Practice TEST. A The cart is at rest (constant speed of zero). The forces acting on it must be balanced for it to remain at rest.

Size: px
Start display at page:

Download "Practice TEST. A The cart is at rest (constant speed of zero). The forces acting on it must be balanced for it to remain at rest."

Transcription

1 Practice TEST 1. Shown below is a speed-time graph for a cart moving in front of the motion sensor. For convenience it has been divided into five sections (A,B,C,D,E). B C D A E During each of the five separate periods shown on the graph (A, B, C, D, E), was the combination of forces acting on the cart balanced or unbalanced? If unbalanced, did the strongest force act in the same direction as the cart s motion, or against it. Briefly explain how you can tell this from the graph? A The cart is at rest (constant speed of zero). The forces acting on it must be balanced for it to remain at rest. B The speed of the cart is increasing. For this to happen the forces must be unbalanced, with the strongest force in the same direction as the motion. C The speed of the cart is decreasing. For this to happen the forces must be unbalanced, with the strongest force in the opposite direction to the motion. D The speed of the cart is still decreasing. For this to happen the forces must be unbalanced, with the strongest force in the opposite direction to the motion. E The cart has stopped and is at rest (constant speed of zero). The forces acting on it must be balanced for it to remain at rest

2 2. Two students were discussing if they could tell whether a force (or an unbalanced combination of forces) was acting on an object just from observing its motion. If an object is moving in any manner whatsoever then there must be a force acting on it in the direction of motion to keep it moving. If no force acted to keep it moving it would simply stop. I disagree; it depends what the motion is like. Just because an object is moving there does not necessarily have to be a force acting on it. Daryl Luisa Which student do you agree with (if either), and why? I agree with Luisa. She has an idea consistent with those we developed in class. The effect of a force (or an unbalanced combination of forces) acting on a moving object is to change its motion in some way, either making it speed up, slow down, or change direction. If the motion of an object is not changing in any way this means that no force (or a balanced combination of forces) is acting on it. So, just because an object is moving does not necessarily mean a force is acting on it. Daryl s idea is not consistent with those we developed in class. He says that if no force acts an object will stop, but we saw that objects stop because a force does act on them (in a direction opposite to their motion). 2

3 I agree with Victor. He has an idea that is consistent with those we developed in class; that objects slow and stop because a force (or unbalanced combination of forces) acts on them in a direction opposite to their motion. Kristen s idea is not consistent with our class ideas. She seems to be saying that there is still a force pushing the car forward after the initial shove, but our idea was that the force of the shove is gone as soon as the hand loses contact. Her idea that the car slows down because the forward force gets weaker is also inconsistent with our class ideas. We said objects slow down because stop because a force (or unbalanced combination of forces) on them in a direction opposite to their motion. Daryl s idea might be OK, but without more information it is impossible to tell. He implies that for the car to keep moving a force is needed in the direction of motion. If he is accounting for the effects of the friction force that slows the car down, he is correct, but he doesn t say that. On the other hand his thinking could be something like Kristen s, in that he thinks that for any motion to continue a continuous forward force is needed, even in the absence of friction, and without such a forward force it is just natural for the car to stop. This is not consistent with our class ideas. Samantha thinks that if balanced forces act on a moving object, then it will slow and stop. However, in class we found out that when balanced forces act on an object its speed will remain constant. So if balanced forces acted on the car after the initial shove then it would not slow down, but continue at a constant speed. 3. A soccer player kicks a ball into the net. When the soccer ball hits the net, it slows to a stop. Below, is a force diagram a student drew to describe the forces acting on the ball as it slowed down. Is this force diagram complete or is there something missing and/or incorrect? If complete and correct, justify your answer by writing a couple of sentences. If there is one or more things missing or incorrect, re-draw the diagram so it is fully correct, and justify your diagram by writing a couple of sentences. 3

4 I think the force diagram is incorrect. The picture shows the ball in the air as it hits the net, not rolling across the ground, so there will be no frictional force of the ground on the ball. Instead, the force that opposes the motion of the ball to slow it down comes from its interaction with the net. I would redraw the diagram like this: Force of net on ball 4. Five identical crates are initially at rest, side-by-side. One is acted on by a single force of 45 N, as shown. 45 N Which of the other crates, shown below, would move side-by-side with the crate described above? (Choose as many as you think appropriate.) a) 25 N 10 N b) 50 N 25 N 10 N 40 N 20 N c) 75 N 30 N d) 15 N 60 N Briefly explain your choice(s). Since they are identical, in order for the other crates to move side-by-side with the first one they will need to have a net force acting on them that has the same strength and direction as the single force acting on the first crate; namely 45 N to the right. 4

5 Both of crates b) and c) have this. Crate b) has a total of 90 N to the right and 45 N to the left. Subtracting 45 N from 90 N gives a net force of 45 N to the right. Crate c) has 75 N to the right and 30 N to the left. Subtracting 30 N from 75 N gives a net force of 45 N to the right. (The net force on crate a) is only 25 N to the right. The net force on crate d) is 45 N to the left.) 5. Block A, shown below, is moving to the right. At the moment shown, three different forces are acting on the block. The strengths and directions of the three forces are shown in the force diagram. a) Will block A speed up, slow down, or move at constant speed? Briefly explain how you know. Block A will slow down as it moves. This is because the forces acting on it are unbalanced, with the net force acting opposite the motion of the block. b) Suppose there was another block (B) that was identical in size and mass to block A. At the same moment shown above, block B is alongside block A and is moving at the same speed as block A. What single force should be applied to block B, so it continues to move side-by-side with block A? Draw this force (strength and direction) on the block below, and briefly explain how you know. 3 N Since the blocks are identical, Block B will need the same net force acting on it in order to move side-by-side with Block A. The net force acting on Block A is 3 N to the left (12 N to the left minus a total of 9 N to the right) so that is the single force that should act on Block B. 5

