Test # 2 Review. function y sin6x such that dx. per second. Find dy. f(x) 3x 2 6x 8 using the limiting process. dt = 2 centimeters. dt when x 7.

Size: px
Start display at page:

Download "Test # 2 Review. function y sin6x such that dx. per second. Find dy. f(x) 3x 2 6x 8 using the limiting process. dt = 2 centimeters. dt when x 7."

Transcription

1 Name: Class: Date: ID: A Test # 2 Review Short Answer 1. Find the slope m of the line tangent to the graph of the function g( x) 9 x 2 at the point 4, 7ˆ. 2. A man 6 feet tall walks at a rate of 2 ft per second away from a light that is 16 ft above the ground (see figure). When he is 8 ft from the base of the light, find the rate.at which the tip of his shadow is moving. 3. Find the derivative of the following function f(x) 3x 2 6x 8 using the limiting process. 4. Find the derivative of the function fx ( ) 7x 3 using the limiting process. 8. A point is moving along the graph of the function y sin6x such that dt = 2 centimeters per second. Find dt when x Find an equation of the tangent line to the graph of the function fx ( ) x 2 5x 2 at the point 5,2ˆ. 6. Determine all values of x, (if any), at which the graph of the function has a horizontal tangent. yx ( ) x 4 4x 4 7. All edges of a cube are expanding at a rate of 9 centimeters per second. How fast is the volume changing when each edge is 2 centimeters? 1

2 Name: ID: A 9. A man 6 feet tall walks at a rate of 10 feet per second away from a light that is 15 feet above the ground (see figure). When he is 13 feet from the base of the light, at what rate is the tip of his shadow moving? 14. Assume that x and y are both differentiable functions of t. Find when x =49and dt dt 17 for the equation y x. 15. Use implicit differentiation to find an equation of the tangent line to the ellipse x2 2 y at 1,7 ˆ. 16. Find an equation of the tangent line to the graph of the function given below at the given point. 7x 2 2xy 4y , 2, 1ˆ (The coefficients below are given to two decimal places.) 10. A point is moving along the graph of the function 1 y 9x 2 such that 2 centimeters per 4 dt second. Find when x = 2. dt 11. Assume that x and y are both differentiable functions of t. Find when x =11 and dt dt = 8 for the equation xy Find the points at which the graph of the equation has a vertical or horizontal tangent line. 5x 2 4y 2 10x 24y Find d 2 y in terms of x and y Evaluate for the equation 7xy 21 at the given point 3, 1ˆ. Round your answer to two decimal places. 18. Find by implicit differentiation given that tan 4x yˆ 4x. Use the original equation to simplify your answer. 19. Find by implicit differentiation. sinx 7cos14y Find by implicit differentiation. x 2 5x 9xy y 2 4 x 2 y 2 6 2

3 Name: ID: A 21. Find 2xy 9. by implicit differentiation given that 30. Find the second derivative of the function fx ( ) 3x2 5x 4 x. 22. Find by implicit differentiation. x 4 7x 6xy y Find by implicit differentiation. x 2 y Find the derivative of the function. y cos 2x 4 ˆ Evaluate the derivative of the function at the given point. ft () 7 t 1, 5, 7 ˆ Find the derivative of the function. f( ) 7 5 sin Find the derivative of the algebraic function fx ( ) x 6 ˆ Find an equation of the tangent line to the graph of f at the given point. ft () ( t 5) t 2 ˆ 3,at 2, 3 ˆ 29. Find the derivative of the function. fx ( ) x 8 5 3x 31. Use the Quotient Rule to differentiate the function f() x sinx. x Find the derivative of the function. f() s 9s sins 5coss. 33. Find the derivative of the function Simplify your answer. sinx 2x cosx. 34. Find the derivative of the algebraic function 4 ˆ f() x x3 x Use the quotient rule to differentiate the following 2s function f() s s 5 and evaluate f ( 2) Use the Quotient Rule to differentiate the function f () x 4 x. x Use the Product Rule to differentiate f() s s 5 coss. 38. Find the derivative of the algebraic function Ht () t 6 ˆ 5 t 5 6 ˆ. 39. The volume of a cube with sides of length s is given by V s 3. Find the rate of change of volume with respect to s when s 6 centimeters. 3

