turntable in terms of SHM and UCM: be plotted as a sine wave. n Think about spinning a ball on a string or a ball on a


 Ralf Cox
 1 years ago
 Views:
Transcription
1 RECALL: Angular Displacement & Angular Velocity Think about spinning a ball on a string or a ball on a turntable in terms of SHM and UCM: If you look at the ball from the side, its motion could be plotted as a sine wave.
2 Δθ is the angle between position 1 and 2. Δθ is the amount of rotation measured in degrees or radians (we ll use radians since they are the SI unit for θ). 2 θ r 1 For an object rotating about a fixed axis, the angular displacement is the angle Δθ swept out by a line passing through any point on the body and intersecting the axis of rotation perpendicularly. By convention, the angular displacement is positive if it is counterclockwise.
3 Angular Displacement, θ For an object rotating, angular displacement is found by: θ (in radians) = Arc length = s radius Δθ = θ f θ i where θ i is sometimes zero. r
4 If determining Δθ for a complete circle, or one complete cycle: Arc length = 2πr (for one revolution) Δθ = (arc length) / r = (2πr) / r = 2π radians 1 revolution = 2π radians = 360 o So, 1 radian = 360 o / 2π = 57.3 o
5 Once around the circular path is 360degrees or 2πradians!
6 Angular Velocity Angular Velocity = the turning rate expressed in units of revolutions per second, or metric: radians per second. Angular velocity = angular displacement / elapsed time ω = Δθ/Δt units: radians/second or rad/s For one cycle: Δt = T = period = time for one cycle And, Δθ = (2πr)/r = 2π radians = angular displacement for one cycle ω = Δθ/Δt = 2π radians / T = 2π / T ω = 2π / T And since T=1/f, where f = frequency ω = 2π / (1/f) = 2πf ω = 2πf Angular velocity is sometimes called angular frequency!
7 Important to realize Angular velocity, ω, or the turning rate is the same everywhere on the rotating body/object, b/c Δθ/Δt is the same. But, instantaneous velocity, the velocity tangent to the circular path called tangential velocity, v T is greater for points (places) farther from the axis. The magnitude of the tangential velocity is referred to as the tangential speed. v T = r ω
8 (new) SHM & the Reference Circle The ball mounted on the turntable moves in uniform circular motion on a path known as the reference circle, and its shadow, projected on a moving strip of film, executes simple harmonic motion.
9 Determining displacement, x, for an object experiencing simple harmonic motion Reference Circle of radius A Ball starts on xaxis at x=+a and moves through an angle θ in a time t. Since moving in UCM, angular speed ω is constant. Recall: θ = ωt The displacement x of the shadow is the xcomponent of the radius A: Cosine θ = x/a, or X = A cos θ = A cos (ωt) (And: ω = 2πf) The shadow of the ball oscillates between values of x=+a and x=a The radius A of the reference circle is the amplitude of the SHM
10 Determining velocity, v, for an object experiencing simple harmonic motion v T = tangential velocity = r ω The velocity v of the shadow is the xcomponent of the tangential velocity Sine θ = v/v T Negative b/c v is pointing in the direction of the negative xaxis. Recall, θ = ωt and v T =rω And since r = A, v T = Aω the velocity of an object in SHM is given by: v= v T sin θ v= Aω sin θ = A ω sin (ωt) In general: (ω = 2πf) v= +/ A ω sin θ v= +/ A ω sin (ωt)
11 This velocity is not constant, but varies between maximum and minimum values as time passes. When the shadow changes direction at either end of the oscillatory motion, the velocity is momentarily zero. When the shadow passes through the x=0m position, the velocity has a maximum amount of v=aω, since the sine of an angle is between +1 and 1. v max = A ω (ω = 2πf) Both amplitude and angular frequency determine the maximum velocity.
12 A person bounces up and down on a trampoline, while always staying in contact with it. The motion is simple harmonic motion, and it takes 1.90 seconds to complete one cycle. The height of each bounce above the equilibrium position is 45.0 cm. Determine the amplitude, and determine the angular frequency of the motion. What is the maximum speed attained by the person?