6 6. A hockey player uses his stick to maintain a continuous constant strength push on the puck as he moves it across the smooth ice. Assuming that the effects of friction are negligible, which of the following choices best describes the motion of the puck while this constant strength push is acting on it? a) The speed of the puck will continuously decrease. b) The puck will move at a constant speed. c) The speed of the puck will continuously increase. d) Something else you describe it. Briefly explain the reasoning behind your choice (remember to include a description of the motion if you chose option d). We learned in class that when a constant strength force acts on an object, it speeds up. As long as the force continues to act the puck s speed will continuously increase. 7. A large block is on rollers so that it can move across a level surface as if there was no friction affecting it. After they have started the block moving to the right, two men want it to continue moving in the same direction, at a constant speed. Below are force diagrams representing four possible arrangements of forces the men could apply to the block. The situations are also described briefly in words. A. Pull to the right is stronger than the pull to the left. B. No-one pulls, either to the right or the left. C. Pulls to the right and the left are of equal strength. D. Only one person pulls to the right. No-one pulls to the left. 6

7 a) Indicate all the situations shown above (if any) that you think would result in the block moving to the right at a constant speed after it has already started moving. Briefly explain the reasoning behind your choices. The diagrams all show the block moving to the right. Since it is already in motion any unbalanced combination of forces would result in a change in speed. Only a balanced combination of forces would result in motion at a constant speed. So C would work. B would also work since having no forces act is the same as having a balanced combination of forces. b) For those situations that you did not select in part a), what do you think the motion of the cart would be like? Again, explain your reasoning. In both A and D a stronger force acts in the direction of motion than acts against it. In this case both situations would result in a steadily increasing speed. 8. A small child attempts to push a box full of toys across the floor in his playroom. However, despite pushing as hard as he can, the box does not move. Which one of the following statements best describes the reason the box does not move while he is pushing it. a) The force resisting moving the box is greater in strength than the child s push. b) The child weighs less than the box does. c) The force resisting moving the box is equal in strength to the child s push. d) The strength of the child s push is greater than the strength of the force resisting moving the box, but not great enough to move it. Please explain your reasoning If an object is at rest and remains at rest, then the forces acting on it must be balanced. This means the force of the boy and the force resisting him must be equal. (Note: If a) were true the box would start to move in the opposite direction to the child s push!) 7

8 9. The child in the previous question calls for help and his mother comes and helps him push the box, in the same direction. Which one of the following statements best describes why the box now begins to move. a) The combined push of the mother and child is equal in strength to the force resisting the movement of the box. b) The mother weighs more than the box does. c) The combined push of the mother and child is greater in strength than the force resisting the movement of the box. d) The strength of the mother s push alone is greater in strength than the force resisting the movement of the box. Please explain your reasoning For an object at rest to start moving, the forces acting on it must be unbalanced. This means the combined forces of the boy and the mother must be greater than the force resisting them. 10. A ball moves in a curved path inside of a curved tube. The picture to the right shows the ball inside the tube at three different times (times 1, 2 and 3). The arrows represent the speed of the ball at those three times. At time 2 is there an unbalanced force acting on the ball? If yes, add an arrow to the picture to show the approximate direction of Unbalanced force the unbalanced force, and briefly justify your answer. If no, explain why not. Yes, there is an unbalanced force acting on the ball. We know this because as it is moving through the curved tube it is changing direction, for which a sideways unbalanced force is needed. This force would need to be pointed toward the inside of the curved path, as shown on the figure, in order for the ball to follow the path (which is part of a circle). 11. A soccer ball is rolling across the ground. A child briefly taps the ball with her foot at right angles to its direction of motion. A force diagram for the interval 8

9 of time that the child s foot is in contact with the ball is show below to the left (top view). During Tap After Tap In the picture to the right, draw a motion arrow showing how the ball will be moving after the tap. Pay attention to both the length and direction of the motion arrow. Briefly explain why you drew it this way. The sideways tap will not change the speed of the ball, only its direction, so the length of the motion arrow will be the same but it will point in a different direction. Since the ball was already moving to the left it will continue to do so (since no force acted to make that change), but it will also move upward at the same time, due to the effect of the tap. The combination of these means that the ball will be moving diagonally up and to the left after the tap. 12. After being given a quick push, a small ball moves at a constant speed inside a flat circular track. (A top view is shown to the right.) A section of the track is missing, as shown, and the ball leaves the track and rolls across the table top. Which line in the diagram best represents the path the car will follow when it leaves the track? Briefly explain the reasoning behind your choice. C D B A Line B best represents the path of the ball when it leaves the track. The track is supplying the sideways force that points toward the center of the circle and keeps the ball moving in a circle. When that force is removed (at the end of the track) there is no longer a sideways force to change the direction of the ball so it now moves in a straight line in the direction it was headed at the instant it left the track. 9

10 13. Imagine you had two different fan units. Fan #1 had more batteries than fan #2. Fan #1 can push the cart with a force of 20 N. Fan #2 can push with a force of 5 N. Suppose you start an experiment by mounting Fan #1on a cart and release the cart from rest on a very smooth track. You can ignore the effects of friction throughout this problem. Below is a speed time graph for the motion of fan #1 pushing the cart. Fans 1&2 Fan #2 a) Suppose you replaced fan #1 with fan #2 (the weaker one) and mounted it by itself on the same cart. When the cart is released from rest, you observe that it speeds up. Sketch what the speed-time graph for Fan #2 might look like on the graph above. Label it Fan #2. Below, briefly explain why you drew the graph the way that you did. Fan #2 is a lot weaker than Fan #1 so the cart will speed up at a much slower rate with Fan #2 than it did with Fan #1. (In fact, since friction can be ignored, and since the force is only one fourth a strong, the cart will speed up at one fourth the rate, so it will only reach a speed of about 20 cm/s after 2.5 seconds, as opposed to about 80 cm/s with Fan #1.) 10

