal to about If we are to use Simpson s rule for an approximation, ten n as to be even. Terefore, S 4 is a legitimate sum to calculate. Note tat = /4. Te five points of te partition are x 0 =, x = 5/4, x 2 = 3/2, x 3 = 7/4, x 4 = 2. And te corresponding y-values are y 0 =, 4

5 y = 4/5, y 2 = 2/3, y 3 = 4/7 and y 4 = /2. Tus, S 4 = ( + ) (y + y 3 ) + 2 (y 2 ) = ( + ( ) ( )) Note tat S 4 wit a smaller n is a better approximation to te actual value of te integral tan T 5. Example 4: Find S 4 for 0 x2 dx. Te exact answer is π/4, or approximately , onequarter of te area of a circle of radius. In Example 2 we found tat T 5 is equal to about If we are to use Simpson s rule for an approximation, ten n as to be even, so S 4 makes sense. Note tat = /4. Te five points of te partition are x 0 = 0, x = /4, x 2 = /2, x 3 = 3/4, x 4 =. And te corresponding y-values are y 0 =, y = /6, y 2 = /4, y 3 = 9/6 and y 4 = 0. Tus, S 4 = 2 ( (y + y 3 ) + 2 (y 2 )) = ( ( ) /6 + 7/6 + 2 ) 3/4 2 or about Te latter is a better approximation wit a smaller n tan we got wit te Trapezoid rule. Error Comparisons: As we found to be true in te examples, Simpson s rule is indeed muc better tan te Trapezoid rule. As n it generally converges muc more rapidly to te value of te definite integral tan does te Trapezoid rule. We can get a sense of te differences in te rates of convergence of te two metods from te folowing two teorems: T: Suppose te second derivative of f is continuous and ence necessarily bounded by a positine number M 2 on [a, b]. If error Tn = b a f(x) dx T n, ten error Tn M 2(b a) 3 2n 2 T2: Suppose te fourt derivative of f is continuous and ence necessarily bounded by a positive number M 4 on [a, b]. If error Sn = b a f(x) dx S n, ten error Sn M 4(b a) 5 80n 4 Tese teorems imply tat in many situations, as n, error Tn 0 like /n 2 and error Sn 0 like /n 4. Tis explains wy in general we are not surprised to find tat Simpson s rule converges to te value of te integral muc faster tan te Trapezoid rule. Importance of te Trapezoid and Simpson Rules: You migt ask,wat is te point of te Trap and Simp approximations in tis age of computers? Te answer is tat tey are simple to use and give excellent results, surprisingly so even for small n. A little aritmetic can yield a good estimate of a definite integral wit only modest effort. Not bad, e? Applet: Numerical Integration Try it! Exercises: Problems Ceck wat you ave learned! Videos: Tutorial Solutions See problems worked out! 5

### SAT Subject Math Level 1 Facts & Formulas

Numbers, Sequences, Factors Integers:..., -3, -2, -1, 0, 1, 2, 3,... Reals: integers plus fractions, decimals, and irrationals ( 2, 3, π, etc.) Order Of Operations: Aritmetic Sequences: PEMDAS (Parenteses

### ACT Math Facts & Formulas

Numbers, Sequences, Factors Integers:..., -3, -2, -1, 0, 1, 2, 3,... Rationals: fractions, tat is, anyting expressable as a ratio of integers Reals: integers plus rationals plus special numbers suc as

### Instantaneous Rate of Change:

Instantaneous Rate of Cange: Last section we discovered tat te average rate of cange in F(x) can also be interpreted as te slope of a scant line. Te average rate of cange involves te cange in F(x) over

### Derivatives Math 120 Calculus I D Joyce, Fall 2013

Derivatives Mat 20 Calculus I D Joyce, Fall 203 Since we ave a good understanding of its, we can develop derivatives very quickly. Recall tat we defined te derivative f x of a function f at x to be te