13 The solution The amplitude of simple harmonic motion is the distance from the equilibrium position to the point of maximum height. Since the distance from the equilibrium position to the point of maximum height is the amplitude of the motion A = 45.0 cm = 0.45 m The angular frequency is found with ω = 2π / T ω = 2π / T = 2π / 1.90 seconds ω = 3.31 rad/second The maximum speed attained by the person on the trampoline depends on the amplitude and the angular frequency of the motion: v max = A ω = (0.45m)(3.31 rad/s) = 1.49 m/s= v max
14 In SHM, the velocity is not constant, the object experiencing SHM is accelerating An object moving in a circle experiences UCM; a c = v 2 /r So, for an object experiencing SHM: (tangential) Speed = v = Δd/Δt = 2 π r/t= 2 π r f v=2 π f r = (2 π f)r = ω r = r ω v = r ω (where v is the tangential speed) Putting it all together a c = v 2 /r = (r ω) 2 /r =r ω 2 = A ω 2 (since r = A for SHM) a c = A ω 2
15 Like velocity, acceleration is not constant as time passes. a is the xcomponent of a c Cosine θ = a/a c Negative b/c pointing in x direction a = a c cos θ And a c = Aω 2 a = Aω 2 cos θ And θ = ωt a = Aω 2 cos (ωt) In general: a = +/Aω 2 cos (ωt) And (ω = 2πf) a max = Aω 2
16 Slide 1422
17 Check this out! shm.php
18 Frequency of Vibration For an object on a spring moving back and forth, ignoring friction, where the only force acting on the spring causing it to vibrate is the restoring force of the spring: ΣF = F restoring = kx = ma kx = ma k [A cos (ωt)]= m[aω 2 cos (ωt)] k [A]= m[aω 2 ] k = mω 2 ω 2 = k/m ω = (k/m) Recall ω=2πf ω = 2πf = (k/m) for a spring w/mass m on it where ω is in radians/second
19 The frequency of oscillation depends on physical properties of the oscillator; it does not depend on the amplitude of the oscillation. ω = 2πf = (k/m) for a spring w/mass m on it where ω is in radians/second Rearranged: Slide 1414
20 The diaphragm of a loudspeaker moves back and forth in simple harmonic motion to create sound. The frequency of the motion is 1.0 khz and the amplitude is 0.20 mm. A) What is the maximum speed of the diaphragm? B) Where in the motion does this maximum speed occur? C) What is the maximum acceleration of the diaphragm? D) Where in the motion does this maximum acceleration occur?
21 A) v max = 1.3 m/s B) The speed of the diaphragm is momentarily zero at the two ends of its motion, x = +A and x = A its maximum speed occurs midway between these two points, or at x=0m. C) a max = Aω 2 = (0.0002m)[2π (1000Hz)] 2 =a max = 7900 m/s 2 Solution: ω = 2πf v max = A ω v max =(0.0002m)2π (1000Hz) D) The maximum acceleration occurs when the force acting on the diaphragm is a maximum. The maximum force acts when the diaphragm is at the ends of the path, where the displacement is the greatest the maximum acceleration is at x=+a and x=a.
22 Auto Suspensions
23 The shock absorbers in the suspension system of a car are in such bad shape that they have no effect on the behavior of the springs attached to the axles. Each of the identical springs attached to the front axle supports 320 kg. A person pushes down on the middle of the front end of the car and notices that it vibrates through five cycles in 3.0 seconds. Find the spring constant of either spring. ω=2πf = (k/m) 2πf = (k/m) (2πf) 2 = k/m m 4π 2 f 2 = k (320 kg)(4π 2 )(5cycles/3sec) 2 = k k = N/m
24 A ball on a spring is pulled down and then released. Its subsequent motion appears as follows: 1. At which of the above times is the displacement zero? 2. At which of the above times is the velocity zero? 3. At which of the above times is the acceleration zero? 4. At which of the above times is the kinetic energy a maximum? 5. At which of the above times is the potential energy a maximum? 6. At which of the above times is kinetic energy being transformed to potential energy? 7. At which of the above times is potential energy being transformed to kinetic energy?
25 A ball on a spring is pulled down and then released. Its subsequent motion appears as follows: 1. At which of the above times is the displacement zero? A, E, I 2. At which of the above times is the velocity zero? C, G 3. At which of the above times is the acceleration zero? A, E, I 4. At which of the above times is the kinetic energy a maximum? A, E, I 5. At which of the above times is the potential energy a maximum? C, G 6. At which of the above times is kinetic energy being transformed to potential energy? B, F 7. At which of the above times is potential energy being transformed to kinetic energy? D, H
26 A pendulum is pulled to the side and released. Its subsequent motion appears as follows: 1. At which of the above times is the displacement zero? 2. At which of the above times is the velocity zero? 3. At which of the above times is the acceleration zero? 4. At which of the above times is the kinetic energy a maximum? 5. At which of the above times is the potential energy a maximum? 6. At which of the above times is kinetic energy being transformed to potential energy? 7. At which of the above times is potential energy being transformed to kinetic energy?
27 A pendulum is pulled to the side and released. Its subsequent motion appears as follows:. At which of the above times is the displacement zero? C, G. At which of the above times is the velocity zero? A, E, I. At which of the above times is the acceleration zero? C, G. At which of the above times is the kinetic energy a maximum? C, G. At which of the above times is the potential energy a maximum? A, E, I. At which of the above times is kinetic energy being transformed to potential energy? D, H. At which of the above times is potential energy being transformed to kinetic energy? B, F
28 Additional Question: Four different masses are hung from four springs with unstretched length 10 cm, causing the springs to stretch as noted in the following diagram: Now, each of the masses is lifted a small distance, released, and allowed to oscillate. Rank the oscillation frequencies, from highest to lowest. A. a > b > c > d B. d > c > b > a C. a = b = c = d
29 Answer: Four different masses are hung from four springs with unstretched length 10 cm, causing the springs to stretch as noted in the following diagram: Now, each of the masses is lifted a small distance, released, and allowed to oscillate. Rank the oscillation frequencies, from highest to lowest. A. a > b > c > d B. d > c > b > a C. a = b = c = d Slide 1435
30 Additional Question: Four 100 g masses are hung from four springs, each with unstretched length 10 cm. The four springs stretch as noted in the following diagram: Now, each of the masses is lifted a small distance, released, and allowed to oscillate. Rank the oscillation frequencies, from highest to lowest. A. a > b > c > d B. d > c > b > a C. a = b = c = d
31 ANSWER: Four 100 g masses are hung from four springs, each with unstretched length 10 cm. The four springs stretch as noted in the following diagram: Now, each of the masses is lifted a small distance, released, and allowed to oscillate. Rank the oscillation frequencies, from highest to lowest. A. a > b > c > d B. d > c > b > a C. a = b = c = d Stiffer springs have greater k (spring constant) values Slide 1436
32 Additional Question: A pendulum is pulled to the side and released. Rank the following positions in terms of the speed, from highest to lowest. There may be ties.