11 b) Now suppose you mount both fans on the same cart, but with the two fans trying to push the cart in opposite directions. When you release this cart from rest you observe that it speeds up. Sketch what the speedtime graph for the combined fans might look like on the same graph on the previous page. Label it Fans #1 & #2. Below, briefly explain why you drew the graph the way that you did. With both fans mounted on the cart in the way indicated there will be an unbalanced combination of forces acting on it. The strength of the net force will be 15 N (20 N in one direction, minus 5 N in the other direction). This net force will make the cart speed up at a rate that is slightly lower than that for the 20 N force alone. (The extra mass of the added fan will also be a factor in reducing the rate of speeding up.) c) Below, draw a force diagram for the cart with the two fan units on it while the cart is speeding up. (Remember to include all relevant forces, label them appropriately, and also include a speed arrow if appropriate.) 20 N 5 N Force exerted on cart by Fan #1 Force exerted on cart by Fan #2 11

12 14. A group of students arrange two level tracks side-by-side so they can have a race between two carts with fans mounted on them. They start with the two fan units having the same strength (same number of batteries). Cart #2 has extra blocks on it so its mass is greater than the mass of cart #1. The students next want to adjust the strength of fan unit #1 (by changing the number and size of batteries) so the two carts will tie in a race (that is, when turned on and released they will each speed up at the same rate). Should the strength of fan unit #1 be made greater than, equal to, or less than the strength of fan unit #2? The strength of fan #1 should be made less than the strength of fan #2 Justify your answer. Since cart #1 has less mass than cart #2 it will require less force strength to make it speed up at the same rate. (We learned in class that the more mass an object has the slower its rate of speeding up will be for a given force strength.) 12

ACTIVITY 6: Falling Objects

ACTIVITY 6: Falling Objects UNIT FM Developing Ideas ACTIVITY 6: Falling Objects Purpose and Key Question You developed your ideas about how the motion of an object is related to the forces acting on it using objects that move horizontally.

More information

How To Explain Why A Car Is Constant After A Push

How To Explain Why A Car Is Constant After A Push Practice Final Exam (Answers keys) Booklet Number Instructions: This is a combined essay and multiple-choice exam. Choose the best single answer for each question and clearly mark your choice in the appropriate

More information

2 Newton s First Law of Motion Inertia

2 Newton s First Law of Motion Inertia 2 Newton s First Law of Motion Inertia Conceptual Physics Instructor Manual, 11 th Edition SOLUTIONS TO CHAPTER 2 RANKING 1. C, B, A 2. C, A, B, D 3. a. B, A, C, D b. B, A, C, D 4. a. A=B=C (no force)

More information

Practice TEST 2. Explain your reasoning

Practice TEST 2. Explain your reasoning Practice TEST 2 1. Imagine taking an elevator ride from the1 st floor to the 10 th floor of a building. While moving between the 1 st and 2 nd floors the elevator speeds up, but then moves at a constant

More information

Chapter 4: Newton s Laws: Explaining Motion

Chapter 4: Newton s Laws: Explaining Motion Chapter 4: Newton s Laws: Explaining Motion 1. All except one of the following require the application of a net force. Which one is the exception? A. to change an object from a state of rest to a state

More information

NEWTON S LAWS OF MOTION

NEWTON S LAWS OF MOTION Name Period Date NEWTON S LAWS OF MOTION If I am anything, which I highly doubt, I have made myself so by hard work. Isaac Newton Goals: 1. Students will use conceptual and mathematical models to predict

More information

Name Partners Date. Energy Diagrams I

Name Partners Date. Energy Diagrams I Name Partners Date Visual Quantum Mechanics The Next Generation Energy Diagrams I Goal Changes in energy are a good way to describe an object s motion. Here you will construct energy diagrams for a toy

More information

When showing forces on diagrams, it is important to show the directions in which they act as well as their magnitudes.

When showing forces on diagrams, it is important to show the directions in which they act as well as their magnitudes. When showing forces on diagrams, it is important to show the directions in which they act as well as their magnitudes. mass M, the force of attraction exerted by the Earth on an object, acts downwards.

More information

TEACHER ANSWER KEY November 12, 2003. Phys - Vectors 11-13-2003

TEACHER ANSWER KEY November 12, 2003. Phys - Vectors 11-13-2003 Phys - Vectors 11-13-2003 TEACHER ANSWER KEY November 12, 2003 5 1. A 1.5-kilogram lab cart is accelerated uniformly from rest to a speed of 2.0 meters per second in 0.50 second. What is the magnitude

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Vector A has length 4 units and directed to the north. Vector B has length 9 units and is directed

More information

Newton s Laws Quiz Review

Newton s Laws Quiz Review Newton s Laws Quiz Review Name Hour To be properly prepared for this quiz you should be able to do the following: 1) state each of Newton s three laws of motion 2) pick out examples of the three laws from

More information

LAB 6 - GRAVITATIONAL AND PASSIVE FORCES

LAB 6 - GRAVITATIONAL AND PASSIVE FORCES L06-1 Name Date Partners LAB 6 - GRAVITATIONAL AND PASSIVE FORCES OBJECTIVES And thus Nature will be very conformable to herself and very simple, performing all the great Motions of the heavenly Bodies

More information

Physics: Principles and Applications, 6e Giancoli Chapter 2 Describing Motion: Kinematics in One Dimension

Physics: Principles and Applications, 6e Giancoli Chapter 2 Describing Motion: Kinematics in One Dimension Physics: Principles and Applications, 6e Giancoli Chapter 2 Describing Motion: Kinematics in One Dimension Conceptual Questions 1) Suppose that an object travels from one point in space to another. Make

More information

B) 286 m C) 325 m D) 367 m Answer: B

B) 286 m C) 325 m D) 367 m Answer: B Practice Midterm 1 1) When a parachutist jumps from an airplane, he eventually reaches a constant speed, called the terminal velocity. This means that A) the acceleration is equal to g. B) the force of

