Linear StateSpace Control Systems


 Gwen Neal
 1 years ago
 Views:
Transcription
1 Linear StateSpace Control Systems Prof. Kamran Iqbal College of Engineering and Information Technology University of Arkansas at Little Rock
2 Course Overview State space models of linear systems Solution to State equations Controllability and observability Stability, dynamic response Controller design via pole placement Controllers for disturbance and tracking systems Observer based compensator design Linear quadratic optimal control Kalman filters, stochastic control Linear matrix inequalities in control design Course assessment
3 Learning Objectives Formulate and solve statevariable models of linear systems Apply analytical methods of controllability, observability, and stability to system models Controller synthesis via pole placement Observer based compensator design Formulate and solve the optimal control problem Design optimal observers and Kalman filters LMI based controller design
4 Resources Core Text: Bernard Friedland, Control System Design: An Introduction to State Space Methods, Dover Publications, ISBN: References: Professor Raymond Kwong s notes Professor Jongeun Choi s notes Professor Perry Li s notes Astrom and Murray, Feedback Systems, An Introduction for Scientists and Engineers, Princeton University Press, 2012,
5 Course Schedule Session Topic 1. State space models of linear systems 2. Solution to State equations, canonical forms 3. Controllability and observability 4. Stability and dynamic response 5. Controller design via pole placement 6. Controllers for disturbance and tracking systems 7. Observer based compensator design 8. Linear quadratic optimal control 9. Kalman filters and stochastic control 10. LM in control design
6 StateSpace Models of Linear Systems
7 StateVariable Models State variables Energy variables, e.g., velocity (KE), position (PE) Alternate variables, momentum (KE) Flow and across variables, e.g., current, voltage Dynamic Equations Based on physical principles Ordinary differential equations Partial differential equations Statevariable equations First order differential equation
8 Transfer Function Models Describe inputoutput relation Restricted to LTI systems Can be of lower order than actual system Example: Let x + 3x + 2x = u, y = x + x H s = 1 s+2
9 Example: dc Motor Electrical subsystem e v = L di dt + Ri τ = k i i Mechanical subsystem J dω dt = τ v = k ω ω Assume L = 0 k i = k ω = k
10 DC Motor Motor equation J dω dt = τ = k i(e k ω ω)/r Or dω = k2 k ω + e dt JR JR Let K2 JR = α, K JR = β Then dω dt = αω + βe State variables: θ, ω d dt θ ω = α θ ω + 0 β e
11 DC Motor Statespace model Let x = θ ω Then dx dt Let y = θ = x = Ax + B u y = 1 0 θ ω = Cx Transfer function model θ s = β e s s s+α, ω s e s = β s+α
12 Example: Inverted Pendulum on Cart Let x cart displacement θ pendulum displacement f applied force Dynamic equations M + m x + ml cos θ θ mlθ 2 sin θ = f ml cos θ x + ml 2 θ mgl sin θ = 0 Linearization (θ 0, sin θ θ, cos θ 1) M + m x + mlθ = f mlx + ml 2 θ mglθ = 0
13 Inverted Pendulum on Cart State variables: x, θ, x, θ State equations: d dt x θ x θ = m g M M+m Ml g 0 0 x θ x θ M 1 Ml f Output variables: [x, θ] Output equations: y θ = y θ y θ
14 Inverted Pendulum on MotorDriven Cart Let x cart displacement θ pendulum displacement r wheel radius Then, f = τ r, ω = x r f = k2 Rr 2 x + k Rr e Dynamic equations M + m x + mlθ + k2 Rr 2 x = k Rr e x + lθ gθ = 0
15 Inverted Pendulum on MotorDriven Cart Solve for accelerations x θ = 1 Ml l 1 ml M + m State variables: x, θ, x, θ State equations: d dt x θ x θ = k2 Rr 2 x + k Rr e gθ m M g k2 MRr M+m Ml Or x = Ax + Bu g k 2 MRr 2 l 0 x θ x θ k MRr k MRrl e
16 Example: TwoAxis Gyro Rigid body dynamics (true in an inertial frame): dp = f, dh = τ dt dt Euler s equations for a spinning body: J x ω xb + J z J y ω yb ω zb = τ xb J y ω yb + J x J z ω xb ω zb = τ yb J z ω zb + J y J x ω xb ω yb = τ zb