33 ANSWER: A pendulum is pulled to the side and released. Rank the following positions in terms of the speed, from highest to lowest. There may be ties. Answer: Fastest: C & G, B & D & F & H, A & E & I
34 Check this out! shm.php super.htm#superposition
Chapter 13, example problems: x (cm) 10.0
Chapter 13, example problems: (13.04) Reading Fig. 1330 (reproduced on the right): (a) Frequency f = 1/ T = 1/ (16s) = 0.0625 Hz. (since the figure shows that T/2 is 8 s.) (b) The amplitude is 10 cm.
More informationPractice Test SHM with Answers
Practice Test SHM with Answers MPC 1) If we double the frequency of a system undergoing simple harmonic motion, which of the following statements about that system are true? (There could be more than one
More information226 Chapter 15: OSCILLATIONS
Chapter 15: OSCILLATIONS 1. In simple harmonic motion, the restoring force must be proportional to the: A. amplitude B. frequency C. velocity D. displacement E. displacement squared 2. An oscillatory motion
More informationSimple Harmonic Motion(SHM) Period and Frequency. Period and Frequency. Cosines and Sines
Simple Harmonic Motion(SHM) Vibration (oscillation) Equilibrium position position of the natural length of a spring Amplitude maximum displacement Period and Frequency Period (T) Time for one complete
More informationSpring Simple Harmonic Oscillator. Spring constant. Potential Energy stored in a Spring. Understanding oscillations. Understanding oscillations
Spring Simple Harmonic Oscillator Simple Harmonic Oscillations and Resonance We have an object attached to a spring. The object is on a horizontal frictionless surface. We move the object so the spring
More information1.10 Using Figure 1.6, verify that equation (1.10) satisfies the initial velocity condition. t + ") # x (t) = A! n. t + ") # v(0) = A!
1.1 Using Figure 1.6, verify that equation (1.1) satisfies the initial velocity condition. Solution: Following the lead given in Example 1.1., write down the general expression of the velocity by differentiating
More informationPhysics 1120: Simple Harmonic Motion Solutions
Questions: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Physics 1120: Simple Harmonic Motion Solutions 1. A 1.75 kg particle moves as function of time as follows: x = 4cos(1.33t+π/5) where distance is measured
More informationA ball, attached to a cord of length 1.20 m, is set in motion so that it is swinging backwards and forwards like a pendulum.
MECHANICS: SIMPLE HARMONIC MOTION QUESTIONS THE PENDULUM (2014;2) A pendulum is set up, as shown in the diagram. The length of the cord attached to the bob is 1.55 m. The bob has a mass of 1.80 kg. The
More informationPHYS 1014M, Fall 2005 Exam #3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
PHYS 1014M, Fall 2005 Exam #3 Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) A bicycle wheel rotates uniformly through 2.0 revolutions in
More informationPhysics 41 HW Set 1 Chapter 15
Physics 4 HW Set Chapter 5 Serway 8 th OC:, 4, 7 CQ: 4, 8 P: 4, 5, 8, 8, 0, 9,, 4, 9, 4, 5, 5 Discussion Problems:, 57, 59, 67, 74 OC CQ P: 4, 5, 8, 8, 0, 9,, 4, 9, 4, 5, 5 Discussion Problems:, 57, 59,
More informationC B A T 3 T 2 T 1. 1. What is the magnitude of the force T 1? A) 37.5 N B) 75.0 N C) 113 N D) 157 N E) 192 N
Three boxes are connected by massless strings and are resting on a frictionless table. Each box has a mass of 15 kg, and the tension T 1 in the right string is accelerating the boxes to the right at a
More informationwww.mathsbox.org.uk Displacement (x) Velocity (v) Acceleration (a) x = f(t) differentiate v = dx Acceleration Velocity (v) Displacement x
Mechanics 2 : Revision Notes 1. Kinematics and variable acceleration Displacement (x) Velocity (v) Acceleration (a) x = f(t) differentiate v = dx differentiate a = dv = d2 x dt dt dt 2 Acceleration Velocity
More informationPHYS 211 FINAL FALL 2004 Form A
1. Two boys with masses of 40 kg and 60 kg are holding onto either end of a 10 m long massless pole which is initially at rest and floating in still water. They pull themselves along the pole toward each
More informationAP Physics C. Oscillations/SHM Review Packet
AP Physics C Oscillations/SHM Review Packet 1. A 0.5 kg mass on a spring has a displacement as a function of time given by the equation x(t) = 0.8Cos(πt). Find the following: a. The time for one complete
More informationboth double. A. T and v max B. T remains the same and v max doubles. both remain the same. C. T and v max
Q13.1 An object on the end of a spring is oscillating in simple harmonic motion. If the amplitude of oscillation is doubled, how does this affect the oscillation period T and the object s maximum speed
More informationTennessee State University
Tennessee State University Dept. of Physics & Mathematics PHYS 2010 CF SU 2009 Name 30% Time is 2 hours. Cheating will give you an Fgrade. Other instructions will be given in the Hall. MULTIPLE CHOICE.
