SPM 150 Aarhus with KolibriSensor TM

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "SPM 150 Aarhus with KolibriSensor TM"

Transcription

1 Surface Analysis Technology Vacuum Components Surface Analysis System Software Computer Technology SPM 150 Aarhus with KolibriSensor TM Technical Notes Using the SPM 150 Aarhus with KolibriSensor TM, SPECS combines its proven extreme stability of the Aarhus design with state-of-the-art dynamic atomic force microscopy (AFM) techniques. The KolibriSensor TM, based on the piezoelectric length extension resonator (LER), enables the scientist to study every surface regardless of its conductivity at the atomic scale. The SPM 150 Aarhus can be operated in the scanning tunneling microscopy (STM) or non-contact atomic force microscopy (NC-AFM) mode, or in a combination of both modes with simultaneous but independent measurement of force and tunneling signals. Features KolibriSensor TM : High frequency (~ 1 MHz), high Q (> 10,000 at room temperature), and very stiff (k~540,000 N/m) piezoelectric force sensor SPECS Nanonis Control System with highly accurate Phase Locked Loop (PLL) Operation of the AFM with sub-nanometer oscillation amplitudes for enhanced detection of short-range interaction between tip and sample Clear separation of force signal and tunneling current via separately contacted tungsten-tip On the fly switching between STM and AFM feedback modes In-situ sensor preparation by ion beam sputtering Temperature range K

2 Principle of NC-AFM The introduction of the atomic force microscope (AFM) provided a scanning probe microscopy method capable of imaging all surfaces regardless of their conductivity by measuring forces between a nanoscopic tip and the surface. The dynamic scanning force microscope operated in non-contact mode (NC-AFM) in an ultra-high vacuum environment has been developed into a versatile surface science tool for the characterization of insulating and conducting materials at the atomic scale. In dynamic scanning force microscopy a nanoscopic tip mounted on an oscillating quartz rod is scanned laterally over a surface. Simultaneously the quartz rod is excited to vibration at its resonance frequency. The change in resonance frequency of the excited tip upon approach of the tip towards the surface is used as the feedback signal for the tip-surface interaction. Figure 1: The graph shows the typical dependence of the tipsample interaction force as a function of distance z and the resulting detuning f versus z dependence. Images courtesy of S. Torbrügge, Dissertation 2008, University of Osnabrück. A schematic drawing of the tip-sample interaction force is shown in Figure 1. The interaction between the oscillating tip and the surface can be separated in four parts: (O) free oscillation region where the oscillation is not influenced by the tip-sample interaction. (I) long range interaction governed by the macroscopic tip geometry, (II) short range interaction determined by the nanoscopic tip geometry and chemistry and (III) short range repulsion. In total a superposition of attractive and repulsive forces results in the tip-sample force. (b) Typical characteristics of the detuning f as a function of tip-sample distance z. To obtain a topographic image the detuning is kept constant at a given set point f set. Atomically resolved images are usually taken in the short range tip-sample interaction region (II).

3 Technical Design Figure 2: Schematic drawing of the quartz KolibriSensor TM. The sensor oscillates with amplitude A perpendicular to the sample surface. Figure 3: Typical resonance curve of the SPECS KolibriSensor TM recorded in a vacuum at room temperature. SPECS offers the KolibriSensor TM, a new type of force sensor based on a quartz length extension resonator (LER). This sensor design combines a high spring constant k and excellent signal-to-noise ratio necessary for stable operation of the sensor at sub-nanometer oscillation amplitudes. The sensor consists of an oscillating rod supported by two arms at the center. Each side of the rod is coated with an Au electrode. The resonance oscillation is excited by applying a sinusoidal voltage U EXC on one of the two electrodes of the rod. When the rod is extended or contracted, electronic charges due to the piezoelectric effect are induced on the surface of its side walls and detected as a current I OSC from the other electrode on the rod. For a clear separation of oscillation current I OSC and tunneling current I tunnel the metallic tip is electrically insulated from the LER and contacted to a third electrode by a wire. The sophisticated SPECS KolibriSensor TM design with highly skilled manufacturing techniques provides high quality oscillators with Q-factors above 10,000 at room temperature in vacuum at a resonance frequency of about 1 MHz. The high resonance frequency together with the high spring constant k ensure a fast response of the KolibriSensor TM but require a highly accurate Phase Locked Loop (PLL) to perform NC-AFM measurements due to the low frequency shifts in the range of a few Hertz. The Nanonis Control System with its high precision PLL and the proven perfectpll TM setup tool meet these requirements, enabling atomic resolution performance of the KolibriSensor TM during NC-AFM operation. Due to direct electromechanical coupling the power dissipation Γ of the oscillation can be measured directly by Γ = U exc I osc With no tedious calibration required, this is a very powerful advantage of piezoelectric oscillators in dynamic force microscopy. Furthermore the KolibriSensor TM design facilitates in-situ ion beam sputtering of the tip enabling repeated sharpening of the sensor tip on a daily basis.

4 Results All displayed data have been taken with no external dampers on the UHV system. 5th floor of SPECS building (severe low frequency noise) Mechanical pumps running within lab space Heavy duty labor inside and surrounding the lab space All displayed images represent raw data with no filtering or smoothing applied.