More information

LAB 6: GRAVITATIONAL AND PASSIVE FORCES

LAB 6: GRAVITATIONAL AND PASSIVE FORCES 55 Name Date Partners LAB 6: GRAVITATIONAL AND PASSIVE FORCES And thus Nature will be very conformable to herself and very simple, performing all the great Motions of the heavenly Bodies by the attraction

More information

Force Concept Inventory

Force Concept Inventory Revised form 081695R Force Concept Inventory Originally published in The Physics Teacher, March 1992 by David Hestenes, Malcolm Wells, and Gregg Swackhamer Revised August 1995 by Ibrahim Halloun, Richard

More information

4 Gravity: A Force of Attraction

4 Gravity: A Force of Attraction CHAPTER 1 SECTION Matter in Motion 4 Gravity: A Force of Attraction BEFORE YOU READ After you read this section, you should be able to answer these questions: What is gravity? How are weight and mass different?

More information

Conceptual Questions: Forces and Newton s Laws

Conceptual Questions: Forces and Newton s Laws Conceptual Questions: Forces and Newton s Laws 1. An object can have motion only if a net force acts on it. his statement is a. true b. false 2. And the reason for this (refer to previous question) is

More information

Unit 2 Force and Motion

Unit 2 Force and Motion Force and Motion Unit 2 Force and Motion Learning Goal (TEKS): Identify and describe the changes in position, direction, and speed of an object when acted upon by unbalanced forces. This means: We are

More information

Physics 2048 Test 1 Solution (solutions to problems 2-5 are from student papers) Problem 1 (Short Answer: 20 points)

Physics 2048 Test 1 Solution (solutions to problems 2-5 are from student papers) Problem 1 (Short Answer: 20 points) Physics 248 Test 1 Solution (solutions to problems 25 are from student papers) Problem 1 (Short Answer: 2 points) An object's motion is restricted to one dimension along the distance axis. Answer each

More information

LeaPS Workshop March 12, 2010 Morehead Conference Center Morehead, KY

LeaPS Workshop March 12, 2010 Morehead Conference Center Morehead, KY LeaPS Workshop March 12, 2010 Morehead Conference Center Morehead, KY Word Bank: Acceleration, mass, inertia, weight, gravity, work, heat, kinetic energy, potential energy, closed systems, open systems,

More information

Physics: Principles and Applications, 6e Giancoli Chapter 4 Dynamics: Newton's Laws of Motion

Physics: Principles and Applications, 6e Giancoli Chapter 4 Dynamics: Newton's Laws of Motion Physics: Principles and Applications, 6e Giancoli Chapter 4 Dynamics: Newton's Laws of Motion Conceptual Questions 1) Which of Newton's laws best explains why motorists should buckle-up? A) the first law

More information

Balanced & Unbalanced Forces

Balanced & Unbalanced Forces 3 rd Grade Force in Motion An object's motion changes because of force. Pushing and Pulling are Kinds of Forces Motion is movement that changes an object's position. Pushing or pulling forces can be used

More information

Balanced and Unbalanced Forces

Balanced and Unbalanced Forces 1 Balanced and Unbalanced Forces Lesson Created by Carlos Irizarry, George B. Swift Specialty School, Chicago, Illinois Purpose To fully appreciate and make a connection to Newton s Laws, students must

More information

Chapter 3 Falling Objects and Projectile Motion

Chapter 3 Falling Objects and Projectile Motion Chapter 3 Falling Objects and Projectile Motion Gravity influences motion in a particular way. How does a dropped object behave?!does the object accelerate, or is the speed constant?!do two objects behave

More information

Friction and Gravity. Friction. Section 2. The Causes of Friction

Friction and Gravity. Friction. Section 2. The Causes of Friction Section 2 Friction and Gravity What happens when you jump on a sled on the side of a snow-covered hill? Without actually doing this, you can predict that the sled will slide down the hill. Now think about

More information

Forces. When an object is pushed or pulled, we say that a force is exerted on it.

Forces. When an object is pushed or pulled, we say that a force is exerted on it. Forces When an object is pushed or pulled, we say that a force is exerted on it. Forces can Cause an object to start moving Change the speed of a moving object Cause a moving object to stop moving Change

More information

9. Momentum and Collisions in One Dimension*

9. Momentum and Collisions in One Dimension* 9. Momentum and Collisions in One Dimension* The motion of objects in collision is difficult to analyze with force concepts or conservation of energy alone. When two objects collide, Newton s third law

More information

III. Applications of Force and Motion Concepts. Concept Review. Conflicting Contentions. 1. Airplane Drop 2. Moving Ball Toss 3. Galileo s Argument

III. Applications of Force and Motion Concepts. Concept Review. Conflicting Contentions. 1. Airplane Drop 2. Moving Ball Toss 3. Galileo s Argument III. Applications of Force and Motion Concepts Concept Review Conflicting Contentions 1. Airplane Drop 2. Moving Ball Toss 3. Galileo s Argument Qualitative Reasoning 1. Dropping Balls 2. Spinning Bug

More information

Aristotelian Physics. Aristotle's physics agrees with most people's common sense, but modern scientists discard it. So what went wrong?

Aristotelian Physics. Aristotle's physics agrees with most people's common sense, but modern scientists discard it. So what went wrong? Aristotelian Physics Aristotle's physics agrees with most people's common sense, but modern scientists discard it. So what went wrong? Here's what Aristotle said: Aristotelian Physics Aristotle s classification

More information

KE =? v o. Page 1 of 12

KE =? v o. Page 1 of 12 Page 1 of 12 CTEnergy-1. A mass m is at the end of light (massless) rod of length R, the other end of which has a frictionless pivot so the rod can swing in a vertical plane. The rod is initially horizontal

More information

Physics 2A, Sec B00: Mechanics -- Winter 2011 Instructor: B. Grinstein Final Exam

Physics 2A, Sec B00: Mechanics -- Winter 2011 Instructor: B. Grinstein Final Exam Physics 2A, Sec B00: Mechanics -- Winter 2011 Instructor: B. Grinstein Final Exam INSTRUCTIONS: Use a pencil #2 to fill your scantron. Write your code number and bubble it in under "EXAM NUMBER;" an entry

More information

PHYS 117- Exam I. Multiple Choice Identify the letter of the choice that best completes the statement or answers the question.