More informationChapter 24 Physical Pendulum
Chapter 4 Physical Pendulum 4.1 Introduction... 1 4.1.1 Simple Pendulum: Torque Approach... 1 4. Physical Pendulum... 4.3 Worked Examples... 4 Example 4.1 Oscillating Rod... 4 Example 4.3 Torsional Oscillator...
More informationLab M1: The Simple Pendulum
Lab M1: The Simple Pendulum Introduction. The simple pendulum is a favorite introductory exercise because Galileo's experiments on pendulums in the early 1600s are usually regarded as the beginning of
More informationAP1 Oscillations. 1. Which of the following statements about a springblock oscillator in simple harmonic motion about its equilibrium point is false?
1. Which of the following statements about a springblock oscillator in simple harmonic motion about its equilibrium point is false? (A) The displacement is directly related to the acceleration. (B) The
More information1 of 10 11/23/2009 6:37 PM
hapter 14 Homework Due: 9:00am on Thursday November 19 2009 Note: To understand how points are awarded read your instructor's Grading Policy. [Return to Standard Assignment View] Good Vibes: Introduction
More informationHooke s Law and Simple Harmonic Motion
Hooke s Law and Simple Harmonic Motion OBJECTIVE to measure the spring constant of the springs using Hooke s Law to explore the static properties of springy objects and springs, connected in series and
More informationAP Physics  Chapter 8 Practice Test
AP Physics  Chapter 8 Practice Test Multiple Choice Identify the choice that best completes the statement or answers the question. 1. A single conservative force F x = (6.0x 12) N (x is in m) acts on
More informationChapter 5 Using Newton s Laws: Friction, Circular Motion, Drag Forces. Copyright 2009 Pearson Education, Inc.
Chapter 5 Using Newton s Laws: Friction, Circular Motion, Drag Forces Units of Chapter 5 Applications of Newton s Laws Involving Friction Uniform Circular Motion Kinematics Dynamics of Uniform Circular
More informationCHAPTER 28 THE CIRCLE AND ITS PROPERTIES
CHAPTER 8 THE CIRCLE AND ITS PROPERTIES EXERCISE 118 Page 77 1. Calculate the length of the circumference of a circle of radius 7. cm. Circumference, c = r = (7.) = 45.4 cm. If the diameter of a circle
More informationHOOKE S LAW AND SIMPLE HARMONIC MOTION
HOOKE S LAW AND SIMPLE HARMONIC MOTION Alexander Sapozhnikov, Brooklyn College CUNY, New York, alexs@brooklyn.cuny.edu Objectives Study Hooke s Law and measure the spring constant. Study Simple Harmonic
More informationPhysics 231 Lecture 15
Physics 31 ecture 15 Main points of today s lecture: Simple harmonic motion Mass and Spring Pendulum Circular motion T 1/f; f 1/ T; ω πf for mass and spring ω x Acos( ωt) v ωasin( ωt) x ax ω Acos( ωt)
More information7. Kinetic Energy and Work
Kinetic Energy: 7. Kinetic Energy and Work The kinetic energy of a moving object: k = 1 2 mv 2 Kinetic energy is proportional to the square of the velocity. If the velocity of an object doubles, the kinetic
More informationChapter 13 Simple Harmonic Motion
We are to adit no ore causes of natural things than such as are both true and sufficient to explain their appearances. Isaac Newton 13.1 Introduction to Periodic Motion Periodic otion is any otion that
More informationChapter 3.8 & 6 Solutions
Chapter 3.8 & 6 Solutions P3.37. Prepare: We are asked to find period, speed and acceleration. Period and frequency are inverses according to Equation 3.26. To find speed we need to know the distance traveled
More informationOscillations. Vern Lindberg. June 10, 2010
Oscillations Vern Lindberg June 10, 2010 You have discussed oscillations in Vibs and Waves: we will therefore touch lightly on Chapter 3, mainly trying to refresh your memory and extend the concepts. 1
More informationIMPORTANT NOTE ABOUT WEBASSIGN:
Week 8 homework IMPORTANT NOTE ABOUT WEBASSIGN: In the WebAssign versions of these problems, various details have been changed, so that the answers will come out differently. The method to find the solution
More informationPHY231 Section 2, Form A March 22, 2012. 1. Which one of the following statements concerning kinetic energy is true?