5 NC-AFM Imaging on Si(111)(7x7) z f I t Γ Figure 4: Atomic resolution NC-AFM image of the Si(111)(7x7) surface in the constant detuning ( f) feedback mode. Topography z, detuning f, tunneling current I t, and the dissipation Γ of the oscillation are recorded simultaneously. image size: (7 x 7) nm 2, 256 x 256 pixels resonance frequency: f res = 996,035 Hz imaging set point: f = -0.9 Hz oscillation amplitude: A = 200 pm contact potential difference: U CPD = 0.25 V imaging speed: 10 lines/s

6 NC-AFM Imaging on Si(111)(7x7) z f I t Γ Figure 5: Atomic resolution NC-AFM image of the Si(111)(7x7) surface in the constant detuning ( f) feedback mode. Topography z, detuning f, tunneling current It, and the dissipation Γ of the oscillation signal are recorded simultaneously. During imaging from bottom to top tip-changes (exemplarily marked by arrows) occur, primarily affecting the tunneling current while the f signal and thus the topographic image remain unperturbed. image size: (6 nm x 5 nm), (256 x 210) pixels resonance frequency: f res =981,524 Hz imaging set point: f=-0.18 Hz oscillation amplitude: A=600 pm contact potential difference: U CPD = 0.55 V imaging speed: 2.5 lines/s

7 Spectroscopy on Si(111)(7x7) Figure 6: Combined spectroscopy measurement of f and tunneling current versus distance z on the Si(111)(7x7) surface. Oscillation amplitude A = 400 pm. The steep drop in f(z) at about z=-0.3 nm indicates the onset of the short-range interaction regime. Combined spectroscopy experiments enable the detailed study of the onset of the short range interaction and tunneling current. Figure 7: Combined spectroscopy measurement of f and tunneling current versus applied bias on the Si(111)(7x7) surface. The maximum of the f(z) parabola indicates the minimum of the electrostatic force which is equivalent to the contact potential difference (U CPD ) between tip and sample.

8 NC-AFM Imaging on Insulating KBr(001) z f A Γ Figure 8: Large Scale topographic image of the insulating KBr(001) surface in the constant detuning ( f) feedback mode. Topography z, detuning f, oscillation amplitude A, and the dissipation Γ of the oscillation signal are recorded simultaneously. image size: (350 nm x 350 nm), (512 x 512) pixels resonance frequency: f res = 981,532 Hz imaging set point: f = -1.2 Hz oscillation amplitude: A = 400 pm contact potential difference: U CPD = 0.35 V imaging speed: 2 lines/s

9 NC-AFM Imaging on Insulating KBr(001) z f A Γ Figure 9: Atomic resolution AFM image of the KBr(001) surface in the constant detuning ( f) feedback mode. Topography z, detuning f, oscillation amplitude A, and the dissipation Γ of the oscillation signal are recorded simultaneously. The cubic unit cell is highlighted by a black square in all images. image size: (4 nm x 4 nm), 256 x 256 pixels resonance frequency: f res = 995,035 Hz imaging set point: f = Hz oscillation amplitude: A = 100 pm contact potential difference: U CPD = 2.03 V imaging speed: 3 lines/s SPECS GmbH Surface Analysis and Computer Technology Voltastrasse Berlin GERMANY Phone: Fax:

SPM 150 Aarhus with KolibriSensor

SPM 150 Aarhus with KolibriSensor Customied Systems and Solutions Nanostructures and Thin Film Deposition Surface Analysis and Preparation Components Surface Science Applications SPM 150 Aarhus with KolibriSensor Atomic resolution NC-AFM

More information

Lecture 4 Scanning Probe Microscopy (SPM)

Lecture 4 Scanning Probe Microscopy (SPM) Lecture 4 Scanning Probe Microscopy (SPM) General components of SPM; Tip --- the probe; Cantilever --- the indicator of the tip; Tip-sample interaction --- the feedback system; Scanner --- piezoelectric

More information

STM and AFM Tutorial. Katie Mitchell January 20, 2010

STM and AFM Tutorial. Katie Mitchell January 20, 2010 STM and AFM Tutorial Katie Mitchell January 20, 2010 Overview Scanning Probe Microscopes Scanning Tunneling Microscopy (STM) Atomic Force Microscopy (AFM) Contact AFM Non-contact AFM RHK UHV350 AFM/STM

More information

1 Introduction. 1.1 Historical Perspective

1 Introduction. 1.1 Historical Perspective j1 1 Introduction 1.1 Historical Perspective The invention of scanning probe microscopy is considered one of the major advances in materials science since 1950 [1, 2]. Scanning probe microscopy includes

More information

Scanning Probe Microscopy

Scanning Probe Microscopy Ernst Meyer Hans Josef Hug Roland Bennewitz Scanning Probe Microscopy The Lab on a Tip With 117 Figures Mß Springer Contents 1 Introduction to Scanning Probe Microscopy f f.1 Overview 2 f.2 Basic Concepts

More information

5. Scanning Near-Field Optical Microscopy 5.1. Resolution of conventional optical microscopy

5. Scanning Near-Field Optical Microscopy 5.1. Resolution of conventional optical microscopy 5. Scanning Near-Field Optical Microscopy 5.1. Resolution of conventional optical microscopy Resolution of optical microscope is limited by diffraction. Light going through an aperture makes diffraction

More information

Piezoelectric Scanners

Piezoelectric Scanners Piezoelectric Scanners Piezoelectric materials are ceramics that change dimensions in response to an applied voltage and conversely, they develop an electrical potential in response to mechanical pressure.

More information

Lecture 6 Scanning Tunneling Microscopy (STM) General components of STM; Tunneling current; Feedback system; Tip --- the probe.