17 TwoAxis Gyro Assume that zaxis is the spin axis and ω z is constant; let H z = J z ω z, (angular momentum); H = H z J x = J y = J d (diametrical moment of inertia) Dynamic Equations: 1 J d J z gyro constant ω xb ω yb + 1 J d 0 H H 0 ω xb ω yb = 1 J d Gyro equations including the spring and damping terms: τ x τ y ω xb ω + 1 B H yb J d H B ω xb ω yb 1 J d B 0 0 B ω xe ω ye + 1 J d K D K Q K Q K D δ x δ y = 1 J d τ x τ y
18 TwoAxis Gyro Angular displacements (gyro pick off) are: δx = ω xb ω xe δy = ω yb ω ye Define x = δ x, δ y, ω xb, ω yb, u = τ x τ y, x 0 = ω xe ω ye Let b 1 = B J d, b 2 = H J d, c 1 = K D J d, c 2 = K Q J d, β = 1 J d, A 1 = c 1 c 2 c 2 c 1, A 2 = b 1 b 2 b 2 b 1 Then x = 0 I A 1 A 2 x + I b 1 I x βi u Or x = Ax + Bu + Ex 0
19 TwoAxis Gyro The characteristic equation of the gyroscope is: si A = s 2 + b 1 s + c 1 2 b 2 s + c 2 2 The precession and nutation frequencies are given as: s = α p + ω p, α p = b 1c 1 b 2 c 2 b 2 1 +b2, ω p = b 2c 1 b 1 c 2 2 b 2 1 +b2 2 s = α n + ω n, α n = α p b 1, ω n = ω p + b 2 The transfer function of a free gyro is given as: δ x δ y = H(s) ω xe ω ye ; H s = s 2 +b 1 s+c 1 b 2 s+c 2 b 2 s+c 2 s 2 +b 1 s+c 1 s 2 +b 1 s+c 1 2 b 2 s+c 2 2
20 TwoAxis Gyro An ideal gyro is one with zero damping and stiffness Then H s = b 2 s b 2 s s 2 s 2 +b 1 s+c 2 1 b 2 s+c 2 2 s 2 Assume a step input ω xe = 1, ω ye = 0 δ x t = 1 b cos b 2 t δ y t = 1 b 2 t 1 b 2 sin b 2 t
21 Example: Aerodynamics Define α angle of attack, β side slip angle φ roll angle, θ pitch angle, ψ yaw angle p roll rate, q pitch rate, r yaw rate L rolling moment, M pitching moment, N yawing moment X longitudinal force, Y lateral force, Z vertical force V aircraft speed, Δu change in speed δ E elevator deflection δ A aileron deflection δ R rudder deflection
22 Aerodynamics Longitudinal motion: Let x = Δu, α, q, q ; u = δ E Then, Δu = X u Δu + X α α gθ + X E δ E α = Z u V Δu + Z α V α + q + Z E V δ E q = M u Δu + M α α + M q q + M E δ E θ = q
23 ConstantAltitude Autopilot The simplified dynamics of an aircraft at constant speed are described as: α = Z α V α + q + Z E V δ E q = M α α + M q q + M E δ E θ = q Define Δh = (h h 0 )/V Then Δh = γ = θ α
24 Aerodynamics Lateral motion: Let x = β, p, r, φ, ψ ; u = δ A, δ R Then, β = Y β V β + Y p V p + Y r V 1 r + g V φ + Y A V δ A + Y R V δ R p = L β β + L p p + L r r + L A δ A + L R δ R r = N β β + N p p + N r r + N A δ A + N R δ R φ = p ψ = r
25 Missile Dynamics Define V missile velocity α N normal acceleration θ pitch angle γ flight path angle Assume that X u 0, Z u 0, M α 0 Then α q = Z α V 1 α M α M q + q α N = Z α α + Z δ δ Zδ V M δ δ
26 Missile Guidance Define Then λ lineofsight angle z projected miss distance V missile speed V T target speed T t = T time to go λ z = 0 1 VT λ z + 0 T a N i.e., the state equations are time varying
Rotational inertia (moment of inertia)
Rotational inertia (moment of inertia) Define rotational inertia (moment of inertia) to be I = Σ m i r i 2 or r i : the perpendicular distance between m i and the given rotation axis m 1 m 2 x 1 x 2 Moment
More information5.2 Rotational Kinematics, Moment of Inertia
5 ANGULAR MOTION 5.2 Rotational Kinematics, Moment of Inertia Name: 5.2 Rotational Kinematics, Moment of Inertia 5.2.1 Rotational Kinematics In (translational) kinematics, we started out with the position
More informationPhysics in the Laundromat
Physics in the Laundromat Kirk T. McDonald Joseph Henry Laboratories, Princeton University, Princeton, NJ 08544 (Aug. 5, 1997) Abstract The spin cycle of a washing machine involves motion that is stabilized
More informationProblem of the gyroscopic stabilizer damping
Applied and Computational Mechanics 3 (2009) 205 212 Problem of the gyroscopic stabilizer damping J. Šklíba a, a Faculty of Mechanical Engineering, Technical University in Liberec, Studentská 2, 461 17,
More informationLecture L293D Rigid Body Dynamics
J. Peraire, S. Widnall 16.07 Dynamics Fall 2009 Version 2.0 Lecture L293D Rigid Body Dynamics 3D Rigid Body Dynamics: Euler Angles The difficulty of describing the positions of the bodyfixed axis of
More information1.10 Using Figure 1.6, verify that equation (1.10) satisfies the initial velocity condition. t + ") # x (t) = A! n. t + ") # v(0) = A!