1. Which one of the following statements concerning kinetic energy is true? A) Kinetic energy can be measured in watts. B) Kinetic energy is always equal to the potential energy. C) Kinetic energy is always
More informationDetermination of Acceleration due to Gravity
Experiment 2 24 Kuwait University Physics 105 Physics Department Determination of Acceleration due to Gravity Introduction In this experiment the acceleration due to gravity (g) is determined using two
More informationPHY231 Section 1, Form B March 22, 2012
1. A car enters a horizontal, curved roadbed of radius 50 m. The coefficient of static friction between the tires and the roadbed is 0.20. What is the maximum speed with which the car can safely negotiate
More informationLab 5: Conservation of Energy
Lab 5: Conservation of Energy Equipment SWS, 1meter stick, 2meter stick, heavy duty bench clamp, 90cm rod, 40cm rod, 2 double clamps, brass spring, 100g mass, 500g mass with 5cm cardboard square
More information6: Applications of Newton's Laws
6: Applications of Newton's Laws Friction opposes motion due to surfaces sticking together Kinetic Friction: surfaces are moving relative to each other a.k.a. Sliding Friction Static Friction: surfaces
More informationLesson 11. Luis Anchordoqui. Physics 168. Tuesday, December 8, 15
Lesson 11 Physics 168 1 Oscillations and Waves 2 Simple harmonic motion If an object vibrates or oscillates back and forth over same path each cycle taking same amount of time motion is called periodic
More informationSample Questions for the AP Physics 1 Exam
Sample Questions for the AP Physics 1 Exam Sample Questions for the AP Physics 1 Exam Multiplechoice Questions Note: To simplify calculations, you may use g 5 10 m/s 2 in all problems. Directions: Each
More informationCandidate Number. General Certificate of Education Advanced Level Examination June 2014
entre Number andidate Number Surname Other Names andidate Signature General ertificate of Education dvanced Level Examination June 214 Physics PHY4/1 Unit 4 Fields and Further Mechanics Section Wednesday
More informationNo Brain Too Small PHYSICS. 2 kg
MECHANICS: ANGULAR MECHANICS QUESTIONS ROTATIONAL MOTION (2014;1) Universal gravitational constant = 6.67 10 11 N m 2 kg 2 (a) The radius of the Sun is 6.96 10 8 m. The equator of the Sun rotates at a
More informationFXA 2008. UNIT G484 Module 2 4.2.3 Simple Harmonic Oscillations 11. frequency of the applied = natural frequency of the
11 FORCED OSCILLATIONS AND RESONANCE POINTER INSTRUMENTS Analogue ammeter and voltmeters, have CRITICAL DAMPING so as to allow the needle pointer to reach its correct position on the scale after a single
More informationSimple Harmonic Motion
Simple Harmonic Motion 1 Object To determine the period of motion of objects that are executing simple harmonic motion and to check the theoretical prediction of such periods. 2 Apparatus Assorted weights
More information6.1: Angle Measure in degrees
6.1: Angle Measure in degrees How to measure angles Numbers on protractor = angle measure in degrees 1 full rotation = 360 degrees = 360 half rotation = quarter rotation = 1/8 rotation = 1 = Right angle
More informationExperiment P19: Simple Harmonic Motion  Mass on a Spring (Force Sensor, Motion Sensor)
PASCO scientific Physics Lab Manual: P191 Science Workshop S. H. M. Mass on a Spring Experiment P19: Simple Harmonic Motion  Mass on a Spring (Force Sensor, Motion Sensor) Concept Time SW Interface Macintosh
More informationA) F = k x B) F = k C) F = x k D) F = x + k E) None of these.
CT161 Which of the following is necessary to make an object oscillate? i. a stable equilibrium ii. little or no friction iii. a disturbance A: i only B: ii only C: iii only D: i and iii E: All three Answer:
More informationUnit 4 Practice Test: Rotational Motion
Unit 4 Practice Test: Rotational Motion Multiple Guess Identify the letter of the choice that best completes the statement or answers the question. 1. How would an angle in radians be converted to an angle
More informationSOLUTIONS TO CONCEPTS CHAPTER 15
SOLUTIONS TO CONCEPTS CHAPTER 15 1. v = 40 cm/sec As velocity of a wave is constant location of maximum after 5 sec = 40 5 = 00 cm along negative xaxis. [(x / a) (t / T)]. Given y = Ae a) [A] = [M 0 L
More informationState Newton's second law of motion for a particle, defining carefully each term used.
5 Question 1. [Marks 20] An unmarked police car P is, travelling at the legal speed limit, v P, on a straight section of highway. At time t = 0, the police car is overtaken by a car C, which is speeding
More informationVectors and Phasors. A supplement for students taking BTEC National, Unit 5, Electrical and Electronic Principles. Owen Bishop
Vectors and phasors Vectors and Phasors A supplement for students taking BTEC National, Unit 5, Electrical and Electronic Principles Owen Bishop Copyrught 2007, Owen Bishop 1 page 1 Electronics Circuits
More informationPeriodic wave in spatial domain  length scale is wavelength Given symbol l y
1.4 Periodic Waves Often have situations where wave repeats at regular intervals Electromagnetic wave in optical fibre Sound from a guitar string. These regularly repeating waves are known as periodic
More informationEDEXCEL NATIONAL CERTIFICATE/DIPLOMA FURTHER MECHANICAL PRINCIPLES AND APPLICATIONS UNIT 11  NQF LEVEL 3 OUTCOME 3  ROTATING SYSTEMS
EDEXCEL NATIONAL CERTIFICATE/DIPLOMA FURTHER MECHANICAL PRINCIPLES AND APPLICATIONS UNIT 11  NQF LEVEL 3 OUTCOME 3  ROTATING SYSTEMS TUTORIAL 1  ANGULAR MOTION CONTENT Be able to determine the characteristics
More informationWork, Power, Energy Multiple Choice. PSI Physics. Multiple Choice Questions
Work, Power, Energy Multiple Choice PSI Physics Name Multiple Choice Questions 1. A block of mass m is pulled over a distance d by an applied force F which is directed in parallel to the displacement.