Lecture 6 Scanning Tunneling Microscopy (STM) General components of STM; Tunneling current; Feedback system; Tip --- the probe. Lecture 6 Scanning Tunneling Microscopy (STM) General components of STM; Tunneling current; Feedback system; Tip --- the probe. Brief Overview of STM Inventors of STM The Nobel Prize in Physics 1986 Nobel

More information

Large scale scanning probe microscope: Making the shear-force scanning visible

Large scale scanning probe microscope: Making the shear-force scanning visible Large scale scanning probe microscope: Making the shear-force scanning visible E. Bosma, a H. L. Offerhaus, J. T. van der Veen, F. B. Segerink, and I. M. van Wessel Optical Sciences Group, Faculty of Science

More information

7/3/2014. Introduction to Atomic Force Microscope. Introduction to Scanning Force Microscope. Invention of Atomic Force Microscope (AFM)

7/3/2014. Introduction to Atomic Force Microscope. Introduction to Scanning Force Microscope. Invention of Atomic Force Microscope (AFM) Introduction to Atomic Force Microscope Introduction to Scanning Force Microscope Not that kind of atomic Tien Ming Chuang ( 莊 天 明 ) Institute of Physics, Academia Sinica Tien Ming Chuang ( 莊 天 明 ) Institute

More information

Keysight Technologies How to Choose your MAC Lever. Technical Overview

Keysight Technologies How to Choose your MAC Lever. Technical Overview Keysight Technologies How to Choose your MAC Lever Technical Overview Introduction Atomic force microscopy (AFM) is a sub-nanometer scale imaging and measurement tool that can be used to determine a sample

More information

Tecniche a scansione di sonda per nanoscopia e nanomanipolazione 2: AFM e derivati

Tecniche a scansione di sonda per nanoscopia e nanomanipolazione 2: AFM e derivati LS Scienza dei Materiali - a.a. 2008/09 Fisica delle Nanotecnologie part 5.2 Version 7, Nov 2008 Francesco Fuso, tel 0502214305, 0502214293 - fuso@df.unipi.it http://www.df.unipi.it/~fuso/dida Tecniche

More information

INTRODUCTION TO SCANNING TUNNELING MICROSCOPY

INTRODUCTION TO SCANNING TUNNELING MICROSCOPY INTRODUCTION TO SCANNING TUNNELING MICROSCOPY SECOND EDITION C. JULIAN CHEN Department of Applied Physics and Applied Mathematics, Columbia University, New York OXJORD UNIVERSITY PRESS Contents Preface

More information

Fast-scanning near-field scanning optical microscopy. using a high-frequency dithering probe

Fast-scanning near-field scanning optical microscopy. using a high-frequency dithering probe Fast-scanning near-field scanning optical microscopy using a high-frequency dithering probe Yongho Seo and Wonho Jhe * Center for Near-field Atom-photon Technology and School of Physics, Seoul National

More information

Non-Contact Vibration Measurement of Micro-Structures

Non-Contact Vibration Measurement of Micro-Structures Non-Contact Vibration Measurement of Micro-Structures Using Laser Doppler Vibrometry (LDV) and Planar Motion Analysis (PMA) to examine and assess the vibration characteristics of micro- and macro-structures.

More information

Usage of Carbon Nanotubes in Scanning Probe Microscopes as Probe. Keywords: Carbon Nanotube, Scanning Probe Microscope

Usage of Carbon Nanotubes in Scanning Probe Microscopes as Probe. Keywords: Carbon Nanotube, Scanning Probe Microscope International Journal of Arts and Sciences 3(1): 18-26 (2009) CD-ROM. ISSN: 1944-6934 InternationalJournal.org Usage of Carbon Nanotubes in Scanning Probe Microscopes as Probe Bedri Onur Kucukyildirim,

More information

A METHOD OF PRECISE CALIBRATION FOR PIEZOELECTRICAL ACTUATORS

A METHOD OF PRECISE CALIBRATION FOR PIEZOELECTRICAL ACTUATORS Uludağ Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, Cilt 9, Sayı, 24 A METHOD OF PRECISE CALIBRATION FOR PIEZOELECTRICAL ACTUATORS Timur CANEL * Yüksel BEKTÖRE ** Abstract: Piezoelectrical actuators

More information

Preface Light Microscopy X-ray Diffraction Methods

Preface Light Microscopy X-ray Diffraction Methods Preface xi 1 Light Microscopy 1 1.1 Optical Principles 1 1.1.1 Image Formation 1 1.1.2 Resolution 3 1.1.3 Depth of Field 5 1.1.4 Aberrations 6 1.2 Instrumentation 8 1.2.1 Illumination System 9 1.2.2 Objective

More information

UNIVERSITY OF SOUTHAMPTON. Scanning Near-Field Optical Microscope Characterisation of Microstructured Optical Fibre Devices.

UNIVERSITY OF SOUTHAMPTON. Scanning Near-Field Optical Microscope Characterisation of Microstructured Optical Fibre Devices. UNIVERSITY OF SOUTHAMPTON Scanning Near-Field Optical Microscope Characterisation of Microstructured Optical Fibre Devices. Christopher Wyndham John Hillman Submitted for the degree of Doctor of Philosophy

More information

NEAR FIELD OPTICAL MICROSCOPY AND SPECTROSCOPY WITH STM AND AFM PROBES

NEAR FIELD OPTICAL MICROSCOPY AND SPECTROSCOPY WITH STM AND AFM PROBES Vol. 93 (1997) A CTA PHYSICA POLONICA A No. 2 Proceedings of the 1st International Symposium on Scanning Probe Spectroscopy and Related Methods, Poznań 1997 NEAR FIELD OPTICAL MICROSCOPY AND SPECTROSCOPY

More information

SCANNING TUNNELING MICROSCOPE. GÖZDE ATALAY HAZAL BAL UFUK OKUMUŞ 21.05.2010 Hacettepe University Chemical Engineering Department 1

SCANNING TUNNELING MICROSCOPE. GÖZDE ATALAY HAZAL BAL UFUK OKUMUŞ 21.05.2010 Hacettepe University Chemical Engineering Department 1 SCANNING TUNNELING MICROSCOPE GÖZDE ATALAY HAZAL BAL UFUK OKUMUŞ 21.05.2010 Hacettepe University Chemical Engineering Department 1 Presentation includes; What is STM History Instrumentation How it works?