### New Vocabulary volume

-. Plan Objectives To find te volume of a prism To find te volume of a cylinder Examples Finding Volume of a Rectangular Prism Finding Volume of a Triangular Prism 3 Finding Volume of a Cylinder Finding

### Math 113 HW #5 Solutions

Mat 3 HW #5 Solutions. Exercise.5.6. Suppose f is continuous on [, 5] and te only solutions of te equation f(x) = 6 are x = and x =. If f() = 8, explain wy f(3) > 6. Answer: Suppose we ad tat f(3) 6. Ten

### 1.6. Analyse Optimum Volume and Surface Area. Maximum Volume for a Given Surface Area. Example 1. Solution

1.6 Analyse Optimum Volume and Surface Area Estimation and oter informal metods of optimizing measures suc as surface area and volume often lead to reasonable solutions suc as te design of te tent in tis

### Surface Areas of Prisms and Cylinders

12.2 TEXAS ESSENTIAL KNOWLEDGE AND SKILLS G.10.B G.11.C Surface Areas of Prisms and Cylinders Essential Question How can you find te surface area of a prism or a cylinder? Recall tat te surface area of

### Lecture 10: What is a Function, definition, piecewise defined functions, difference quotient, domain of a function

Lecture 10: Wat is a Function, definition, piecewise defined functions, difference quotient, domain of a function A function arises wen one quantity depends on anoter. Many everyday relationsips between

### 7.6 Complex Fractions

Section 7.6 Comple Fractions 695 7.6 Comple Fractions In tis section we learn ow to simplify wat are called comple fractions, an eample of wic follows. 2 + 3 Note tat bot te numerator and denominator are

### 2 Limits and Derivatives

2 Limits and Derivatives 2.7 Tangent Lines, Velocity, and Derivatives A tangent line to a circle is a line tat intersects te circle at exactly one point. We would like to take tis idea of tangent line

### Tangent Lines and Rates of Change

Tangent Lines and Rates of Cange 9-2-2005 Given a function y = f(x), ow do you find te slope of te tangent line to te grap at te point P(a, f(a))? (I m tinking of te tangent line as a line tat just skims

### Exercises for numerical integration. Øyvind Ryan

Exercises for numerical integration Øyvind Ryan February 25, 21 1. Vi ar r(t) = (t cos t, t sin t, t) Solution: Koden blir % Oppgave.1.11 b) quad(@(x)sqrt(2+t.^2),,2*pi) a. Finn astigeten, farten og akselerasjonen.

### Verifying Numerical Convergence Rates

1 Order of accuracy Verifying Numerical Convergence Rates We consider a numerical approximation of an exact value u. Te approximation depends on a small parameter, suc as te grid size or time step, and

### f(a + h) f(a) f (a) = lim

Lecture 7 : Derivative AS a Function In te previous section we defined te derivative of a function f at a number a (wen te function f is defined in an open interval containing a) to be f (a) 0 f(a + )

### Determine the perimeter of a triangle using algebra Find the area of a triangle using the formula

Student Name: Date: Contact Person Name: Pone Number: Lesson 0 Perimeter, Area, and Similarity of Triangles Objectives Determine te perimeter of a triangle using algebra Find te area of a triangle using

### Area of Trapezoids. Find the area of the trapezoid. 7 m. 11 m. 2 Use the Area of a Trapezoid. Find the value of b 2

Page 1 of. Area of Trapezoids Goal Find te area of trapezoids. Recall tat te parallel sides of a trapezoid are called te bases of te trapezoid, wit lengts denoted by and. base, eigt Key Words trapezoid

### Differential Calculus: Differentiation (First Principles, Rules) and Sketching Graphs (Grade 12)

OpenStax-CNX moule: m39313 1 Differential Calculus: Differentiation (First Principles, Rules) an Sketcing Graps (Grae 12) Free Hig Scool Science Texts Project Tis work is prouce by OpenStax-CNX an license