More informationChapter 10 Rotational Motion. Copyright 2009 Pearson Education, Inc.
Chapter 10 Rotational Motion Angular Quantities Units of Chapter 10 Vector Nature of Angular Quantities Constant Angular Acceleration Torque Rotational Dynamics; Torque and Rotational Inertia Solving Problems
More informationANALYTICAL METHODS FOR ENGINEERS
UNIT 1: Unit code: QCF Level: 4 Credit value: 15 ANALYTICAL METHODS FOR ENGINEERS A/601/1401 OUTCOME  TRIGONOMETRIC METHODS TUTORIAL 1 SINUSOIDAL FUNCTION Be able to analyse and model engineering situations
More informationUpdated 2013 (Mathematica Version) M1.1. Lab M1: The Simple Pendulum
Updated 2013 (Mathematica Version) M1.1 Introduction. Lab M1: The Simple Pendulum The simple pendulum is a favorite introductory exercise because Galileo's experiments on pendulums in the early 1600s are
More informationUniversity Physics 226N/231N Old Dominion University. Newton s Laws and Forces Examples
University Physics 226N/231N Old Dominion University Newton s Laws and Forces Examples Dr. Todd Satogata (ODU/Jefferson Lab) satogata@jlab.org http://www.toddsatogata.net/2012odu Wednesday, September
More informationOUTCOME 2 KINEMATICS AND DYNAMICS TUTORIAL 2 PLANE MECHANISMS. You should judge your progress by completing the self assessment exercises.
Unit 60: Dynamics of Machines Unit code: H/601/1411 QCF Level:4 Credit value:15 OUTCOME 2 KINEMATICS AND DYNAMICS TUTORIAL 2 PLANE MECHANISMS 2 Be able to determine the kinetic and dynamic parameters of
More informationcharge is detonated, causing the smaller glider with mass M, to move off to the right at 5 m/s. What is the
This test covers momentum, impulse, conservation of momentum, elastic collisions, inelastic collisions, perfectly inelastic collisions, 2D collisions, and centerofmass, with some problems requiring
More informationProblem Set 1. Ans: a = 1.74 m/s 2, t = 4.80 s
Problem Set 1 1.1 A bicyclist starts from rest and after traveling along a straight path a distance of 20 m reaches a speed of 30 km/h. Determine her constant acceleration. How long does it take her to
More information3600 s 1 h. 24 h 1 day. 1 day
Week 7 homework IMPORTANT NOTE ABOUT WEBASSIGN: In the WebAssign versions of these problems, various details have been changed, so that the answers will come out differently. The method to find the solution
More informationPHYSICS 111 HOMEWORK SOLUTION #10. April 8, 2013
PHYSICS HOMEWORK SOLUTION #0 April 8, 203 0. Find the net torque on the wheel in the figure below about the axle through O, taking a = 6.0 cm and b = 30.0 cm. A torque that s produced by a force can be
More informationSection 10.7 Parametric Equations
299 Section 10.7 Parametric Equations Objective 1: Defining and Graphing Parametric Equations. Recall when we defined the x (rcos(θ), rsin(θ)) and ycoordinates on a circle of radius r as a function of
More informationVELOCITY, ACCELERATION, FORCE
VELOCITY, ACCELERATION, FORCE velocity Velocity v is a vector, with units of meters per second ( m s ). Velocity indicates the rate of change of the object s position ( r ); i.e., velocity tells you how
More informationHomework 4. problems: 5.61, 5.67, 6.63, 13.21
Homework 4 problems: 5.6, 5.67, 6.6,. Problem 5.6 An object of mass M is held in place by an applied force F. and a pulley system as shown in the figure. he pulleys are massless and frictionless. Find
More information5.2 Rotational Kinematics, Moment of Inertia
5 ANGULAR MOTION 5.2 Rotational Kinematics, Moment of Inertia Name: 5.2 Rotational Kinematics, Moment of Inertia 5.2.1 Rotational Kinematics In (translational) kinematics, we started out with the position
More information11. Rotation Translational Motion: Rotational Motion:
11. Rotation Translational Motion: Motion of the center of mass of an object from one position to another. All the motion discussed so far belongs to this category, except uniform circular motion. Rotational
More informationPhysics 2A, Sec B00: Mechanics  Winter 2011 Instructor: B. Grinstein Final Exam
Physics 2A, Sec B00: Mechanics  Winter 2011 Instructor: B. Grinstein Final Exam INSTRUCTIONS: Use a pencil #2 to fill your scantron. Write your code number and bubble it in under "EXAM NUMBER;" an entry
More informationAP Physics Circular Motion Practice Test B,B,B,A,D,D,C,B,D,B,E,E,E, 14. 6.6m/s, 0.4 N, 1.5 m, 6.3m/s, 15. 12.9 m/s, 22.9 m/s
AP Physics Circular Motion Practice Test B,B,B,A,D,D,C,B,D,B,E,E,E, 14. 6.6m/s, 0.4 N, 1.5 m, 6.3m/s, 15. 12.9 m/s, 22.9 m/s Answer the multiple choice questions (2 Points Each) on this sheet with capital
More informationNotice numbers may change randomly in your assignments and you may have to recalculate solutions for your specific case.