4 Name: ID: A 40. A ball is thrown straight down from the top of a 300-ft building with an initial velocity of 12 ft per second. The position function is st () 16t 2 v 0 t s 0. What is the velocity of the ball after 4 seconds? 50. Determine all values of x, (if any), at which the graph of the function has a horizontal tangent. yx ( ) x 3 12x Suppose the position function for a free-falling object on a certain planet is given by st () 13t 3 v 0 t s 0. A silver coin is dropped from the top of a building that is 1370 feet tall. Determine the velocity function for the coin. 42. Determine all values of x, (if any), at which the graph of the function has a horizontal tangent. yx ( ) 9 x Suppose the position function for a free-falling object on a certain planet is given by st () 12t 2 v 0 t s 0. A silver coin is dropped from the top of a building that is 1372 feet tall. Find the instantaneous velocity of the coin when t Find the slope of the graph of the function fx ( ) x 2x 3 ˆ 7 at x Find the derivative of the function fx ( ) 4x 2 4cos( x). 46. Find an equation of the line that is tangent to the graph of the function f(x) 8x 2 and parallel to the line 16x y Find the derivative of the function fx ( ) 7x 3 4x Find the slope of the graph of the function fx ( ) ( 4x 7) 2 at x Find the derivative of the function fx ( ) 2 3cosx. 3 x 4

5 Test # 2 Review Answer Section SHORT ANSWER 1. ANS: m 8 PTS: 1 DIF: Medium REF: OBJ: Calculate the slope of a line tangent to the graph of a function at a specified point NOT: Section ANS: 16 ft per minute 5 PTS: 1 DIF: Difficult REF: OBJ: Solve a related rate problem involving a man walking away from a light source MSC: Application NOT: Section ANS: f ( x) 6x 6 PTS: 1 DIF: Easy REF: OBJ: Calculate the derivative of a function by the limit process NOT: Section ANS: f ( x) 7 2 7x 3 PTS: 1 DIF: Medium REF: OBJ: Calculate the derivative of a function by the limit process NOT: Section ANS: y 5x 23 PTS: 1 DIF: Medium REF: a OBJ: Write an equation of a line tangent to the graph of a function at a specified point NOT: Section ANS: x 1 PTS: 1 DIF: Difficult REF: OBJ: Calculate the values for which the slope of a function is zero NOT: Section 2.2 1

6 7. ANS: 108 cm 3 /sec PTS: 1 DIF: Easy REF: OBJ: Solve a related rate problem involving the volume of a cube and the length of a side MSC: Application NOT: Section ANS: dt 12cos 6 7 PTS: 1 DIF: Easy REF: 2.6.8a OBJ: Solve a related rate problem involving a point moving along a curve NOT: Section ANS: 50 3 ft/sec PTS: 1 DIF: Difficult REF: a OBJ: Solve a related rate problem involving a man walking away from a light source MSC: Application NOT: Section ANS: dt PTS: 1 DIF: Easy REF: 2.6.6a OBJ: Solve a related rate problem involving a point moving along a curve NOT: Section ANS: dt 22 3 PTS: 1 DIF: Easy REF: 2.6.3b OBJ: Calculate the value of an implicit derivative from given information NOT: Section ANS: There is a horizontal tangent at x 1 and a vertical tangent at y 3. PTS: 1 DIF: Easy REF: OBJ: Identify the points where an implicit function has horizontal and vertical tangent lines 2

7 13. ANS: x 2 d 2 y 2 y y y 2 PTS: 1 DIF: Easy REF: OBJ: Calculate the second derivative implicitly 14. ANS: dt PTS: 1 DIF: Easy REF: 2.6.1a OBJ: Calculate the value of an implicit derivative from given information NOT: Section ANS: y 2x 9 PTS: 1 DIF: Easy REF: a OBJ: Write an equation of a line tangent to the graph of an ellipse at a specified point. 16. ANS: y 2.50x 6.00 PTS: 1 DIF: Medium REF: OBJ: Write an equation of a line tangent to the graph of an implicit function at a specified point. 17. ANS: 0.33 PTS: 1 DIF: Easy REF: OBJ: Evaluate the derivative of an implicit function at a given point 18. ANS: 4x2 x 2 1 PTS: 1 DIF: Medium REF: a OBJ: Differentiate an equation using implicit differentiation 3

8 19. ANS: cosx 98sin 14y PTS: 1 DIF: Medium REF: OBJ: Differentiate an equation using implicit differentiation 20. ANS: 2x 5 9y 2y 9x PTS: 1 DIF: Easy REF: OBJ: Differentiate an equation using implicit differentiation 21. ANS: y x PTS: 1 DIF: Easy REF: OBJ: Differentiate an equation using implicit differentiation 22. ANS: 4x3 7 6y 7y 6 6x PTS: 1 DIF: Medium REF: OBJ: Differentiate an equation using implicit differentiation 23. ANS: x y PTS: 1 DIF: Easy REF: OBJ: Differentiate an equation using implicit differentiation 24. ANS: y 8x 3 sin 2x 4 ˆ 6 PTS: 1 DIF: Medium REF: OBJ: Differentiate a trigonometric function using the chain rule NOT: Section 2.4 4