More information

Nano-Spectroscopy. Solutions AFM-Raman, TERS, NSOM Chemical imaging at the nanoscale

Nano-Spectroscopy. Solutions AFM-Raman, TERS, NSOM Chemical imaging at the nanoscale Nano-Spectroscopy Solutions AFM-Raman, TERS, NSOM Chemical imaging at the nanoscale Since its introduction in the early 80 s, Scanning Probe Microscopy (SPM) has quickly made nanoscale imaging an affordable

More information

4 SENSORS. Example. A force of 1 N is exerted on a PZT5A disc of diameter 10 mm and thickness 1 mm. The resulting mechanical stress is:

4 SENSORS. Example. A force of 1 N is exerted on a PZT5A disc of diameter 10 mm and thickness 1 mm. The resulting mechanical stress is: 4 SENSORS The modern technical world demands the availability of sensors to measure and convert a variety of physical quantities into electrical signals. These signals can then be fed into data processing

More information

Calibration of AFM with virtual standards; robust, versatile and accurate. Richard Koops VSL Dutch Metrology Institute Delft

Calibration of AFM with virtual standards; robust, versatile and accurate. Richard Koops VSL Dutch Metrology Institute Delft Calibration of AFM with virtual standards; robust, versatile and accurate Richard Koops VSL Dutch Metrology Institute Delft 19-11-2015 VSL Dutch Metrology Institute VSL is the national metrology institute

More information

Atomic Force Microscopy Observation and Characterization of a CD Stamper, Lycopodium Spores, and Step-Height Standard Diffraction Grating

Atomic Force Microscopy Observation and Characterization of a CD Stamper, Lycopodium Spores, and Step-Height Standard Diffraction Grating Atomic Force Microscopy Observation and Characterization of a CD Stamper, Lycopodium Spores, and Step-Height Standard Diffraction Grating Michael McMearty and Frit Miot Special Thanks to Brendan Cross

More information

PUMPED Nd:YAG LASER. Last Revision: August 21, 2007

PUMPED Nd:YAG LASER. Last Revision: August 21, 2007 PUMPED Nd:YAG LASER Last Revision: August 21, 2007 QUESTION TO BE INVESTIGATED: How can an efficient atomic transition laser be constructed and characterized? INTRODUCTION: This lab exercise will allow

More information

Experiment 5. Lasers and laser mode structure

Experiment 5. Lasers and laser mode structure Northeastern University, PHYS5318 Spring 2014, 1 1. Introduction Experiment 5. Lasers and laser mode structure The laser is a very important optical tool that has found widespread use in science and industry,

More information

Atomic Force Microscope

Atomic Force Microscope Atomic Force Microscope (Veeco Nanoman) User Manual Basic Operation 4 th Edition Aug 2012 NR System Startup If the system is currently ON To start the NanoScope software, double-click the NanoScope startup

More information

AFM Tapping Mode Instructional Guide. STEP 1: LOG IN TO THE AFM LOG BOOK NOTE: this guide does not take the place of reading the manual

AFM Tapping Mode Instructional Guide. STEP 1: LOG IN TO THE AFM LOG BOOK NOTE: this guide does not take the place of reading the manual AFM Tapping Mode Instructional Guide July 2004 STEP 1: LOG IN TO THE AFM LOG BOOK NOTE: this guide does not take the place of reading the manual Figure 1 AFM Stage & Head assembly Vacuum Switch Laser Adjustment

More information

UV-Vis spectrophotometers

UV-Vis spectrophotometers UV-Vis spectrophotometers an Advanced Digital Technology EXPERIENCE SECOMAM is proud to provide the new fourthgeneration UVIKON ultraviolet-visible spectrophotometers.with more than five decades of experience

More information

SALES SPECIFICATION. SC7640 Auto/Manual High Resolution Sputter Coater

SALES SPECIFICATION. SC7640 Auto/Manual High Resolution Sputter Coater SALES SPECIFICATION SC7640 Auto/Manual High Resolution Sputter Coater Document Number SS-SC7640 Issue 1 (01/02) Disclaimer The components and packages described in this document are mutually compatible

More information

Department of Aerospace Engineering Indian Institute of Science Bangalore

Department of Aerospace Engineering Indian Institute of Science Bangalore Department of Aerospace Engineering Indian Institute of Science Bangalore Brief Outline of Department The department of Aerospace Engineering is one of the oldest departments in the country encompassing

More information

Multi-mode Atomic Force Microscope (with High Voltage Piezo Force Microscope and +/- 8000 Oe Variable Field module.)

Multi-mode Atomic Force Microscope (with High Voltage Piezo Force Microscope and +/- 8000 Oe Variable Field module.) Multi-mode Atomic Force Microscope (with High Voltage Piezo Force Microscope and +/- 8000 Oe Variable Field module.) Main specifications of the proposed instrument: 1 Instrument Resolution: 1.1 The instrument

More information

Tecniche a scansione di sonda per nanoscopia e nanomanipolazione: STM, AFM e derivati

Tecniche a scansione di sonda per nanoscopia e nanomanipolazione: STM, AFM e derivati LS Scienza dei Materiali - a.a. 2006/07 Fisica delle Nanotecnologie part 5.1 Version 5a, Nov 2006 Francesco Fuso, tel 0502214305, 0502214293 - fuso@df.unipi.it http://www.df.unipi.it/~fuso/dida Tecniche

More information

SCANNING PROBE MICROSCOPY NANOS-E3 SCHOOL 29/09/2015 An introduction to surface microscopy probes

SCANNING PROBE MICROSCOPY NANOS-E3 SCHOOL 29/09/2015 An introduction to surface microscopy probes SCANNING PROBE MICROSCOPY NANOS-E3 SCHOOL 29/09/2015 An introduction to surface microscopy probes SPM is ubiquitous in modern research Physics Nanotechnology/chemistry Nature Nanotechnology 10, 156 160

More information

nanovea.com MECHANICAL TESTERS Indentation Scratch Wear

nanovea.com MECHANICAL TESTERS Indentation Scratch Wear MECHANICAL TESTERS Indentation Scratch Wear nanovea.com MECHANICAL TESTER INTRO Nanovea Mechanical Testers provide unmatched multi-function Nano and Micro/Macro modules on a single platform. Both the Nano