HW1 Possible Solutions Notice numbers may change randomly in your assignments and you may have to recalculate solutions for your specific case. Tipler 14.P.003 An object attached to a spring has simple
More informationSolution: F = kx is Hooke s law for a mass and spring system. Angular frequency of this system is: k m therefore, k
Physics 1C Midterm 1 Summer Session II, 2011 Solutions 1. If F = kx, then k m is (a) A (b) ω (c) ω 2 (d) Aω (e) A 2 ω Solution: F = kx is Hooke s law for a mass and spring system. Angular frequency of
More informationState Newton's second law of motion for a particle, defining carefully each term used.
5 Question 1. [Marks 28] An unmarked police car P is, travelling at the legal speed limit, v P, on a straight section of highway. At time t = 0, the police car is overtaken by a car C, which is speeding
More information1) The time for one cycle of a periodic process is called the A) wavelength. B) period. C) frequency. D) amplitude.
practice wave test.. Name Use the text to make use of any equations you might need (e.g., to determine the velocity of waves in a given material) MULTIPLE CHOICE. Choose the one alternative that best completes
More informationPhysics 9 Fall 2009 Homework 2  Solutions
Physics 9 Fall 009 Homework  s 1. Chapter 7  Exercise 5. An electric dipole is formed from ±1.0 nc charges spread.0 mm apart. The dipole is at the origin, oriented along the y axis. What is the electric
More informationF N A) 330 N 0.31 B) 310 N 0.33 C) 250 N 0.27 D) 290 N 0.30 E) 370 N 0.26
Physics 23 Exam 2 Spring 2010 Dr. Alward Page 1 1. A 250N force is directed horizontally as shown to push a 29kg box up an inclined plane at a constant speed. Determine the magnitude of the normal force,
More informationPhysics 117.3 Tutorial #1 January 14 to 25, 2013
Physics 117.3 Tutorial #1 January 14 to 25, 2013 Rm 130 Physics 8.79. The location of a person s centre of gravity can be determined using the arrangement shown in the figure. A light plank rests on two
More informationName: Partners: Period: Coaster Option: 1. In the space below, make a sketch of your roller coaster.
1. In the space below, make a sketch of your roller coaster. 2. On your sketch, label different areas of acceleration. Put a next to an area of negative acceleration, a + next to an area of positive acceleration,
More informationPHYSICS 218 EXAM 2 Thursday, October 22, 2009
PHYSICS 218 EXAM 2 Thursday, October 22, 2009 NAME: SECTION: 525 526 527 528 Note: 525 Recitation Wed 9:1010:00 526 Recitation Wed 11:3012:20 527 Recitation Wed 1:502:40 528 Recitation Mon 11:3012:20
More informationPHY121 #8 Midterm I 3.06.2013
PHY11 #8 Midterm I 3.06.013 AP Physics Newton s Laws AP Exam Multiple Choice Questions #1 #4 1. When the frictionless system shown above is accelerated by an applied force of magnitude F, the tension
More information9. The kinetic energy of the moving object is (1) 5 J (3) 15 J (2) 10 J (4) 50 J
1. If the kinetic energy of an object is 16 joules when its speed is 4.0 meters per second, then the mass of the objects is (1) 0.5 kg (3) 8.0 kg (2) 2.0 kg (4) 19.6 kg Base your answers to questions 9
More informationB) 40.8 m C) 19.6 m D) None of the other choices is correct. Answer: B
Practice Test 1 1) Abby throws a ball straight up and times it. She sees that the ball goes by the top of a flagpole after 0.60 s and reaches the level of the top of the pole after a total elapsed time
More informationcircular motion & gravitation physics 111N
circular motion & gravitation physics 111N uniform circular motion an object moving around a circle at a constant rate must have an acceleration always perpendicular to the velocity (else the speed would
More informationPhysics 2305 Lab 11: Torsion Pendulum
Name ID number Date Lab CRN Lab partner Lab instructor Physics 2305 Lab 11: Torsion Pendulum Objective 1. To demonstrate that the motion of the torsion pendulum satisfies the simple harmonic form in equation
More informationHW Set VI page 1 of 9 PHYSICS 1401 (1) homework solutions
HW Set VI page 1 of 9 1030 A 10 g bullet moving directly upward at 1000 m/s strikes and passes through the center of mass of a 5.0 kg block initially at rest (Fig. 1033 ). The bullet emerges from the
More informationSound and stringed instruments
Sound and stringed instruments Lecture 14: Sound and strings Reminders/Updates: HW 6 due Monday, 10pm. Exam 2, a week today! 1 Sound so far: Sound is a pressure or density fluctuation carried (usually)