### In other words the graph of the polynomial should pass through the points

Capter 3 Interpolation Interpolation is te problem of fitting a smoot curve troug a given set of points, generally as te grap of a function. It is useful at least in data analysis (interpolation is a form

### SAT Math Facts & Formulas

Numbers, Sequences, Factors SAT Mat Facts & Formuas Integers:..., -3, -2, -1, 0, 1, 2, 3,... Reas: integers pus fractions, decimas, and irrationas ( 2, 3, π, etc.) Order Of Operations: Aritmetic Sequences:

### M(0) = 1 M(1) = 2 M(h) = M(h 1) + M(h 2) + 1 (h > 1)

Insertion and Deletion in VL Trees Submitted in Partial Fulfillment of te Requirements for Dr. Eric Kaltofen s 66621: nalysis of lgoritms by Robert McCloskey December 14, 1984 1 ackground ccording to Knut

### Finite Volume Discretization of the Heat Equation

Lecture Notes 3 Finite Volume Discretization of te Heat Equation We consider finite volume discretizations of te one-dimensional variable coefficient eat equation, wit Neumann boundary conditions u t x

### Chapter 7 Numerical Differentiation and Integration

45 We ave a abit in writing articles publised in scientiþc journals to make te work as Þnised as possible, to cover up all te tracks, to not worry about te blind alleys or describe ow you ad te wrong idea

### The EOQ Inventory Formula

Te EOQ Inventory Formula James M. Cargal Matematics Department Troy University Montgomery Campus A basic problem for businesses and manufacturers is, wen ordering supplies, to determine wat quantity of

### Area of a Parallelogram

Area of a Parallelogram Focus on After tis lesson, you will be able to... φ develop te φ formula for te area of a parallelogram calculate te area of a parallelogram One of te sapes a marcing band can make

### FINITE DIFFERENCE METHODS

FINITE DIFFERENCE METHODS LONG CHEN Te best known metods, finite difference, consists of replacing eac derivative by a difference quotient in te classic formulation. It is simple to code and economic to

### SAT Math Must-Know Facts & Formulas

SAT Mat Must-Know Facts & Formuas Numbers, Sequences, Factors Integers:..., -3, -2, -1, 0, 1, 2, 3,... Rationas: fractions, tat is, anyting expressabe as a ratio of integers Reas: integers pus rationas

### 13 PERIMETER AND AREA OF 2D SHAPES

13 PERIMETER AND AREA OF D SHAPES 13.1 You can find te perimeter of sapes Key Points Te perimeter of a two-dimensional (D) sape is te total distance around te edge of te sape. l To work out te perimeter

### Geometric Stratification of Accounting Data

Stratification of Accounting Data Patricia Gunning * Jane Mary Horgan ** William Yancey *** Abstract: We suggest a new procedure for defining te boundaries of te strata in igly skewed populations, usual

### Sections 3.1/3.2: Introducing the Derivative/Rules of Differentiation

Sections 3.1/3.2: Introucing te Derivative/Rules of Differentiation 1 Tangent Line Before looking at te erivative, refer back to Section 2.1, looking at average velocity an instantaneous velocity. Here

### Estimating the Average Value of a Function

Estimating the Average Value of a Function Problem: Determine the average value of the function f(x) over the interval [a, b]. Strategy: Choose sample points a = x 0 < x 1 < x 2 < < x n 1 < x n = b and

### The Derivative as a Function

Section 2.2 Te Derivative as a Function 200 Kiryl Tsiscanka Te Derivative as a Function DEFINITION: Te derivative of a function f at a number a, denoted by f (a), is if tis limit exists. f (a) f(a+) f(a)

### Section 3.3. Differentiation of Polynomials and Rational Functions. Difference Equations to Differential Equations

Difference Equations to Differential Equations Section 3.3 Differentiation of Polynomials an Rational Functions In tis section we begin te task of iscovering rules for ifferentiating various classes of