9 25. ANS: f () PTS: 1 DIF: Medium REF: OBJ: Evaluate the derivative of a function at a point NOT: Section ANS: f 28sin2 cos2 ( ) 5 PTS: 1 DIF: Medium REF: OBJ: Differentiate a trigonometric function using the chain rule NOT: Section ANS: f ( x) 30x 5 x 6 ˆ 4 4 PTS: 1 DIF: Difficult REF: OBJ: Differentiate a function using the chain rule NOT: Section ANS: y 11t 19 PTS: 1 DIF: Medium REF: a OBJ: Write an equation of a line tangent to the graph of a function at a specified point 29. ANS: f ( x) x7 ( 80 51x) 2 5 3x PTS: 1 DIF: Medium REF: OBJ: Differentiate a function using the chain rule and product rule NOT: Section ANS: f () s 8 x 3 PTS: 1 DIF: Medium REF: OBJ: Calculate the second derivative of a function 5

10 31. ANS: f () x 3 x 2 cosx 2x sinx ˆ x 2 3 ˆ 2 PTS: 1 DIF: Difficult REF: OBJ: Differentiate a function using the quotient rule 32. ANS: f () s 9s coss 4sins PTS: 1 DIF: Medium REF: OBJ: Differentiate a function using the product rule 33. ANS: 1 2x cosx 2sinx ( 2x cosx) 2 PTS: 1 DIF: Medium REF: OBJ: Differentiate a function using the product rule 34. ANS: f () x 84 36x 3x2 ( x 6) 2 PTS: 1 DIF: Difficult REF: OBJ: Differentiate a function using the quotient rule 35. ANS: f ( 2) PTS: 1 DIF: Difficult REF: OBJ: Differentiate a function using the quotient rule and evaluate the derivative 6

11 36. ANS: f () x 9 8x x 2 x 2 9 ˆ 2 ˆ PTS: 1 DIF: Difficult REF: OBJ: Differentiate a function using the quotient rule 37. ANS: f () s s 5 sins 5s 4 coss PTS: 1 DIF: Medium REF: OBJ: Differentiate a function using the product rule 38. ANS: H () s 11t 10 36t 5 25t 4 PTS: 1 DIF: Medium REF: OBJ: Differentiate a function using the product rule 39. ANS: 108 cm 2 PTS: 1 DIF: Medium REF: OBJ: Interpret a derivative as a rate of change MSC: Application NOT: Section ANS: The velocity after 4 seconds is 140 ft per second. PTS: 1 DIF: Difficult REF: OBJ: Derive the free-fall position function and evaluate velocity at different points MSC: Application NOT: Section ANS: vt () 39t 2 PTS: 1 DIF: Medium REF: a OBJ: Write the velocity function for a specified position function MSC: Application NOT: Section ANS: The graph has no horizontal tangents. PTS: 1 DIF: Difficult REF: OBJ: Calculate the values for which the slope of a function is zero NOT: Section 2.2 7

12 43. ANS: 96 ft/sec PTS: 1 DIF: Medium REF: c OBJ: Interpret a derivative as a rate of change MSC: Application NOT: Section ANS: f () PTS: 1 DIF: Medium REF: OBJ: Calculate the slope of the graph of a function at a given point NOT: Section ANS: f ( x) 8x 4sin( x) PTS: 1 DIF: Medium REF: OBJ: Differentiate trigonometric functions NOT: Section ANS: 16x y 8 0 PTS: 1 DIF: Medium REF: OBJ: Write an equation of a line tangent to the graph of a function that is parallel to a given line NOT: Section ANS: f ( x) 21x 2 8x PTS: 1 DIF: Medium REF: OBJ: Differentiate a function using basic differentiation rules NOT: Section ANS: f () 4 72 PTS: 1 DIF: Medium REF: OBJ: Calculate the slope of the graph of a function at a given point NOT: Section ANS: f ( x) sinx 3x PTS: 1 DIF: Medium REF: OBJ: Differentiate trigonometric functions NOT: Section ANS: x 0an 8 PTS: 1 DIF: Medium REF: OBJ: Calculate the values for which the slope of a function is zero NOT: Section 2.2 8