More information

Agilent 5500 AFM. Data Sheet. Features and Benefits

Agilent 5500 AFM. Data Sheet. Features and Benefits Agilent 5500 AFM Data Sheet Figure 1. STM image of HOPG showing atomic structure. Scan size: 4 nm. Features and Benefits Exceptional environmental and temperature control Superior scanning in fluids, gases,

More information

Magnetism. ***WARNING: Keep magnets away from computers and any computer disks!***

Magnetism. ***WARNING: Keep magnets away from computers and any computer disks!*** Magnetism This lab is a series of experiments investigating the properties of the magnetic field. First we will investigate the polarity of magnets and the shape of their field. Then we will explore the

More information

Dynamic Measurement of Brake Pads Material Parameter

Dynamic Measurement of Brake Pads Material Parameter VDA Dynamic Measurement of Brake Pads Material Parameter 315 This non-binding recommendation by the German Association of the Automotive Industry (VDA) has the following objectives: This standard treats

More information

Microscopie à force atomique: Le mode noncontact

Microscopie à force atomique: Le mode noncontact Microscopie à force atomique: Le mode noncontact Clemens Barth barth@crmcn.univ-mrs.fr CRMCN-CNRS, Campus de Lumny, Case 913, 13288 Marseille Cedex09, France La Londe les Maures (France) -- 20-21/03/2007

More information

ATOMIC FORCE MICROSCOPY

ATOMIC FORCE MICROSCOPY ATOMIC FORCE MICROSCOPY Introduction The atomic force microscope, or AFM, is a member of the family of instruments known as scanning probe microscopes. The AFM operates under a completely different principle

More information

It has long been a goal to achieve higher spatial resolution in optical imaging and

It has long been a goal to achieve higher spatial resolution in optical imaging and Nano-optical Imaging using Scattering Scanning Near-field Optical Microscopy Fehmi Yasin, Advisor: Dr. Markus Raschke, Post-doc: Dr. Gregory Andreev, Graduate Student: Benjamin Pollard Department of Physics,

More information

Steps to selecting the right accelerometer TP 327

Steps to selecting the right accelerometer TP 327 Steps to selecting the right accelerometer TP 327 Steps to selecting the right accelerometer At first look, an accelerometer manufacturer s catalog or web site can be intimidating to both the novice and

More information

Acousto-optic modulator

Acousto-optic modulator 1 of 3 Acousto-optic modulator F An acousto-optic modulator (AOM), also called a Bragg cell, uses the acousto-optic effect to diffract and shift the frequency of light using sound waves (usually at radio-frequency).

More information

The Design and Characteristic Study of a 3-dimensional Piezoelectric Nano-positioner

The Design and Characteristic Study of a 3-dimensional Piezoelectric Nano-positioner SICE Annual Conference August 8-,, The Grand Hotel, Taipei, Taiwan The Design and Characteristic Study of a -dimensional Piezoelectric Nano-positioner Yu-Chi Wang Department of Mechanical Engineering National

More information

Special Topics in Nanotechnology:

Special Topics in Nanotechnology: Special Topics in Nanotechnology: Advanced analytical methods in the Nano- and Biotechnology Surface and Interface analysis Nano Coatings Nano Products In the frame of mission oriented research DECHEMA

More information

Laser-induced surface phonons and their excitation of nanostructures

Laser-induced surface phonons and their excitation of nanostructures CHINESE JOURNAL OF PHYSICS VOL. 49, NO. 1 FEBRUARY 2011 Laser-induced surface phonons and their excitation of nanostructures Markus Schmotz, 1, Dominik Gollmer, 1 Florian Habel, 1 Stephen Riedel, 1 and

More information

1. Photon Beam Damage and Charging at Solid Surfaces John H. Thomas III

1. Photon Beam Damage and Charging at Solid Surfaces John H. Thomas III 1. Photon Beam Damage and Charging at Solid Surfaces John H. Thomas III 1. Introduction............................. 2. Electrostatic Charging of Samples in Photoemission Experiments............................

More information

Wireless Power Transmission Using Magnetic Resonance

Wireless Power Transmission Using Magnetic Resonance Wireless Power Transmission Using Magnetic Resonance By: Lucas Jorgensen and Adam Culberson In conjunction with Professor Derin Sherman Introduction We experimented with wireless power transmission. Using

More information

Piezoelectric oscillation sensor based noncontact atomic force microscope for imaging in both ambient and liquid environments

Piezoelectric oscillation sensor based noncontact atomic force microscope for imaging in both ambient and liquid environments Piezoelectric oscillation sensor based noncontact atomic force microscope for imaging in both ambient and liquid environments Jens P. Froning, Dan Xia, Shuai Zhang, Erik Lægsgaard, Flemming Besenbacher,

More information

Basic principles and mechanisms of NSOM; Different scanning modes and systems of NSOM; General applications and advantages of NSOM.