1.1 Using Figure 1.6, verify that equation (1.1) satisfies the initial velocity condition. Solution: Following the lead given in Example 1.1., write down the general expression of the velocity by differentiating
More informationChapter 24 Physical Pendulum
Chapter 4 Physical Pendulum 4.1 Introduction... 1 4.1.1 Simple Pendulum: Torque Approach... 1 4. Physical Pendulum... 4.3 Worked Examples... 4 Example 4.1 Oscillating Rod... 4 Example 4.3 Torsional Oscillator...
More informationBead moving along a thin, rigid, wire.
Bead moving along a thin, rigid, wire. odolfo. osales, Department of Mathematics, Massachusetts Inst. of Technology, Cambridge, Massachusetts, MA 02139 October 17, 2004 Abstract An equation describing
More informationEDEXCEL NATIONAL CERTIFICATE/DIPLOMA FURTHER MECHANICAL PRINCIPLES AND APPLICATIONS UNIT 11  NQF LEVEL 3 OUTCOME 3  ROTATING SYSTEMS
EDEXCEL NATIONAL CERTIFICATE/DIPLOMA FURTHER MECHANICAL PRINCIPLES AND APPLICATIONS UNIT 11  NQF LEVEL 3 OUTCOME 3  ROTATING SYSTEMS TUTORIAL 1  ANGULAR MOTION CONTENT Be able to determine the characteristics
More informationLecture L13  Conservative Internal Forces and Potential Energy
S. Widnall, J. Peraire 16.07 Dynamics Fall 008 Version.0 Lecture L13  Conservative Internal Forces and Potential Energy The forces internal to a system are of two types. Conservative forces, such as gravity;
More informationMechanics lecture 7 Moment of a force, torque, equilibrium of a body
G.1 EE1.el3 (EEE1023): Electronics III Mechanics lecture 7 Moment of a force, torque, equilibrium of a body Dr Philip Jackson http://www.ee.surrey.ac.uk/teaching/courses/ee1.el3/ G.2 Moments, torque and
More informationSIX DEGREEOFFREEDOM MODELING OF AN UNINHABITED AERIAL VEHICLE. A thesis presented to. the faculty of
SIX DEGREEOFFREEDOM MODELING OF AN UNINHABITED AERIAL VEHICLE A thesis presented to the faculty of the Russ College of Engineering and Technology of Ohio University In partial fulfillment of the requirement
More informationHomework 4. problems: 5.61, 5.67, 6.63, 13.21
Homework 4 problems: 5.6, 5.67, 6.6,. Problem 5.6 An object of mass M is held in place by an applied force F. and a pulley system as shown in the figure. he pulleys are massless and frictionless. Find
More informationPractice Exam Three Solutions
MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics Physics 8.01T Fall Term 2004 Practice Exam Three Solutions Problem 1a) (5 points) Collisions and Center of Mass Reference Frame In the lab frame,
More informationChapter 13, example problems: x (cm) 10.0
Chapter 13, example problems: (13.04) Reading Fig. 1330 (reproduced on the right): (a) Frequency f = 1/ T = 1/ (16s) = 0.0625 Hz. (since the figure shows that T/2 is 8 s.) (b) The amplitude is 10 cm.
More informationLecture L19  Vibration, Normal Modes, Natural Frequencies, Instability
S. Widnall 16.07 Dynamics Fall 2009 Version 1.0 Lecture L19  Vibration, Normal Modes, Natural Frequencies, Instability Vibration, Instability An important class of problems in dynamics concerns the free
More informationDynamics of Rotational Motion
Chapter 10 Dynamics of Rotational Motion PowerPoint Lectures for University Physics, Twelfth Edition Hugh D. Young and Roger A. Freedman Lectures by James Pazun Modified by P. Lam 5_31_2012 Goals for Chapter
More informationOnboard electronics of UAVs
AARMS Vol. 5, No. 2 (2006) 237 243 TECHNOLOGY Onboard electronics of UAVs ANTAL TURÓCZI, IMRE MAKKAY Department of Electronic Warfare, Miklós Zrínyi National Defence University, Budapest, Hungary Recent
More informationLecture L222D Rigid Body Dynamics: Work and Energy
J. Peraire, S. Widnall 6.07 Dynamics Fall 008 Version.0 Lecture L  D Rigid Body Dynamics: Work and Energy In this lecture, we will revisit the principle of work and energy introduced in lecture L3 for
More informationLab 8 Notes Basic Aircraft Design Rules 6 Apr 06
Lab 8 Notes Basic Aircraft Design Rules 6 Apr 06 Nomenclature x, y longitudinal, spanwise positions S reference area (wing area) b wing span c average wing chord ( = S/b ) AR wing aspect ratio C L lift
More informationCenter of Gravity. We touched on this briefly in chapter 7! x 2
Center of Gravity We touched on this briefly in chapter 7! x 1 x 2 cm m 1 m 2 This was for what is known as discrete objects. Discrete refers to the fact that the two objects separated and individual.