PHYS 117- Exam I. Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. PHYS 117- Exam I Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. 1. Car A travels from milepost 343 to milepost 349 in 5 minutes. Car B travels

More information

CHAPTER 6 WORK AND ENERGY

CHAPTER 6 WORK AND ENERGY CHAPTER 6 WORK AND ENERGY CONCEPTUAL QUESTIONS. REASONING AND SOLUTION The work done by F in moving the box through a displacement s is W = ( F cos 0 ) s= Fs. The work done by F is W = ( F cos θ). s From

More information

1. Mass, Force and Gravity

1. Mass, Force and Gravity STE Physics Intro Name 1. Mass, Force and Gravity Before attempting to understand force, we need to look at mass and acceleration. a) What does mass measure? The quantity of matter(atoms) b) What is the

More information

Chapter 3.8 & 6 Solutions

Chapter 3.8 & 6 Solutions Chapter 3.8 & 6 Solutions P3.37. Prepare: We are asked to find period, speed and acceleration. Period and frequency are inverses according to Equation 3.26. To find speed we need to know the distance traveled

More information

The Physics of Kicking a Soccer Ball

The Physics of Kicking a Soccer Ball The Physics of Kicking a Soccer Ball Shael Brown Grade 8 Table of Contents Introduction...1 What actually happens when you kick a soccer ball?...2 Who kicks harder shorter or taller people?...4 How much

More information

Name: Partners: Period: Coaster Option: 1. In the space below, make a sketch of your roller coaster.

Name: Partners: Period: Coaster Option: 1. In the space below, make a sketch of your roller coaster. 1. In the space below, make a sketch of your roller coaster. 2. On your sketch, label different areas of acceleration. Put a next to an area of negative acceleration, a + next to an area of positive acceleration,

More information

9. The kinetic energy of the moving object is (1) 5 J (3) 15 J (2) 10 J (4) 50 J

9. The kinetic energy of the moving object is (1) 5 J (3) 15 J (2) 10 J (4) 50 J 1. If the kinetic energy of an object is 16 joules when its speed is 4.0 meters per second, then the mass of the objects is (1) 0.5 kg (3) 8.0 kg (2) 2.0 kg (4) 19.6 kg Base your answers to questions 9

More information

Football Learning Guide for Parents and Educators. Overview

Football Learning Guide for Parents and Educators. Overview Overview Did you know that when Victor Cruz catches a game winning touchdown, the prolate spheroid he s holding helped the quarterback to throw a perfect spiral? Wait, what? Well, the shape of a football

More information

Work Energy & Power. September 2000 Number 05. 1. Work If a force acts on a body and causes it to move, then the force is doing work.

Work Energy & Power. September 2000 Number 05. 1. Work If a force acts on a body and causes it to move, then the force is doing work. PhysicsFactsheet September 2000 Number 05 Work Energy & Power 1. Work If a force acts on a body and causes it to move, then the force is doing work. W = Fs W = work done (J) F = force applied (N) s = distance

More information

MOTION DIAGRAMS. Revised 9/05-1 - LC, tlo

MOTION DIAGRAMS. Revised 9/05-1 - LC, tlo MOTION DIAGRAMS When first applying kinematics (motion) principles, there is a tendency to use the wrong kinematics quantity - to inappropriately interchange quantities such as position, velocity, and

More information

Review Chapters 2, 3, 4, 5

Review Chapters 2, 3, 4, 5 Review Chapters 2, 3, 4, 5 4) The gain in speed each second for a freely-falling object is about A) 0. B) 5 m/s. C) 10 m/s. D) 20 m/s. E) depends on the initial speed 9) Whirl a rock at the end of a string

More information

Educational Innovations

Educational Innovations Educational Innovations Background Forces and Motion MAR-600 Wall Coaster Motion is caused by forces. Motion can be described. Motion follows rules. There are many forces and principles involved with motion.

More information

ESSC 311 Lesson Plan. Force and Motion. Sarah Canfield Evan Gora March 13, 2012

ESSC 311 Lesson Plan. Force and Motion. Sarah Canfield Evan Gora March 13, 2012 ESSC 311 Lesson Plan Force and Motion Sarah Canfield Evan Gora March 13, 2012 Force & Motion: Balanced and Unbalanced Forces Lesson Presenters: Sarah Canfield & Evan Gora Description of the GLCE: P.FM.05.31

More information

AP Physics C Fall Final Web Review

AP Physics C Fall Final Web Review Name: Class: _ Date: _ AP Physics C Fall Final Web Review Multiple Choice Identify the choice that best completes the statement or answers the question. 1. On a position versus time graph, the slope of

More information

Review Vocabulary force: a push or a pull. Vocabulary Newton s third law of motion

Review Vocabulary force: a push or a pull. Vocabulary Newton s third law of motion Standard 7.3.17: Investigate that an unbalanced force, acting on an object, changes its speed or path of motion or both, and know that if the force always acts toward the same center as the object moves,

More information

Work, Energy and Power

Work, Energy and Power Work, Energy and Power In this section of the Transport unit, we will look at the energy changes that take place when a force acts upon an object. Energy can t be created or destroyed, it can only be changed

More information

Work-Energy Bar Charts

Work-Energy Bar Charts Name: Work-Energy Bar Charts Read from Lesson 2 of the Work, Energy and Power chapter at The Physics Classroom: http://www.physicsclassroom.com/class/energy/u5l2c.html MOP Connection: Work and Energy:

More information

Speed, velocity and acceleration

Speed, velocity and acceleration Chapter Speed, velocity and acceleration Figure.1 What determines the maximum height that a pole-vaulter can reach? 1 In this chapter we look at moving bodies, how their speeds can be measured and how

More information

Newton s Laws. Newton s Imaginary Cannon. Michael Fowler Physics 142E Lec 6 Jan 22, 2009

Newton s Laws. Newton s Imaginary Cannon. Michael Fowler Physics 142E Lec 6 Jan 22, 2009 Newton s Laws Michael Fowler Physics 142E Lec 6 Jan 22, 2009 Newton s Imaginary Cannon Newton was familiar with Galileo s analysis of projectile motion, and decided to take it one step further. He imagined

More information

1.3.1 Position, Distance and Displacement

1.3.1 Position, Distance and Displacement In the previous section, you have come across many examples of motion. You have learnt that to describe the motion of an object we must know its position at different points of time. The position of an

More information

Pushes and Pulls. TCAPS Created June 2010 by J. McCain

Pushes and Pulls. TCAPS Created June 2010 by J. McCain Pushes and Pulls K i n d e r g a r t e n S c i e n c e TCAPS Created June 2010 by J. McCain Table of Contents Science GLCEs incorporated in this Unit............... 2-3 Materials List.......................................

More information

force (mass)(acceleration) or F ma The unbalanced force is called the net force, or resultant of all the forces acting on the system.

force (mass)(acceleration) or F ma The unbalanced force is called the net force, or resultant of all the forces acting on the system. 4 Forces 4-1 Forces and Acceleration Vocabulary Force: A push or a pull. When an unbalanced force is exerted on an object, the object accelerates in the direction of the force. The acceleration is proportional

More information

Worksheet for Exploration 2.1: Compare Position vs. Time and Velocity vs. Time Graphs

Worksheet for Exploration 2.1: Compare Position vs. Time and Velocity vs. Time Graphs Worksheet for Exploration 2.1: Compare Position vs. Time and Velocity vs. Time Graphs Shown are three different animations, each with three toy monster trucks moving to the right. Two ways to describe

More information

5.1 The First Law: The Law of Inertia

5.1 The First Law: The Law of Inertia The First Law: The Law of Inertia Investigation 5.1 5.1 The First Law: The Law of Inertia How does changing an object s inertia affect its motion? Newton s first law states that objects tend to keep doing

More information

5-Minute Refresher: FRICTION

5-Minute Refresher: FRICTION 5-Minute Refresher: FRICTION Friction Key Ideas Friction is a force that occurs when two surfaces slide past one another. The force of friction opposes the motion of an object, causing moving objects to

More information

Research question: How does the velocity of the balloon depend on how much air is pumped into the balloon?

Research question: How does the velocity of the balloon depend on how much air is pumped into the balloon? Katie Chang 3A For this balloon rocket experiment, we learned how to plan a controlled experiment that also deepened our understanding of the concepts of acceleration and force on an object. My partner

More information

Video Killed the Radio Star! Watch a video of me explaining the difference between static and kinetic friction by clicking here.

Video Killed the Radio Star! Watch a video of me explaining the difference between static and kinetic friction by clicking here. Lesson 26: Friction Friction is a force that always exists between any two surfaces in contact with each other. There is no such thing as a perfectly frictionless environment. Even in deep space, bits

More information

PRELAB: NEWTON S 3 RD LAW AND MOMENTUM CONSERVATION

PRELAB: NEWTON S 3 RD LAW AND MOMENTUM CONSERVATION Newton s 3rd Law and Momentum Conservation, p./ PRELAB: NEWTON S 3 RD LAW AND MOMENTUM CONSERVATION Read over the lab and then answer the following questions about the procedures:. Write down the definition

More information

Ground Rules. PC1221 Fundamentals of Physics I. Kinematics. Position. Lectures 3 and 4 Motion in One Dimension. Dr Tay Seng Chuan

Ground Rules. PC1221 Fundamentals of Physics I. Kinematics. Position. Lectures 3 and 4 Motion in One Dimension. Dr Tay Seng Chuan Ground Rules PC11 Fundamentals of Physics I Lectures 3 and 4 Motion in One Dimension Dr Tay Seng Chuan 1 Switch off your handphone and pager Switch off your laptop computer and keep it No talking while

More information

Lesson 26: Reflection & Mirror Diagrams

Lesson 26: Reflection & Mirror Diagrams Lesson 26: Reflection & Mirror Diagrams The Law of Reflection There is nothing really mysterious about reflection, but some people try to make it more difficult than it really is. All EMR will reflect

More information

Chapter 5 Using Newton s Laws: Friction, Circular Motion, Drag Forces. Copyright 2009 Pearson Education, Inc.

Chapter 5 Using Newton s Laws: Friction, Circular Motion, Drag Forces. Copyright 2009 Pearson Education, Inc. Chapter 5 Using Newton s Laws: Friction, Circular Motion, Drag Forces Units of Chapter 5 Applications of Newton s Laws Involving Friction Uniform Circular Motion Kinematics Dynamics of Uniform Circular

More information

Worksheet #1 Free Body or Force diagrams

Worksheet #1 Free Body or Force diagrams Worksheet #1 Free Body or Force diagrams Drawing Free-Body Diagrams Free-body diagrams are diagrams used to show the relative magnitude and direction of all forces acting upon an object in a given situation.

More information

VELOCITY, ACCELERATION, FORCE

VELOCITY, ACCELERATION, FORCE VELOCITY, ACCELERATION, FORCE velocity Velocity v is a vector, with units of meters per second ( m s ). Velocity indicates the rate of change of the object s position ( r ); i.e., velocity tells you how

More information

Speed A B C. Time. Chapter 3: Falling Objects and Projectile Motion

Speed A B C. Time. Chapter 3: Falling Objects and Projectile Motion Chapter 3: Falling Objects and Projectile Motion 1. Neglecting friction, if a Cadillac and Volkswagen start rolling down a hill together, the heavier Cadillac will get to the bottom A. before the Volkswagen.