Basic principles and mechanisms of NSOM; Different scanning modes and systems of NSOM; General applications and advantages of NSOM. Lecture 16: Near-field Scanning Optical Microscopy (NSOM) Background of NSOM; Basic principles and mechanisms of NSOM; Basic components of a NSOM; Different scanning modes and systems of NSOM; General

More information

Surface Analysis with STM and AFM

Surface Analysis with STM and AFM Sergei N. Magonov, Myung-Hwan Whangbo Surface Analysis with STM and AFM Experimental and Theoretical Aspects of Image Analysis VCH Weinheim New York Basel Cambridge Tokyo Preface V 1 Introduction 1 1.1

More information

Spin-flip excitation spectroscopy with STM excitation of allowed transition adds an inelastic contribution (group of Andreas Heinrich, IBM Almaden)

Spin-flip excitation spectroscopy with STM excitation of allowed transition adds an inelastic contribution (group of Andreas Heinrich, IBM Almaden) Magnetism at the atomic scale by Scanning Probe Techniques Kirsten von Bergmann Institute of Applied Physics Magnetism with SPM Spin-polarized scanning tunneling microscopy SP-STM density of states of

More information

Designing interface electronics for zirconium dioxide oxygen sensors of the XYA series

Designing interface electronics for zirconium dioxide oxygen sensors of the XYA series 1 CIRCUIT DESIGN If not using one of First Sensors ZBXYA interface boards for sensor control and conditioning, this section describes the basic building blocks required to create an interface circuit Before

More information

Microscopie à champs proche: et application

Microscopie à champs proche: et application Microscopie à champs proche: Théorie et application STM, effet tunnel et applications AFM, interactions et applications im2np, Giens 2010 Optical microscopy: resolution limit resolution limit: d min =

More information

AND8248/D. System Clock Generators: A Comparison of a PLL Synthesizer vs. a Crystal Oscillator Clock APPLICATION NOTE

AND8248/D. System Clock Generators: A Comparison of a PLL Synthesizer vs. a Crystal Oscillator Clock APPLICATION NOTE System Clock Generators: A Comparison of a PLL Synthesizer vs. a Crystal Oscillator Clock Prepared by: Casey Stys and Paul Shockman ON Semiconductor Application Engineers Abstract An electronic system

More information

APC International, Ltd. Piezo d 33 Test System

APC International, Ltd. Piezo d 33 Test System APC International, Ltd. Piezo d 33 Test System APC International, Ltd APC Part number: 90-2030 Print in USA APC International, Ltd. All rights reserved 1. DESCRIPTIONS The part number 90-2030 (d 33 meter)

More information

View of ΣIGMA TM (Ref. 1)

View of ΣIGMA TM (Ref. 1) Overview of the FESEM system 1. Electron optical column 2. Specimen chamber 3. EDS detector [Electron Dispersive Spectroscopy] 4. Monitors 5. BSD (Back scatter detector) 6. Personal Computer 7. ON/STANDBY/OFF

More information

Electromagnetic Radiation

Electromagnetic Radiation Activity 17 Electromagnetic Radiation Why? Electromagnetic radiation, which also is called light, is an amazing phenomenon. It carries energy and has characteristics of both particles and waves. We can

More information

Optical Measurement Techniques for Dynamic Characterization of MEMS Devices

Optical Measurement Techniques for Dynamic Characterization of MEMS Devices Technical Paper Optical Measurement Techniques for Dynamic Characterization of MEMS Devices Eric Lawrence, Polytec, Inc. March 2012 Polytec GmbH Polytec-Platz 1-7 D-76337 Waldbronn Germany Tel. + 49 (0)

More information

FEM-Simulationen von Feldverteilungen im elektrischen Rasterkraft-Mikroskop

FEM-Simulationen von Feldverteilungen im elektrischen Rasterkraft-Mikroskop FEM-Simulationen von Feldverteilungen im elektrischen Rasterkraft-Mikroskop Falk Müller 100 nm 2,93 nm 0 nm Experimental set-up Results Results on gold Application on silicon Numerical umerical simulations

More information

Scanning probe microscopy AFM, STM. Near field Scanning Optical Microscopy(NSOM) Scanning probe fabrication

Scanning probe microscopy AFM, STM. Near field Scanning Optical Microscopy(NSOM) Scanning probe fabrication Scanning probe microscopy AFM, STM Near field Scanning Optical Microscopy(NSOM) Scanning probe fabrication Scanning Probe Microscopy 1986 Binning and Rohrer shared Nobel Prize in Physics for invention.stm

More information

22.302 Experiment 5. Strain Gage Measurements

22.302 Experiment 5. Strain Gage Measurements 22.302 Experiment 5 Strain Gage Measurements Introduction The design of components for many engineering systems is based on the application of theoretical models. The accuracy of these models can be verified

More information

METHODS FOR THE CALIBRATION OF ELECTROSTATIC MEASURING INSTRUMENTS

METHODS FOR THE CALIBRATION OF ELECTROSTATIC MEASURING INSTRUMENTS METHODS FOR THE CALIBRATION OF ELECTROSTATIC MEASURING INSTRUMENTS Contents Foreword --------------------------------------------------------------------------------------------------------------------

More information

Looking for the Origin of Power Laws in Electric Field Assisted Tunneling

Looking for the Origin of Power Laws in Electric Field Assisted Tunneling Looking for the Origin of Power Laws in Electric Field Assisted Tunneling H. Cabrera, D.A. Zanin, L.G. De Pietro, A. Vindigni, U. Ramsperger and D. Pescia Laboratory for Solid State Physics, ETH Zurich

More information

NUCLEAR MAGNETIC RESONANCE. Advanced Laboratory, Physics 407, University of Wisconsin Madison, Wisconsin 53706

NUCLEAR MAGNETIC RESONANCE. Advanced Laboratory, Physics 407, University of Wisconsin Madison, Wisconsin 53706 (revised 4/21/03) NUCLEAR MAGNETIC RESONANCE Advanced Laboratory, Physics 407, University of Wisconsin Madison, Wisconsin 53706 Abstract This experiment studies the Nuclear Magnetic Resonance of protons

More information

Compact mobilized and low-cost scanning tunneling microscope for educational use

Compact mobilized and low-cost scanning tunneling microscope for educational use A. Compact mobilized and low-cost scanning tunneling microscope for educational use Eli Flaxer AFEKA - Tel-Aviv Academic College of Engineering, 69107 Tel-Aviv, Israel. We developed a mobile, compact and

More information

Low Noise, Single Supply, Electret Microphone Amplifier Design for Distant Acoustic Signals