More informationLet s first see how precession works in quantitative detail. The system is illustrated below: ...
lecture 20 Topics: Precession of tops Nutation Vectors in the body frame The free symmetric top in the body frame Euler s equations The free symmetric top ala Euler s The tennis racket theorem As you know,
More informationTorque Analyses of a Sliding Ladder
Torque Analyses of a Sliding Ladder 1 Problem Kirk T. McDonald Joseph Henry Laboratories, Princeton University, Princeton, NJ 08544 (May 6, 2007) The problem of a ladder that slides without friction while
More informationBasic Principles of Inertial Navigation. Seminar on inertial navigation systems Tampere University of Technology
Basic Principles of Inertial Navigation Seminar on inertial navigation systems Tampere University of Technology 1 The five basic forms of navigation Pilotage, which essentially relies on recognizing landmarks
More informationRotation: Moment of Inertia and Torque
Rotation: Moment of Inertia and Torque Every time we push a door open or tighten a bolt using a wrench, we apply a force that results in a rotational motion about a fixed axis. Through experience we learn
More information1 KINEMATICS OF MOVING FRAMES
1 1 KINEMATICS OF MOVING FRAMES 1.1 Rotation of Reference Frames We denote through a subscript the specific reference system of a vector. Let a vector expressed in the inertial frame be denoted as γx,
More informationStability Of Structures: Basic Concepts
23 Stability Of Structures: Basic Concepts ASEN 3112 Lecture 23 Slide 1 Objective This Lecture (1) presents basic concepts & terminology on structural stability (2) describes conceptual procedures for
More informationManufacturing Equipment Modeling
QUESTION 1 For a linear axis actuated by an electric motor complete the following: a. Derive a differential equation for the linear axis velocity assuming viscous friction acts on the DC motor shaft, leadscrew,
More informationLab M1: The Simple Pendulum
Lab M1: The Simple Pendulum Introduction. The simple pendulum is a favorite introductory exercise because Galileo's experiments on pendulums in the early 1600s are usually regarded as the beginning of
More informationMidterm Solutions. mvr = ω f (I wheel + I bullet ) = ω f 2 MR2 + mr 2 ) ω f = v R. 1 + M 2m
Midterm Solutions I) A bullet of mass m moving at horizontal velocity v strikes and sticks to the rim of a wheel a solid disc) of mass M, radius R, anchored at its center but free to rotate i) Which of
More informationEE 570: Location and Navigation
EE 570: Location and Navigation Navigation Mathematics: Kinematics (Coordinate Frame Transformation) Stephen Bruder 1 Aly ElOsery 2 1 Electrical and Computer Engineering Department, EmbryRiddle Aeronautical
More informationPhysics 1A Lecture 10C
Physics 1A Lecture 10C "If you neglect to recharge a battery, it dies. And if you run full speed ahead without stopping for water, you lose momentum to finish the race. Oprah Winfrey Static Equilibrium
More informationLecture L303D Rigid Body Dynamics: Tops and Gyroscopes
J. Peraire, S. Widnall 16.07 Dynamics Fall 2008 Version 2.0 Lecture L303D Rigid Body Dynamics: Tops and Gyroscopes 3D Rigid Body Dynamics: Euler Equations in Euler Angles In lecture 29, we introduced
More informationMathematical Modeling and response analysis of mechanical systems are the subjects of this chapter.
Chapter 3 Mechanical Systems Dr. A.Aziz. Bazoune 3.1 INTRODUCTION Mathematical Modeling and response analysis of mechanical systems are the subjects of this chapter. 3. MECHANICAL ELEMENTS Any mechanical
More informationSpacecraft Dynamics and Control. An Introduction
Brochure More information from http://www.researchandmarkets.com/reports/2328050/ Spacecraft Dynamics and Control. An Introduction Description: Provides the basics of spacecraft orbital dynamics plus attitude
More informationVIII. Magnetic Fields  Worked Examples
MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics 8.0 Spring 003 VIII. Magnetic Fields  Worked Examples Example : Rolling rod A rod with a mass m and a radius R is mounted on two parallel rails
More informationOUTCOME 2 KINEMATICS AND DYNAMICS TUTORIAL 2 PLANE MECHANISMS. You should judge your progress by completing the self assessment exercises.