### Math Test Sections. The College Board: Expanding College Opportunity

Taking te SAT I: Reasoning Test Mat Test Sections Te materials in tese files are intended for individual use by students getting ready to take an SAT Program test; permission for any oter use must be sougt

### Volumes of Pyramids and Cones. Use the Pythagorean Theorem to find the value of the variable. h 2 m. 1.5 m 12 in. 8 in. 2.5 m

-5 Wat You ll Learn To find te volume of a pramid To find te volume of a cone... And W To find te volume of a structure in te sape of a pramid, as in Eample Volumes of Pramids and Cones Ceck Skills You

### 1 Derivatives of Piecewise Defined Functions

MATH 1010E University Matematics Lecture Notes (week 4) Martin Li 1 Derivatives of Piecewise Define Functions For piecewise efine functions, we often ave to be very careful in computing te erivatives.

### Area Formulas with Applications

Formulas wit Applications Ojective To review and use formulas for perimeter, circumference, and area. www.everydaymatonline.com epresentations etoolkit Algoritms Practice EM Facts Worksop Game Family Letters

### Lecture 10. Limits (cont d) One-sided limits. (Relevant section from Stewart, Seventh Edition: Section 2.4, pp. 113.)

Lecture 10 Limits (cont d) One-sided its (Relevant section from Stewart, Sevent Edition: Section 2.4, pp. 113.) As you may recall from your earlier course in Calculus, we may define one-sided its, were

### 2.1: The Derivative and the Tangent Line Problem

.1.1.1: Te Derivative and te Tangent Line Problem Wat is te deinition o a tangent line to a curve? To answer te diiculty in writing a clear deinition o a tangent line, we can deine it as te iting position

### 6. Differentiating the exponential and logarithm functions

1 6. Differentiating te exponential and logaritm functions We wis to find and use derivatives for functions of te form f(x) = a x, were a is a constant. By far te most convenient suc function for tis purpose

### 3 Ans. 1 of my \$30. 3 on. 1 on ice cream and the rest on 2011 MATHCOUNTS STATE COMPETITION SPRINT ROUND

0 MATHCOUNTS STATE COMPETITION SPRINT ROUND. boy scouts are accompanied by scout leaders. Eac person needs bottles of water per day and te trip is day. + = 5 people 5 = 5 bottles Ans.. Cammie as pennies,

### Note nine: Linear programming CSE 101. 1 Linear constraints and objective functions. 1.1 Introductory example. Copyright c Sanjoy Dasgupta 1

Copyrigt c Sanjoy Dasgupta Figure. (a) Te feasible region for a linear program wit two variables (see tet for details). (b) Contour lines of te objective function: for different values of (profit). Te

### MATHEMATICS FOR ENGINEERING DIFFERENTIATION TUTORIAL 1 - BASIC DIFFERENTIATION

MATHEMATICS FOR ENGINEERING DIFFERENTIATION TUTORIAL 1 - BASIC DIFFERENTIATION Tis tutorial is essential pre-requisite material for anyone stuing mecanical engineering. Tis tutorial uses te principle of

### Reinforced Concrete Beam

Mecanics of Materials Reinforced Concrete Beam Concrete Beam Concrete Beam We will examine a concrete eam in ending P P A concrete eam is wat we call a composite eam It is made of two materials: concrete

### f(x + h) f(x) h as representing the slope of a secant line. As h goes to 0, the slope of the secant line approaches the slope of the tangent line.

Derivative of f(z) Dr. E. Jacobs Te erivative of a function is efine as a limit: f (x) 0 f(x + ) f(x) We can visualize te expression f(x+) f(x) as representing te slope of a secant line. As goes to 0,

### Average and Instantaneous Rates of Change: The Derivative

9.3 verage and Instantaneous Rates of Cange: Te Derivative 609 OBJECTIVES 9.3 To define and find average rates of cange To define te derivative as a rate of cange To use te definition of derivative to

### CHAPTER 7. Di erentiation

CHAPTER 7 Di erentiation 1. Te Derivative at a Point Definition 7.1. Let f be a function defined on a neigborood of x 0. f is di erentiable at x 0, if te following it exists: f 0 fx 0 + ) fx 0 ) x 0 )=.