More informationChapter 15, example problems:
Chapter, example problems: (.0) Ultrasound imaging. (Frequenc > 0,000 Hz) v = 00 m/s. λ 00 m/s /.0 mm =.0 0 6 Hz. (Smaller wave length implies larger frequenc, since their product,
More informationWave topics 1. Waves  multiple choice
Wave topics 1 Waves  multiple choice When an object is oscillating in simple harmonic motion in the vertical direction, its maximum speed occurs when the object (a) is at its highest point. (b) is at
More informationChapter 4 Dynamics: Newton s Laws of Motion
Chapter 4 Dynamics: Newton s Laws of Motion Units of Chapter 4 Force Newton s First Law of Motion Mass Newton s Second Law of Motion Newton s Third Law of Motion Weight the Force of Gravity; and the NormalForce
More informationUnit 3 Work and Energy Suggested Time: 25 Hours
Unit 3 Work and Energy Suggested Time: 25 Hours PHYSICS 2204 CURRICULUM GUIDE 55 DYNAMICS Work and Energy Introduction When two or more objects are considered at once, a system is involved. To make sense
More informationSTUDY PACKAGE. Available Online : www.mathsbysuhag.com
fo/u fopkjr Hkh# tu] ugha vkjehks dke] foifr ns[k NksM+s rqjar e/;e eu dj ';kea iq#"k flag ladyi dj] lgrs foifr vusd] ^cuk^ u NksM+s /;s; dks] j?kqcj jk[ks VsdAA jfpr% ekuo /kez iz.ksrk ln~xq# Jh j.knksm+nklth
More informationSOLID MECHANICS TUTORIAL MECHANISMS KINEMATICS  VELOCITY AND ACCELERATION DIAGRAMS
SOLID MECHANICS TUTORIAL MECHANISMS KINEMATICS  VELOCITY AND ACCELERATION DIAGRAMS This work covers elements of the syllabus for the Engineering Council exams C105 Mechanical and Structural Engineering
More informationKE =? v o. Page 1 of 12
Page 1 of 12 CTEnergy1. A mass m is at the end of light (massless) rod of length R, the other end of which has a frictionless pivot so the rod can swing in a vertical plane. The rod is initially horizontal
More informationResponse to Harmonic Excitation Part 2: Damped Systems
Response to Harmonic Excitation Part 2: Damped Systems Part 1 covered the response of a single degree of freedom system to harmonic excitation without considering the effects of damping. However, almost
More informationLinear Motion vs. Rotational Motion
Linear Motion vs. Rotational Motion Linear motion involves an object moving from one point to another in a straight line. Rotational motion involves an object rotating about an axis. Examples include a
More informationCurso20122013 Física Básica Experimental I Cuestiones Tema IV. Trabajo y energía.
1. A body of mass m slides a distance d along a horizontal surface. How much work is done by gravity? A) mgd B) zero C) mgd D) One cannot tell from the given information. E) None of these is correct. 2.
More informationCandidate Number. General Certificate of Education Advanced Level Examination June 2012
entre Number andidate Number Surname Other Names andidate Signature General ertificate of Education dvanced Level Examination June 212 Physics PHY4/1 Unit 4 Fields and Further Mechanics Section Monday
More informationLecture Presentation Chapter 7 Rotational Motion
Lecture Presentation Chapter 7 Rotational Motion Suggested Videos for Chapter 7 Prelecture Videos Describing Rotational Motion Moment of Inertia and Center of Gravity Newton s Second Law for Rotation Class
More informationMechanical Vibrations
Mechanical Vibrations A mass m is suspended at the end of a spring, its weight stretches the spring by a length L to reach a static state (the equilibrium position of the system). Let u(t) denote the displacement,
More informationPhysics 201 Homework 8
Physics 201 Homework 8 Feb 27, 2013 1. A ceiling fan is turned on and a net torque of 1.8 Nm is applied to the blades. 8.2 rad/s 2 The blades have a total moment of inertia of 0.22 kgm 2. What is the
More informationTIME OF COMPLETION NAME SOLUTION DEPARTMENT OF NATURAL SCIENCES. PHYS 1111, Exam 3 Section 1 Version 1 December 6, 2005 Total Weight: 100 points
TIME OF COMPLETION NAME SOLUTION DEPARTMENT OF NATURAL SCIENCES PHYS 1111, Exam 3 Section 1 Version 1 December 6, 2005 Total Weight: 100 points 1. Check your examination for completeness prior to starting.
More informationphysics 1/12/2016 Chapter 20 Lecture Chapter 20 Traveling Waves
Chapter 20 Lecture physics FOR SCIENTISTS AND ENGINEERS a strategic approach THIRD EDITION randall d. knight Chapter 20 Traveling Waves Chapter Goal: To learn the basic properties of traveling waves. Slide
More information