Unit 60: Dynamics of Machines Unit code: H/601/1411 QCF Level:4 Credit value:15 OUTCOME 2 KINEMATICS AND DYNAMICS TUTORIAL 2 PLANE MECHANISMS 2 Be able to determine the kinetic and dynamic parameters of
More informationAP Physics C: Mechanics: Syllabus 1
AP Physics C: Mechanics: Syllabus 1 Scoring Components Page(s) SC1 The course covers instruction in kinematics. 3, 5 SC2 The course covers instruction in Newton s laws of 3 4 motion. SC3 The course covers
More informationCH205: Fluid Dynamics
CH05: Fluid Dynamics nd Year, B.Tech. & Integrated Dual Degree (Chemical Engineering) Solutions of Mid Semester Examination Data Given: Density of water, ρ = 1000 kg/m 3, gravitational acceleration, g
More informationLecture L18  Exploring the Neighborhood: the Restricted ThreeBody Problem
S. Widnall 16.07 Dynamics Fall 008 Version 1.0 Lecture L18  Exploring the Neighborhood: the Restricted ThreeBody Problem The ThreeBody Problem In Lecture 1517, we presented the solution to the twobody
More informationOverview of Missile Flight Control Systems
Overview of Missile Flight Control Systems Paul B. Jackson he flight control system is a key element that allows the missile to meet its system performance requirements. The objective of the flight control
More informationIMU Components An IMU is typically composed of the following components:
APN064 IMU Errors and Their Effects Rev A Introduction An Inertial Navigation System (INS) uses the output from an Inertial Measurement Unit (IMU), and combines the information on acceleration and rotation
More information18.4. Errors and Percentage Change. Introduction. Prerequisites. Learning Outcomes
Errors and Percentage Change 18.4 Introduction When one variable is related to several others by a functional relationship it is possible to estimate the percentage change in that variable caused by given
More informationIMPORTANT NOTE ABOUT WEBASSIGN:
Week 8 homework IMPORTANT NOTE ABOUT WEBASSIGN: In the WebAssign versions of these problems, various details have been changed, so that the answers will come out differently. The method to find the solution
More informationSlide 10.1. Basic system Models
Slide 10.1 Basic system Models Objectives: Devise Models from basic building blocks of mechanical, electrical, fluid and thermal systems Recognize analogies between mechanical, electrical, fluid and thermal
More informationA Simple Model for Ski Jump Flight Mechanics Used as a Tool for Teaching Aircraft Gliding Flight
eπεριοδικό Επιστήμης & Τεχνολογίας 33 A Simple Model for Ski Jump Flight Mechanics Used as a Tool for Teaching Aircraft Gliding Flight Vassilios McInnes Spathopoulos Department of Aircraft Technology
More informationLecture 8 : Dynamic Stability
Lecture 8 : Dynamic Stability Or what happens to small disturbances about a trim condition 1.0 : Dynamic Stability Static stability refers to the tendency of the aircraft to counter a disturbance. Dynamic
More informationResponse to Harmonic Excitation Part 2: Damped Systems
Response to Harmonic Excitation Part 2: Damped Systems Part 1 covered the response of a single degree of freedom system to harmonic excitation without considering the effects of damping. However, almost
More informationModeling Mechanical Systems
chp3 1 Modeling Mechanical Systems Dr. Nhut Ho ME584 chp3 2 Agenda Idealized Modeling Elements Modeling Method and Examples Lagrange s Equation Case study: Feasibility Study of a Mobile Robot Design Matlab
More informationAn Introduction to Using Simulink. Exercises
An Introduction to Using Simulink Exercises Eric Peasley, Department of Engineering Science, University of Oxford version 4.1, 2013 PART 1 Exercise 1 (Cannon Ball) This exercise is designed to introduce
More informationAP Physics C. Oscillations/SHM Review Packet
AP Physics C Oscillations/SHM Review Packet 1. A 0.5 kg mass on a spring has a displacement as a function of time given by the equation x(t) = 0.8Cos(πt). Find the following: a. The time for one complete
More informationPhysics 41 HW Set 1 Chapter 15
Physics 4 HW Set Chapter 5 Serway 8 th OC:, 4, 7 CQ: 4, 8 P: 4, 5, 8, 8, 0, 9,, 4, 9, 4, 5, 5 Discussion Problems:, 57, 59, 67, 74 OC CQ P: 4, 5, 8, 8, 0, 9,, 4, 9, 4, 5, 5 Discussion Problems:, 57, 59,
More informationAerospace Engineering 3521: Flight Dynamics. Prof. Eric Feron Homework 6 due October 20, 2014
Aerospace Engineering 3521: Flight Dynamics Prof. Eric Feron Homework 6 due October 20, 2014 1 Problem 1: Lateraldirectional stability of Navion With the help of Chapter 2 of Nelson s textbook, we established
More informationMechanics 1: Conservation of Energy and Momentum
Mechanics : Conservation of Energy and Momentum If a certain quantity associated with a system does not change in time. We say that it is conserved, and the system possesses a conservation law. Conservation
More informationAPPLIED MATHEMATICS ADVANCED LEVEL
APPLIED MATHEMATICS ADVANCED LEVEL INTRODUCTION This syllabus serves to examine candidates knowledge and skills in introductory mathematical and statistical methods, and their applications. For applications
More informationVectors; 2D Motion. Part I. Multiple Choice. 1. v
This test covers vectors using both polar coordinates and ij notation, radial and tangential acceleration, and twodimensional motion including projectiles. Part I. Multiple Choice 1. v h x In a lab experiment,
More informationChapter 11. h = 5m. = mgh + 1 2 mv 2 + 1 2 Iω 2. E f. = E i. v = 4 3 g(h h) = 4 3 9.8m / s2 (8m 5m) = 6.26m / s. ω = v r = 6.