### 4.1 Right-angled Triangles 2. 4.2 Trigonometric Functions 19. 4.3 Trigonometric Identities 36. 4.4 Applications of Trigonometry to Triangles 53

ontents 4 Trigonometry 4.1 Rigt-angled Triangles 4. Trigonometric Functions 19 4.3 Trigonometric Identities 36 4.4 pplications of Trigonometry to Triangles 53 4.5 pplications of Trigonometry to Waves 65

### - 1 - Handout #22 May 23, 2012 Huffman Encoding and Data Compression. CS106B Spring 2012. Handout by Julie Zelenski with minor edits by Keith Schwarz

CS106B Spring 01 Handout # May 3, 01 Huffman Encoding and Data Compression Handout by Julie Zelenski wit minor edits by Keit Scwarz In te early 1980s, personal computers ad ard disks tat were no larger

### 7.6 Approximation Errors and Simpson's Rule

WileyPLUS: Home Help Contact us Logout Hughes-Hallett, Calculus: Single and Multivariable, 4/e Calculus I, II, and Vector Calculus Reading content Integration 7.1. Integration by Substitution 7.2. Integration

### Research on the Anti-perspective Correction Algorithm of QR Barcode

Researc on te Anti-perspective Correction Algoritm of QR Barcode Jianua Li, Yi-Wen Wang, YiJun Wang,Yi Cen, Guoceng Wang Key Laboratory of Electronic Tin Films and Integrated Devices University of Electronic

### CHAPTER 8: DIFFERENTIAL CALCULUS

CHAPTER 8: DIFFERENTIAL CALCULUS 1. Rules of Differentiation As we ave seen, calculating erivatives from first principles can be laborious an ifficult even for some relatively simple functions. It is clearly

### Solutions to Homework 10

Solutions to Homework 1 Section 7., exercise # 1 (b,d): (b) Compute the value of R f dv, where f(x, y) = y/x and R = [1, 3] [, 4]. Solution: Since f is continuous over R, f is integrable over R. Let x

### Perimeter, Area and Volume of Regular Shapes

Perimeter, Area and Volume of Regular Sapes Perimeter of Regular Polygons Perimeter means te total lengt of all sides, or distance around te edge of a polygon. For a polygon wit straigt sides tis is te

### Writing Mathematics Papers

Writing Matematics Papers Tis essay is intended to elp your senior conference paper. It is a somewat astily produced amalgam of advice I ave given to students in my PDCs (Mat 4 and Mat 9), so it s not

### OPTIMAL DISCONTINUOUS GALERKIN METHODS FOR THE ACOUSTIC WAVE EQUATION IN HIGHER DIMENSIONS

OPTIMAL DISCONTINUOUS GALERKIN METHODS FOR THE ACOUSTIC WAVE EQUATION IN HIGHER DIMENSIONS ERIC T. CHUNG AND BJÖRN ENGQUIST Abstract. In tis paper, we developed and analyzed a new class of discontinuous

### f(x) f(a) x a Our intuition tells us that the slope of the tangent line to the curve at the point P is m P Q =

Lecture 6 : Derivatives and Rates of Cange In tis section we return to te problem of finding te equation of a tangent line to a curve, y f(x) If P (a, f(a)) is a point on te curve y f(x) and Q(x, f(x))

### Similar interpretations can be made for total revenue and total profit functions.

EXERCISE 3-7 Tings to remember: 1. MARGINAL COST, REVENUE, AND PROFIT If is te number of units of a product produced in some time interval, ten: Total Cost C() Marginal Cost C'() Total Revenue R() Marginal