Low Noise, Single Supply, Electret Microphone Amplifier Design for Distant Acoustic Signals Low Noise, Single Supply, Electret Microphone Amplifier Design for Distant Acoustic Signals Donald J. VanderLaan November 26, 2008 Abstract. Modern day electronics are often battery powered, forcing the

More information

Ion Beam Sputtering: Practical Applications to Electron Microscopy

Ion Beam Sputtering: Practical Applications to Electron Microscopy Ion Beam Sputtering: Practical Applications to Electron Microscopy Applications Laboratory Report Introduction Electron microscope specimens, both scanning (SEM) and transmission (TEM), often require a

More information

Alternative Linear Motion Systems. Iron Core Linear Motors

Alternative Linear Motion Systems. Iron Core Linear Motors Alternative Linear Motion Systems ME EN 7960 Precision Machine Design Topic 5 ME EN 7960 Precision Machine Design Alternative Linear Motion Systems 5-1 Iron Core Linear Motors Provide actuation forces

More information

Triple Stage Raman spectrograph/spectrometer Raman system with scanning microscopy attachment: QTY: One

Triple Stage Raman spectrograph/spectrometer Raman system with scanning microscopy attachment: QTY: One Specifications: Triple Stage Raman spectrograph/spectrometer Raman system with scanning microscopy attachment: QTY: One A. Triple Stage Raman spectrograph/spectrometer: 1. Spectral range : UV_Vis_NIR :

More information

Advanced Measurements

Advanced Measurements Albaha University Faculty of Engineering Mechanical Engineering Department Lecture 9: Pressure measurement Ossama Abouelatta o_abouelatta@yahoo.com Mechanical Engineering Department Faculty of Engineering

More information

Blackbody Radiation References INTRODUCTION

Blackbody Radiation References INTRODUCTION Blackbody Radiation References 1) R.A. Serway, R.J. Beichner: Physics for Scientists and Engineers with Modern Physics, 5 th Edition, Vol. 2, Ch.40, Saunders College Publishing (A Division of Harcourt

More information

Optical Methods of Surface Measurement

Optical Methods of Surface Measurement Optical Methods of Surface Measurement Ted Vorburger, Guest Researcher National Institute of Standards and Technology (NIST) Measurement Science and Standards in Forensic Firearms Analysis 2012 NIST, Gaithersburg,

More information

DIGITAL DISPLACEMENT RISING STEP LOAD LRA/RSL TEST EQUIPMENT

DIGITAL DISPLACEMENT RISING STEP LOAD LRA/RSL TEST EQUIPMENT DIGITAL DISPLACEMENT RISING STEP LOAD LRA/RSL TEST EQUIPMENT BACKGROUND AND PRODUCT DESCRIPTIONS Fracture Diagnostics provides state-of-the-art test equipment, utilizing the Rising Step Load testing technique.

More information

Resonance and the Speed of Sound

Resonance and the Speed of Sound Name: Partner(s): Date: Resonance and the Speed of Sound 1. Purpose Sound is a common type of mechanical wave that can be heard but not seen. In today s lab, you will investigate the nature of sound waves

More information

Simple Harmonic Motion Experiment. 1 f

Simple Harmonic Motion Experiment. 1 f Simple Harmonic Motion Experiment In this experiment, a motion sensor is used to measure the position of an oscillating mass as a function of time. The frequency of oscillations will be obtained by measuring

More information

EXPERIMENT NUMBER 5 BASIC OSCILLOSCOPE OPERATIONS

EXPERIMENT NUMBER 5 BASIC OSCILLOSCOPE OPERATIONS 1 EXPERIMENT NUMBER 5 BASIC OSCILLOSCOPE OPERATIONS The oscilloscope is the most versatile and most important tool in this lab and is probably the best tool an electrical engineer uses. This outline guides

More information

Atomic Force Microscopy. Long Phan Nanotechnology Summer Series May 15, 2013

Atomic Force Microscopy. Long Phan Nanotechnology Summer Series May 15, 2013 Atomic Force Microscopy Long Phan Nanotechnology Summer Series May 15, 2013 1 World s Smallest Movie 2 Outline What is AFM? How does AFM Work? 3 Modes: Contact mode Non contact mode Tapping mode Imaging

More information

Acoustic GHz-Microscopy: Potential, Challenges and Applications

Acoustic GHz-Microscopy: Potential, Challenges and Applications Acoustic GHz-Microscopy: Potential, Challenges and Applications A Joint Development of PVA TePLa Analytical Systems GmbH and Fraunhofer IWM-Halle Dr. Sebastian Brand (Ph.D.) Fraunhofer CAM Fraunhofer Institute

More information

AIR RESONANCE IN A PLASTIC BOTTLE Darrell Megli, Emeritus Professor of Physics, University of Evansville, Evansville, IN dm37@evansville.

AIR RESONANCE IN A PLASTIC BOTTLE Darrell Megli, Emeritus Professor of Physics, University of Evansville, Evansville, IN dm37@evansville. AIR RESONANCE IN A PLASTIC BOTTLE Darrell Megli, Emeritus Professor of Physics, University of Evansville, Evansville, IN dm37@evansville.edu It is well known that if one blows across the neck of an empty

More information

Nano Meter Stepping Drive of Surface Acoustic Wave Motor

Nano Meter Stepping Drive of Surface Acoustic Wave Motor Proc. of 1st IEEE Conf. on Nanotechnology, Oct. 28-3, pp. 495-5, (21) Maui, Hawaii Nano Meter Stepping Drive of Surface Acoustic Wave Motor Takashi Shigematsu*, Minoru Kuribayashi Kurosawa*, and Katsuhiko

More information

Electrical Resonance

Electrical Resonance Electrical Resonance (R-L-C series circuit) APPARATUS 1. R-L-C Circuit board 2. Signal generator 3. Oscilloscope Tektronix TDS1002 with two sets of leads (see Introduction to the Oscilloscope ) INTRODUCTION