Chapter 11 11.7 A solid cylinder of radius 10cm and mass 1kg starts from rest and rolls without slipping a distance of 6m down a house roof that is inclined at 30 degrees (a) What is the angular speed
More informationth ey are.. r.. ve.. an t.. bo th for th e.. st ru c.. tur alan d.. t he.. quait.. ta ive un de \ centerline {. Inrodu \quad c t i o na r s
   I  ˆ    q I q I ˆ I q R R q I q q I R R R R    ˆ @ & q k 7 q k O q k 8 & q & k P S q k q k ˆ q k 3 q k ˆ A & [ 7 O [8 P & S & [ [ 3 ˆ A @ q ˆ U q  : U [ U φ : U D φ φ Dφ A ψ A : I SS N :
More informationKINEMATICS OF PARTICLES RELATIVE MOTION WITH RESPECT TO TRANSLATING AXES
KINEMTICS OF PRTICLES RELTIVE MOTION WITH RESPECT TO TRNSLTING XES In the previous articles, we have described particle motion using coordinates with respect to fixed reference axes. The displacements,
More informationMotorcycle accident reconstruction in VL Motion
Motorcycle accident reconstruction in VL Motion Presenter Nicola Cofelice ESR 14 AGENDA 1 Motorcycle accident reconstruction  Overview 2 Research progress 3 What s next? copyright LMS International 
More informationRobot Dynamics and Control
Chapter 4 Robot Dynamics and Control This chapter presents an introduction to the dynamics and control of robot manipulators. We derive the equations of motion for a general openchain manipulator and,
More informationRepresenting Attitude: Euler Angles, Unit Quaternions, and Rotation Vectors
Representing Attitude: Euler Angles, Unit Quaternions, and Rotation Vectors James Diebel Stanford University Stanford, California 94301 9010 Email: diebel@stanford.edu 0 October 006 Abstract We present
More informationMODELLING A SATELLITE CONTROL SYSTEM SIMULATOR
National nstitute for Space Research NPE Space Mechanics and Control Division DMC São José dos Campos, SP, Brasil MODELLNG A SATELLTE CONTROL SYSTEM SMULATOR Luiz C Gadelha Souza gadelha@dem.inpe.br rd
More informationC B A T 3 T 2 T 1. 1. What is the magnitude of the force T 1? A) 37.5 N B) 75.0 N C) 113 N D) 157 N E) 192 N
Three boxes are connected by massless strings and are resting on a frictionless table. Each box has a mass of 15 kg, and the tension T 1 in the right string is accelerating the boxes to the right at a
More informationVehicle Chassis Analysis: Load Cases & Boundary Conditions For Stress Analysis
Vehicle Chassis Analysis: Load Cases & Boundary Conditions For Stress Analysis Ashutosh Dubey and Vivek Dwivedi ABSTRACT The current work contains the load cases & boundary conditions for the stress analysis
More informationwww.mathsbox.org.uk Displacement (x) Velocity (v) Acceleration (a) x = f(t) differentiate v = dx Acceleration Velocity (v) Displacement x
Mechanics 2 : Revision Notes 1. Kinematics and variable acceleration Displacement (x) Velocity (v) Acceleration (a) x = f(t) differentiate v = dx differentiate a = dv = d2 x dt dt dt 2 Acceleration Velocity
More informationSection 10.7 Parametric Equations
299 Section 10.7 Parametric Equations Objective 1: Defining and Graphing Parametric Equations. Recall when we defined the x (rcos(θ), rsin(θ)) and ycoordinates on a circle of radius r as a function of
More informationNo Brain Too Small PHYSICS. 2 kg
MECHANICS: ANGULAR MECHANICS QUESTIONS ROTATIONAL MOTION (2014;1) Universal gravitational constant = 6.67 10 11 N m 2 kg 2 (a) The radius of the Sun is 6.96 10 8 m. The equator of the Sun rotates at a
More informationIsaac Newton s (16421727) Laws of Motion
Big Picture 1 2.003J/1.053J Dynamics and Control I, Spring 2007 Professor Thomas Peacock 2/7/2007 Lecture 1 Newton s Laws, Cartesian and Polar Coordinates, Dynamics of a Single Particle Big Picture First
More informationDevelopment of KnowledgeBased Software for UAV Autopilot Design
Development of KnowledgeBased Software for UAV Autopilot Design George Tarrant Director CLOSED LOOP SYSTEMS Health Warning Autopilot design is a technical subject. In this paper, I have tried to translate
More informationA Python Project for Lagrangian Mechanics
The 3rd International Symposium on Engineering, Energy and Environments 1720 November 2013, Pullman King Power Hotel, Bangkok A Python Project for Lagrangian Mechanics Peter Slaets 1, Pauwel Goethals
More informationChapter 10 Rotational Motion. Copyright 2009 Pearson Education, Inc.