### This function is symmetric with respect to the y-axis, so I will let - /2 /2 and multiply the area by 2.

INTEGRATION IN POLAR COORDINATES One of the main reasons why we study polar coordinates is to help us to find the area of a region that cannot easily be integrated in terms of x. In this set of notes,

### Notes: Most of the material in this chapter is taken from Young and Freedman, Chap. 12.

Capter 6. Fluid Mecanics Notes: Most of te material in tis capter is taken from Young and Freedman, Cap. 12. 6.1 Fluid Statics Fluids, i.e., substances tat can flow, are te subjects of tis capter. But

### The modelling of business rules for dashboard reporting using mutual information

8 t World IMACS / MODSIM Congress, Cairns, Australia 3-7 July 2009 ttp://mssanz.org.au/modsim09 Te modelling of business rules for dasboard reporting using mutual information Gregory Calbert Command, Control,

### MATH SOLUTIONS TO PRACTICE FINAL EXAM. (x 2)(x + 2) (x 2)(x 3) = x + 2. x 2 x 2 5x + 6 = = 4.

MATH 55 SOLUTIONS TO PRACTICE FINAL EXAM x 2 4.Compute x 2 x 2 5x + 6. When x 2, So x 2 4 x 2 5x + 6 = (x 2)(x + 2) (x 2)(x 3) = x + 2 x 3. x 2 4 x 2 x 2 5x + 6 = 2 + 2 2 3 = 4. x 2 9 2. Compute x + sin

### Review Sheet for Third Midterm Mathematics 1300, Calculus 1

Review Sheet for Third Midterm Mathematics 1300, Calculus 1 1. For f(x) = x 3 3x 2 on 1 x 3, find the critical points of f, the inflection points, the values of f at all these points and the endpoints,

### Optimized Data Indexing Algorithms for OLAP Systems

Database Systems Journal vol. I, no. 2/200 7 Optimized Data Indexing Algoritms for OLAP Systems Lucian BORNAZ Faculty of Cybernetics, Statistics and Economic Informatics Academy of Economic Studies, Bucarest

### Chapter 11. Limits and an Introduction to Calculus. Selected Applications

Capter Limits and an Introduction to Calculus. Introduction to Limits. Tecniques for Evaluating Limits. Te Tangent Line Problem. Limits at Infinit and Limits of Sequences.5 Te Area Problem Selected Applications

Computer Science and Engineering, UCSD October 7, 1999 Goldreic-Levin Teorem Autor: Bellare Te Goldreic-Levin Teorem 1 Te problem We æx a an integer n for te lengt of te strings involved. If a is an n-bit

### Theoretical calculation of the heat capacity

eoretical calculation of te eat capacity Principle of equipartition of energy Heat capacity of ideal and real gases Heat capacity of solids: Dulong-Petit, Einstein, Debye models Heat capacity of metals

### Distances in random graphs with infinite mean degrees

Distances in random graps wit infinite mean degrees Henri van den Esker, Remco van der Hofstad, Gerard Hoogiemstra and Dmitri Znamenski April 26, 2005 Abstract We study random graps wit an i.i.d. degree

### Some Notes on Taylor Polynomials and Taylor Series

Some Notes on Taylor Polynomials and Taylor Series Mark MacLean October 3, 27 UBC s courses MATH /8 and MATH introduce students to the ideas of Taylor polynomials and Taylor series in a fairly limited

### Projective Geometry. Projective Geometry

Euclidean versus Euclidean geometry describes sapes as tey are Properties of objects tat are uncanged by rigid motions» Lengts» Angles» Parallelism Projective geometry describes objects as tey appear Lengts,

### The differential amplifier

DiffAmp.doc 1 Te differential amplifier Te emitter coupled differential amplifier output is V o = A d V d + A c V C Were V d = V 1 V 2 and V C = (V 1 + V 2 ) / 2 In te ideal differential amplifier A c