More information

AP Physics - Chapter 8 Practice Test

AP Physics - Chapter 8 Practice Test AP Physics - Chapter 8 Practice Test Multiple Choice Identify the choice that best completes the statement or answers the question. 1. A single conservative force F x = (6.0x 12) N (x is in m) acts on

More information

Work, Energy & Momentum Homework Packet Worksheet 1: This is a lot of work!

Work, Energy & Momentum Homework Packet Worksheet 1: This is a lot of work! Work, Energy & Momentum Homework Packet Worksheet 1: This is a lot of work! 1. A student holds her 1.5-kg psychology textbook out of a second floor classroom window until her arm is tired; then she releases

More information

Design Considerations for Water-Bottle Rockets. The next few pages are provided to help in the design of your water-bottle rocket.

Design Considerations for Water-Bottle Rockets. The next few pages are provided to help in the design of your water-bottle rocket. Acceleration= Force OVER Mass Design Considerations for Water-Bottle Rockets The next few pages are provided to help in the design of your water-bottle rocket. Newton s First Law: Objects at rest will

More information

Physics 11 Assignment KEY Dynamics Chapters 4 & 5

Physics 11 Assignment KEY Dynamics Chapters 4 & 5 Physics Assignment KEY Dynamics Chapters 4 & 5 ote: for all dynamics problem-solving questions, draw appropriate free body diagrams and use the aforementioned problem-solving method.. Define the following

More information

A Determination of g, the Acceleration Due to Gravity, from Newton's Laws of Motion

A Determination of g, the Acceleration Due to Gravity, from Newton's Laws of Motion A Determination of g, the Acceleration Due to Gravity, from Newton's Laws of Motion Objective In the experiment you will determine the cart acceleration, a, and the friction force, f, experimentally for

More information

EDUH 1017 - SPORTS MECHANICS

EDUH 1017 - SPORTS MECHANICS 4277(a) Semester 2, 2011 Page 1 of 9 THE UNIVERSITY OF SYDNEY EDUH 1017 - SPORTS MECHANICS NOVEMBER 2011 Time allowed: TWO Hours Total marks: 90 MARKS INSTRUCTIONS All questions are to be answered. Use

More information

Chapter 7: Momentum and Impulse

Chapter 7: Momentum and Impulse Chapter 7: Momentum and Impulse 1. When a baseball bat hits the ball, the impulse delivered to the ball is increased by A. follow through on the swing. B. rapidly stopping the bat after impact. C. letting

More information

WORK DONE BY A CONSTANT FORCE

WORK DONE BY A CONSTANT FORCE WORK DONE BY A CONSTANT FORCE The definition of work, W, when a constant force (F) is in the direction of displacement (d) is W = Fd SI unit is the Newton-meter (Nm) = Joule, J If you exert a force of

More information

SPEED, VELOCITY, AND ACCELERATION

SPEED, VELOCITY, AND ACCELERATION reflect Look at the picture of people running across a field. What words come to mind? Maybe you think about the word speed to describe how fast the people are running. You might think of the word acceleration

More information

Why don t planets crash into each other?

Why don t planets crash into each other? 1 Just as we know that the sun will rise every morning, we expect the planets and the moon to stay in their orbits. And rightly so. For 400 years, people have understood that the movements of Earth, the

More information

Experiment: Static and Kinetic Friction

Experiment: Static and Kinetic Friction PHY 201: General Physics I Lab page 1 of 6 OBJECTIVES Experiment: Static and Kinetic Friction Use a Force Sensor to measure the force of static friction. Determine the relationship between force of static

More information

Rockets: Taking Off! Racing Balloon

Rockets: Taking Off! Racing Balloon Rockets: Taking Off! For every action there is an equal and opposite reaction. Rockets and Balloons What happens when you blow up a balloon then let it go? Does the balloon move through the air? Did you

More information

C B A T 3 T 2 T 1. 1. What is the magnitude of the force T 1? A) 37.5 N B) 75.0 N C) 113 N D) 157 N E) 192 N

C B A T 3 T 2 T 1. 1. What is the magnitude of the force T 1? A) 37.5 N B) 75.0 N C) 113 N D) 157 N E) 192 N Three boxes are connected by massless strings and are resting on a frictionless table. Each box has a mass of 15 kg, and the tension T 1 in the right string is accelerating the boxes to the right at a

More information

3rd/4th Grade Science Unit: Forces and Motion. Melissa Gucker TE 804 Spring 2007

3rd/4th Grade Science Unit: Forces and Motion. Melissa Gucker TE 804 Spring 2007 3rd/4th Grade Science Unit: Forces and Motion Melissa Gucker TE 804 Spring 2007 Part I: Learning Goals Documentation Unit Title: Forces and Motion Grade Level: 3 rd Designer: Melissa Gucker The Main Idea(s)/Importance

More information

2008 FXA DERIVING THE EQUATIONS OF MOTION 1. Candidates should be able to :

2008 FXA DERIVING THE EQUATIONS OF MOTION 1. Candidates should be able to : Candidates should be able to : Derive the equations of motion for constant acceleration in a straight line from a velocity-time graph. Select and use the equations of motion for constant acceleration in

More information

hockeyplayerdeveloper.com

hockeyplayerdeveloper.com Many goals may be prevented by our players lining up shoulder to shoulder with their players or our players going immediately to their designated positions and covering their open players when the puck

More information

Chapter 7 WORK, ENERGY, AND Power Work Done by a Constant Force Kinetic Energy and the Work-Energy Theorem Work Done by a Variable Force Power