Chapter 10 Rotational Motion Angular Quantities Units of Chapter 10 Vector Nature of Angular Quantities Constant Angular Acceleration Torque Rotational Dynamics; Torque and Rotational Inertia Solving Problems
More informationSystem Identification and State Feedback Controller Design of Magnetic Levitation System
International Journal of Engineering and Technical Research (IJETR) ISSN: 23210869, Volume2, Issue6, June 2014 System Identification and State Feedback Controller Design of Magnetic Levitation System
More informationDynamics. Basilio Bona. DAUINPolitecnico di Torino. Basilio Bona (DAUINPolitecnico di Torino) Dynamics 2009 1 / 30
Dynamics Basilio Bona DAUINPolitecnico di Torino 2009 Basilio Bona (DAUINPolitecnico di Torino) Dynamics 2009 1 / 30 Dynamics  Introduction In order to determine the dynamics of a manipulator, it is
More informationPhysics 2A, Sec B00: Mechanics  Winter 2011 Instructor: B. Grinstein Final Exam
Physics 2A, Sec B00: Mechanics  Winter 2011 Instructor: B. Grinstein Final Exam INSTRUCTIONS: Use a pencil #2 to fill your scantron. Write your code number and bubble it in under "EXAM NUMBER;" an entry
More informationThomson and Rayleigh Scattering
Thomson and Rayleigh Scattering Initial questions: What produces the shapes of emission and absorption lines? What information can we get from them regarding the environment or other conditions? In this
More informationPhysics 9e/Cutnell. correlated to the. College Board AP Physics 1 Course Objectives
Physics 9e/Cutnell correlated to the College Board AP Physics 1 Course Objectives Big Idea 1: Objects and systems have properties such as mass and charge. Systems may have internal structure. Enduring
More informationINTERACTION BETWEEN MOVING VEHICLES AND RAILWAY TRACK AT HIGH SPEED
INTERACTION BETWEEN MOVING VEHICLES AND RAILWAY TRACK AT HIGH SPEED Prof.Dr.Ir. C. Esveld Professor of Railway Engineering TU Delft, The Netherlands Dr.Ir. A.W.M. Kok Associate Professor of Railway Engineering
More informationPHY231 Section 2, Form A March 22, 2012. 1. Which one of the following statements concerning kinetic energy is true?
1. Which one of the following statements concerning kinetic energy is true? A) Kinetic energy can be measured in watts. B) Kinetic energy is always equal to the potential energy. C) Kinetic energy is always
More informationLinear Motion vs. Rotational Motion
Linear Motion vs. Rotational Motion Linear motion involves an object moving from one point to another in a straight line. Rotational motion involves an object rotating about an axis. Examples include a
More informationEDUMECH Mechatronic Instructional Systems. Ball on Beam System
EDUMECH Mechatronic Instructional Systems Ball on Beam System Product of Shandor Motion Systems Written by Robert Hirsch Ph.D. 9989 All Rights Reserved. 999 Shandor Motion Systems, Ball on Beam Instructional
More informationPHY231 Section 1, Form B March 22, 2012
1. A car enters a horizontal, curved roadbed of radius 50 m. The coefficient of static friction between the tires and the roadbed is 0.20. What is the maximum speed with which the car can safely negotiate
More information226 Chapter 15: OSCILLATIONS
Chapter 15: OSCILLATIONS 1. In simple harmonic motion, the restoring force must be proportional to the: A. amplitude B. frequency C. velocity D. displacement E. displacement squared 2. An oscillatory motion
More informationActive Vibration Isolation of an Unbalanced Machine Spindle
UCRLCONF206108 Active Vibration Isolation of an Unbalanced Machine Spindle D. J. Hopkins, P. Geraghty August 18, 2004 American Society of Precision Engineering Annual Conference Orlando, FL, United States
More informationAOE 3134 Complete Aircraft Equations
AOE 3134 Complete Aircraft Equations The requirements for balance and stability that we found for the flying wing carry over directly to a complete aircraft. In particular we require the zerolift pitch
More informationUnit 4 Practice Test: Rotational Motion
Unit 4 Practice Test: Rotational Motion Multiple Guess Identify the letter of the choice that best completes the statement or answers the question. 1. How would an angle in radians be converted to an angle
More informationPRODUCT DATASHEET. J1939 Vehicle Inertia Monitor. Advanced Vehicle Inertial Measurement and Vibration Monitoring Device. fleetgenius.