### Chapter 10: Refrigeration Cycles

Capter 10: efrigeration Cycles Te vapor compression refrigeration cycle is a common metod for transferring eat from a low temperature to a ig temperature. Te above figure sows te objectives of refrigerators

### An Interest Rate Model

An Interest Rate Model Concepts and Buzzwords Building Price Tree from Rate Tree Lognormal Interest Rate Model Nonnegativity Volatility and te Level Effect Readings Tuckman, capters 11 and 12. Lognormal

### 11.5 m 2. New Vocabulary base of a parallelogram

0-. Plan California Content Standards GEOM 8.0 Students know, derive, and solve prolems involving te perimeter, circumference, area, volume, lateral area, and surface area of common geometric figures.

### 2.12 Student Transportation. Introduction

Introduction Figure 1 At 31 Marc 2003, tere were approximately 84,000 students enrolled in scools in te Province of Newfoundland and Labrador, of wic an estimated 57,000 were transported by scool buses.

### Spiral Physics. Modern Physics ... The Schrödinger Equation

.......... Spiral Pysics Modern Pysics.......... Te Scrödinger quation Copyrigt 3 Paul D Alessandris Spiral Pysics Rocester, NY 1463 All rigts reserved. No part of tis book may be reproduced or transmitted

### is called the geometric transformation. In computers the world is represented by numbers; thus geometrical properties and transformations must

Capter 5 TRANSFORMATIONS, CLIPPING AND PROJECTION 5.1 Geometric transformations Tree-dimensional grapics aims at producing an image of 3D objects. Tis means tat te geometrical representation of te image

### Solutions by: KARATUĞ OZAN BiRCAN. PROBLEM 1 (20 points): Let D be a region, i.e., an open connected set in

KOÇ UNIVERSITY, SPRING 2014 MATH 401, MIDTERM-1, MARCH 3 Instructor: BURAK OZBAGCI TIME: 75 Minutes Solutions by: KARATUĞ OZAN BiRCAN PROBLEM 1 (20 points): Let D be a region, i.e., an open connected set

### Catalogue no. 12-001-XIE. Survey Methodology. December 2004

Catalogue no. 1-001-XIE Survey Metodology December 004 How to obtain more information Specific inquiries about tis product and related statistics or services sould be directed to: Business Survey Metods

### Pressure. Pressure. Atmospheric pressure. Conceptual example 1: Blood pressure. Pressure is force per unit area:

Pressure Pressure is force per unit area: F P = A Pressure Te direction of te force exerted on an object by a fluid is toward te object and perpendicular to its surface. At a microscopic level, te force

Section 5.4 The Quadratic Formula 481 5.4 The Quadratic Formula Consider the general quadratic function f(x) = ax + bx + c. In the previous section, we learned that we can find the zeros of this function

### A FLOW NETWORK ANALYSIS OF A LIQUID COOLING SYSTEM THAT INCORPORATES MICROCHANNEL HEAT SINKS

A FLOW NETWORK ANALYSIS OF A LIQUID COOLING SYSTEM THAT INCORPORATES MICROCHANNEL HEAT SINKS Amir Radmer and Suas V. Patankar Innovative Researc, Inc. 3025 Harbor Lane Nort, Suite 300 Plymout, MN 55447

### www.mathsbox.org.uk ab = c a If the coefficients a,b and c are real then either α and β are real or α and β are complex conjugates

Further Pure Summary Notes. Roots of Quadratic Equations For a quadratic equation ax + bx + c = 0 with roots α and β Sum of the roots Product of roots a + b = b a ab = c a If the coefficients a,b and c

### An inquiry into the multiplier process in IS-LM model

An inquiry into te multiplier process in IS-LM model Autor: Li ziran Address: Li ziran, Room 409, Building 38#, Peing University, Beijing 00.87,PRC. Pone: (86) 00-62763074 Internet Address: jefferson@water.pu.edu.cn

### Strategic trading in a dynamic noisy market. Dimitri Vayanos

LSE Researc Online Article (refereed) Strategic trading in a dynamic noisy market Dimitri Vayanos LSE as developed LSE Researc Online so tat users may access researc output of te Scool. Copyrigt and Moral

### Chapter 6 Tail Design

apter 6 Tail Design Moammad Sadraey Daniel Webster ollege Table of ontents apter 6... 74 Tail Design... 74 6.1. Introduction... 74 6.. Aircraft Trim Requirements... 78 6..1. Longitudinal Trim... 79 6...