More information

Interference in the ECG and its elimination

Interference in the ECG and its elimination Interference in the ECG and its elimination General points The signal voltages in ECG recording are known to be very small and are in the millivolt range, i.e. they have amplitudes of only a few thousands

More information

Agustina Asenjo Dpto. Propiedades Opticas, Magnéticas y de Transporte Instituto de Ciencia de Materiales de Madrid- CSIC

Agustina Asenjo Dpto. Propiedades Opticas, Magnéticas y de Transporte Instituto de Ciencia de Materiales de Madrid- CSIC Agustina Asenjo Dpto. Propiedades Opticas, Magnéticas y de Transporte Instituto de Ciencia de Materiales de Madrid- CSIC Introducción: Esquema MFM frente a otras técnicas de observación de dominios. Fundamentos

More information

Technical Information

Technical Information Technical Information TI No. WL 80-63 E April 2001 Rolling Bearing Diagnosis with the FAG Bearing Analyser Rolling Bearings State-Of-The-Art, Condition-Related Monitoring of Plants and Machines Unforeseen

More information

CREOL, College of Optics & Photonics, University of Central Florida

CREOL, College of Optics & Photonics, University of Central Florida OSE6650 - Optical Properties of Nanostructured Materials Optical Properties of Nanostructured Materials Fall 2013 Class 3 slide 1 Challenge: excite and detect the near field Thus far: Nanostructured materials

More information

INTERFERENCE OF SOUND WAVES

INTERFERENCE OF SOUND WAVES 1/2016 Sound 1/8 INTERFERENCE OF SOUND WAVES PURPOSE: To measure the wavelength, frequency, and propagation speed of ultrasonic sound waves and to observe interference phenomena with ultrasonic sound waves.

More information

Non-contact surface charge/voltage measurements Fieldmeter and voltmeter methods

Non-contact surface charge/voltage measurements Fieldmeter and voltmeter methods Dr. Maciej A. Noras Abstract Methods of measurements of surface electric charges and potentials using electrostatic fieldmeters and voltmeters are discussed. The differences and similarities between those

More information

Atomic Clocks and Frequency Standards

Atomic Clocks and Frequency Standards Atomic Clocks and Frequency Standards The Battel for Exactness Matthias Reggentin Humboldt-Universität zu Berlin, Institut für Physik July 07, 2010 1 Time and Frequency Measurement through the years 2

More information

Changes PN532_Breakout board

Changes PN532_Breakout board Changes PN532_Breakout board Document: Changes PN532_Breakout board Department / Faculty : TechnoCentrum - Radboud University Nijmegen Contact: René Habraken Date: 17 May 2011 Doc. Version: 1.0 Contents

More information

Encoders for Linear Motors in the Electronics Industry

Encoders for Linear Motors in the Electronics Industry Technical Information Encoders for Linear Motors in the Electronics Industry The semiconductor industry and automation technology increasingly require more precise and faster machines in order to satisfy

More information

A Practical Guide to Free Energy Devices

A Practical Guide to Free Energy Devices A Practical Guide to Free Energy Devices Electrolysis Patents No. 16: Last updated: 30th September 2006 Author: Patrick J. Kelly The major difficulty in using Stan s low-current Water Fuel Cell (recently

More information

APPLICATIONS OF ATOMIC FORCE MICROSCOPY

APPLICATIONS OF ATOMIC FORCE MICROSCOPY The World Leader In Scanning Probe Microscopy APPLICATIONS OF ATOMIC FORCE MICROSCOPY IN OPTICAL DISC TECHNOLOGY By: William G. Lutz and Gregory F. Meyers, The Dow Chemical Company, Midland, MI and Edward

More information

Atomic Force Microscope and Magnetic Force Microscope Background Information

Atomic Force Microscope and Magnetic Force Microscope Background Information Atomic Force Microscope and Magnetic Force Microscope Background Information Lego Building Instructions There are several places to find the building instructions for building the Lego models of atomic

More information

Amplification Atomic (or molecular, or semiconductor) system has energy levels Some higher energy states are stable for a short time (ps to ms)

Amplification Atomic (or molecular, or semiconductor) system has energy levels Some higher energy states are stable for a short time (ps to ms) Part 5: Lasers Amplification Atomic (or molecular, or semiconductor) system has energy levels Some higher energy states are stable for a short time (ps to ms) Incident photon can trigger emission of an

More information

Piezo Technologies - Technical Resource Paper

Piezo Technologies - Technical Resource Paper An Overview of the Properties of Different Piezoceramic Materials Material Families Four of the more important types of piezoceramic materials are introduced below. Lead Zirconate-Titanate - Because of

More information

Using light scattering method to find The surface tension of water

Using light scattering method to find The surface tension of water Experiment (8) Using light scattering method to find The surface tension of water The aim of work: The goals of this experiment are to confirm the relationship between angular frequency and wave vector

More information

E. K. A. ADVANCED PHYSICS LABORATORY PHYSICS 3081, 4051 NUCLEAR MAGNETIC RESONANCE

E. K. A. ADVANCED PHYSICS LABORATORY PHYSICS 3081, 4051 NUCLEAR MAGNETIC RESONANCE E. K. A. ADVANCED PHYSICS LABORATORY PHYSICS 3081, 4051 NUCLEAR MAGNETIC RESONANCE References for Nuclear Magnetic Resonance 1. Slichter, Principles of Magnetic Resonance, Harper and Row, 1963. chapter

More information

Harmonics and Noise in Photovoltaic (PV) Inverter and the Mitigation Strategies

Harmonics and Noise in Photovoltaic (PV) Inverter and the Mitigation Strategies Soonwook Hong, Ph. D. Michael Zuercher Martinson Harmonics and Noise in Photovoltaic (PV) Inverter and the Mitigation Strategies 1. Introduction PV inverters use semiconductor devices to transform the

More information