PRODUCT DATASHEET fleetgenius.com J1939 Vehicle Inertia Monitor Advanced Vehicle Inertial Measurement and Vibration Monitoring Device Prova s J1939 Vehicle Inertia Monitor (VIM) formulates moving vehicle
More informationA C O U S T I C S of W O O D Lecture 3
Jan Tippner, Dep. of Wood Science, FFWT MU Brno jan. tippner@mendelu. cz Content of lecture 3: 1. Damping 2. Internal friction in the wood Content of lecture 3: 1. Damping 2. Internal friction in the wood
More informationDynamic Analysis. Mass Matrices and External Forces
4 Dynamic Analysis. Mass Matrices and External Forces The formulation of the inertia and external forces appearing at any of the elements of a multibody system, in terms of the dependent coordinates that
More informationProblem 6.40 and 6.41 Kleppner and Kolenkow Notes by: Rishikesh Vaidya, Physics Group, BITSPilani
Problem 6.40 and 6.4 Kleppner and Kolenkow Notes by: Rishikesh Vaidya, Physics Group, BITSPilani 6.40 A wheel with fine teeth is attached to the end of a spring with constant k and unstretched length
More informationG(θ) = max{g 1 (θ), G 2 (θ)}
Rec. ITUR F.1336 1 RECOMMENDATION ITUR F.1336* Rec. ITUR F.1336 REFERENCE RADIATION PATTERNS OF OMNIDIRECTIONAL AND OTHER ANTENNAS IN POINTTOMULTIPOINT SYSTEMS FOR USE IN SHARING STUDIES (Question
More informationPower Electronics. Prof. K. Gopakumar. Centre for Electronics Design and Technology. Indian Institute of Science, Bangalore.
Power Electronics Prof. K. Gopakumar Centre for Electronics Design and Technology Indian Institute of Science, Bangalore Lecture  1 Electric Drive Today, we will start with the topic on industrial drive
More informationLecture L5  Other Coordinate Systems
S. Widnall, J. Peraire 16.07 Dynamics Fall 008 Version.0 Lecture L5  Other Coordinate Systems In this lecture, we will look at some other common systems of coordinates. We will present polar coordinates
More information11. Rotation Translational Motion: Rotational Motion:
11. Rotation Translational Motion: Motion of the center of mass of an object from one position to another. All the motion discussed so far belongs to this category, except uniform circular motion. Rotational
More informationA Kalman Filter Based Attitude Heading Reference System Using a Low Cost Inertial Measurement Unit
Virginia Commonwealth University VCU Scholars Compass Theses and Dissertations Graduate School 213 A Kalman Filter Based Attitude Heading Reference System Using a Low Cost Inertial Measurement Unit Matthew
More informationPractice Test SHM with Answers
Practice Test SHM with Answers MPC 1) If we double the frequency of a system undergoing simple harmonic motion, which of the following statements about that system are true? (There could be more than one
More informationStabilizing a Gimbal Platform using SelfTuning Fuzzy PID Controller
Stabilizing a Gimbal Platform using SelfTuning Fuzzy PID Controller Nourallah Ghaeminezhad Collage Of Automation Engineering Nuaa Nanjing China Wang Daobo Collage Of Automation Engineering Nuaa Nanjing
More informationQuadcopter Dynamics, Simulation, and Control Introduction
Quadcopter Dynamics, Simulation, and Control Introduction A helicopter is a flying vehicle which uses rapidly spinning rotors to push air downwards, thus creating a thrust force keeping the helicopter
More informationPHYS 211 FINAL FALL 2004 Form A
1. Two boys with masses of 40 kg and 60 kg are holding onto either end of a 10 m long massless pole which is initially at rest and floating in still water. They pull themselves along the pole toward each
More informationAn inertial haptic interface for robotic applications
An inertial haptic interface for robotic applications Students: Andrea Cirillo Pasquale Cirillo Advisor: Ing. Salvatore Pirozzi Altera Innovate Italy Design Contest 2012 Objective Build a Low Cost Interface
More information