### Background Facts on Economic Statistics

Background Facts on Economic Statistics 2003:3 SAMU Te system for co-ordination of frame populations and samples from te Business Register at Statistics Sweden epartment of Economic Statistics Te series

### Schedulability Analysis under Graph Routing in WirelessHART Networks

Scedulability Analysis under Grap Routing in WirelessHART Networks Abusayeed Saifulla, Dolvara Gunatilaka, Paras Tiwari, Mo Sa, Cenyang Lu, Bo Li Cengjie Wu, and Yixin Cen Department of Computer Science,

### Double integrals. Notice: this material must not be used as a substitute for attending the lectures

ouble integrals Notice: this material must not be used as a substitute for attending the lectures . What is a double integral? Recall that a single integral is something of the form b a f(x) A double integral

Grade Assessment Eemplars Learning Outcomes and. Assignment : Functions - Memo. Investigation: Sequences and Series Memo/Rubric 5. Control Test: Number Patterns, Finance and Functions - Memo 7. Project:

### Binary Search Trees. Adnan Aziz. Heaps can perform extract-max, insert efficiently O(log n) worst case

Binary Searc Trees Adnan Aziz 1 BST basics Based on CLRS, C 12. Motivation: Heaps can perform extract-max, insert efficiently O(log n) worst case Has tables can perform insert, delete, lookup efficiently

### 2.28 EDGE Program. Introduction

Introduction Te Economic Diversification and Growt Enterprises Act became effective on 1 January 1995. Te creation of tis Act was to encourage new businesses to start or expand in Newfoundland and Labrador.

### EC201 Intermediate Macroeconomics. EC201 Intermediate Macroeconomics Problem set 8 Solution

EC201 Intermediate Macroeconomics EC201 Intermediate Macroeconomics Prolem set 8 Solution 1) Suppose tat te stock of mone in a given econom is given te sum of currenc and demand for current accounts tat

Answers to Eercises CAPTER 10 CAPTER 10 LESSON 10.1 CAPTER 10 CAPTER 24. Answers to Eercises 1. polyedron; polygonal; triangles 2. PQR, TUS. PQUT, QRSU, RPTS 4. QU,PT,RS 5. 6 cm 6. GYPTAN 7. point E 8.

### A strong credit score can help you score a lower rate on a mortgage

NET GAIN Scoring points for your financial future AS SEEN IN USA TODAY S MONEY SECTION, JULY 3, 2007 A strong credit score can elp you score a lower rate on a mortgage By Sandra Block Sales of existing

### Roots and Coefficients of a Quadratic Equation Summary

Roots and Coefficients of a Quadratic Equation Summary For a quadratic equation with roots α and β: Sum of roots = α + β = and Product of roots = αβ = Symmetrical functions of α and β include: x = and

### Geo-Activity. 1 Use a straightedge to draw a line through one of the vertices of an index card. height is perpendicular to the bases.

Page of 7 8. Area of Parallelograms Goal Find te area of parallelograms. Key Words ase of a parallelogram eigt of a parallelogram parallelogram p. 0 romus p. Geo-Activity Use a straigtedge to draw a line

### Taylor Polynomials and Taylor Series Math 126

Taylor Polynomials and Taylor Series Math 26 In many problems in science and engineering we have a function f(x) which is too complicated to answer the questions we d like to ask. In this chapter, we will