Chapter 7 WORK, ENERGY, AND Power Work Done by a Constant Force Kinetic Energy and the Work-Energy Theorem Work Done by a Variable Force Power Chapter 7 WORK, ENERGY, AND Power Work Done by a Constant Force Kinetic Energy and the Work-Energy Theorem Work Done by a Variable Force Power Examples of work. (a) The work done by the force F on this

More information

LEVEL I SKATING TECHNICAL. September 2007 Page 1

LEVEL I SKATING TECHNICAL. September 2007 Page 1 SKATING September 2007 Page 1 SKATING SKILLS The game of Ice Hockey is a fast-paced, complex, team sport, which demands quick thinking, fast reactions and special athletic skills. Skating is the most important

More information

INTRODUCTION TO MATHEMATICAL MODELLING

INTRODUCTION TO MATHEMATICAL MODELLING 306 MATHEMATICS APPENDIX 2 INTRODUCTION TO MATHEMATICAL MODELLING A2.1 Introduction Right from your earlier classes, you have been solving problems related to the real-world around you. For example, you

More information

Unit 3 Work and Energy Suggested Time: 25 Hours

Unit 3 Work and Energy Suggested Time: 25 Hours Unit 3 Work and Energy Suggested Time: 25 Hours PHYSICS 2204 CURRICULUM GUIDE 55 DYNAMICS Work and Energy Introduction When two or more objects are considered at once, a system is involved. To make sense

More information

The Rear-End Collision

The Rear-End Collision Activity 8 The Rear-End Collision GOALS In this activity you will: Evaluate from simulated collisions, the effect of rearend collisions on the neck muscles. Understand the causes of whiplash injuries.

More information

What is Energy? 1 45 minutes Energy and You: Energy Picnic Science, Physical Education Engage

What is Energy? 1 45 minutes Energy and You: Energy Picnic Science, Physical Education Engage Unit Grades K-3 Awareness Teacher Overview What is energy? Energy makes change; it does things for us. It moves cars along the road and boats over the water. It bakes a cake in the oven and keeps ice frozen

More information

Resistance in the Mechanical System. Overview

Resistance in the Mechanical System. Overview Overview 1. What is resistance? A force that opposes motion 2. In the mechanical system, what are two common forms of resistance? friction and drag 3. What is friction? resistance that is produced when

More information

FXA 2008. UNIT G484 Module 2 4.2.3 Simple Harmonic Oscillations 11. frequency of the applied = natural frequency of the

FXA 2008. UNIT G484 Module 2 4.2.3 Simple Harmonic Oscillations 11. frequency of the applied = natural frequency of the 11 FORCED OSCILLATIONS AND RESONANCE POINTER INSTRUMENTS Analogue ammeter and voltmeters, have CRITICAL DAMPING so as to allow the needle pointer to reach its correct position on the scale after a single

More information

Reading assignment: All students should read the Appendix about using oscilloscopes.

Reading assignment: All students should read the Appendix about using oscilloscopes. 10. A ircuits* Objective: To learn how to analyze current and voltage relationships in alternating current (a.c.) circuits. You will use the method of phasors, or the vector addition of rotating vectors

More information

Science Grade 1 Forces and Motion

Science Grade 1 Forces and Motion Science Grade 1 Forces and Motion Description: The students in this unit will use their inquiry skills to explore pushing, pulling, and gravity. They will also explore the different variables which affect

More information

Practice Exam Three Solutions

Practice Exam Three Solutions MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics Physics 8.01T Fall Term 2004 Practice Exam Three Solutions Problem 1a) (5 points) Collisions and Center of Mass Reference Frame In the lab frame,

More information

Exam Three Momentum Concept Questions

Exam Three Momentum Concept Questions Exam Three Momentum Concept Questions Isolated Systems 4. A car accelerates from rest. In doing so the absolute value of the car's momentum changes by a certain amount and that of the Earth changes by:

More information

circular motion & gravitation physics 111N

circular motion & gravitation physics 111N circular motion & gravitation physics 111N uniform circular motion an object moving around a circle at a constant rate must have an acceleration always perpendicular to the velocity (else the speed would

More information

Teacher notes/ activities. Gravity is the attractive force between all objects in the universe. It is the force that pulls objects to the earth.

Teacher notes/ activities. Gravity is the attractive force between all objects in the universe. It is the force that pulls objects to the earth. Gravity and forces unit Teacher notes/ activities Gravity is the attractive force between all objects in the universe. It is the force that pulls objects to the earth. Galileo, a famous Italian scientist

More information

Difference between a vector and a scalar quantity. N or 90 o. S or 270 o

Difference between a vector and a scalar quantity. N or 90 o. S or 270 o Vectors Vectors and Scalars Distinguish between vector and scalar quantities, and give examples of each. method. A vector is represented in print by a bold italicized symbol, for example, F. A vector has

More information

Inertia, Forces, and Acceleration: The Legacy of Sir Isaac Newton

Inertia, Forces, and Acceleration: The Legacy of Sir Isaac Newton Inertia, Forces, and Acceleration: The Legacy of Sir Isaac Newton Position is a Vector Compare A A ball is 12 meters North of the Sun God to A A ball is 10 meters from here A vector has both a direction

More information

Free Fall: Observing and Analyzing the Free Fall Motion of a Bouncing Ping-Pong Ball and Calculating the Free Fall Acceleration (Teacher s Guide)

Free Fall: Observing and Analyzing the Free Fall Motion of a Bouncing Ping-Pong Ball and Calculating the Free Fall Acceleration (Teacher s Guide) Free Fall: Observing and Analyzing the Free Fall Motion of a Bouncing Ping-Pong Ball and Calculating the Free Fall Acceleration (Teacher s Guide) 2012 WARD S Science v.11/12 OVERVIEW Students will measure

More information

Phases of the Moon. Preliminaries:

Phases of the Moon. Preliminaries: Phases of the Moon Sometimes when we look at the Moon in the sky we see a small crescent. At other times it appears as a full circle. Sometimes it appears in the daylight against a bright blue background.

More information