Section 3.7. Rolle s Theorem and the Mean Value Theorem. Difference Equations to Differential Equations

Section 3.7. Rolle s Theorem and the Mean Value Theorem. Difference Equations to Differential Equations Difference Equations to Differential Equations Section.7 Rolle s Theorem and the Mean Value Theorem The two theorems which are at the heart of this section draw connections between the instantaneous rate

More information

correct-choice plot f(x) and draw an approximate tangent line at x = a and use geometry to estimate its slope comment The choices were:

correct-choice plot f(x) and draw an approximate tangent line at x = a and use geometry to estimate its slope comment The choices were: Topic 1 2.1 mode MultipleSelection text How can we approximate the slope of the tangent line to f(x) at a point x = a? This is a Multiple selection question, so you need to check all of the answers that

More information

MATH 10550, EXAM 2 SOLUTIONS. x 2 + 2xy y 2 + x = 2

MATH 10550, EXAM 2 SOLUTIONS. x 2 + 2xy y 2 + x = 2 MATH 10550, EXAM SOLUTIONS (1) Find an equation for the tangent line to at the point (1, ). + y y + = Solution: The equation of a line requires a point and a slope. The problem gives us the point so we

More information

AP Calculus AB First Semester Final Exam Practice Test Content covers chapters 1-3 Name: Date: Period:

AP Calculus AB First Semester Final Exam Practice Test Content covers chapters 1-3 Name: Date: Period: AP Calculus AB First Semester Final Eam Practice Test Content covers chapters 1- Name: Date: Period: This is a big tamale review for the final eam. Of the 69 questions on this review, questions will be

More information

Section 12.6: Directional Derivatives and the Gradient Vector

Section 12.6: Directional Derivatives and the Gradient Vector Section 26: Directional Derivatives and the Gradient Vector Recall that if f is a differentiable function of x and y and z = f(x, y), then the partial derivatives f x (x, y) and f y (x, y) give the rate

More information

Find the length of the arc on a circle of radius r intercepted by a central angle θ. Round to two decimal places.

Find the length of the arc on a circle of radius r intercepted by a central angle θ. Round to two decimal places. SECTION.1 Simplify. 1. 7π π. 5π 6 + π Find the measure of the angle in degrees between the hour hand and the minute hand of a clock at the time shown. Measure the angle in the clockwise direction.. 1:0.

More information

= f x 1 + h. 3. Geometrically, the average rate of change is the slope of the secant line connecting the pts (x 1 )).

= f x 1 + h. 3. Geometrically, the average rate of change is the slope of the secant line connecting the pts (x 1 )). Math 1205 Calculus/Sec. 3.3 The Derivative as a Rates of Change I. Review A. Average Rate of Change 1. The average rate of change of y=f(x) wrt x over the interval [x 1, x 2 ]is!y!x ( ) - f( x 1 ) = y

More information

Implicit Differentiation

Implicit Differentiation Implicit Differentiation Sometimes functions are given not in the form y = f(x) but in a more complicated form in which it is difficult or impossible to express y explicitly in terms of x. Such functions

More information

The Derivative. Philippe B. Laval Kennesaw State University

The Derivative. Philippe B. Laval Kennesaw State University The Derivative Philippe B. Laval Kennesaw State University Abstract This handout is a summary of the material students should know regarding the definition and computation of the derivative 1 Definition

More information

Slope and Rate of Change

Slope and Rate of Change Chapter 1 Slope and Rate of Change Chapter Summary and Goal This chapter will start with a discussion of slopes and the tangent line. This will rapidly lead to heuristic developments of limits and the

More information

Average rate of change

Average rate of change Average rate of change 1 1 Average rate of change A fundamental philosophical truth is that everything changes. 1 Average rate of change A fundamental philosophical truth is that everything changes. In

More information

2312 test 2 Fall 2010 Form B

2312 test 2 Fall 2010 Form B 2312 test 2 Fall 2010 Form B 1. Write the slope-intercept form of the equation of the line through the given point perpendicular to the given lin point: ( 7, 8) line: 9x 45y = 9 2. Evaluate the function

More information

Exponent Law Review 3 + 3 0. 12 13 b. 1 d. 0. x 5 d. x 11. a 5 b. b 8 a 8. b 2 a 2 d. 81u 8 v 10 81. u 8 v 20 81. Name: Class: Date:

Exponent Law Review 3 + 3 0. 12 13 b. 1 d. 0. x 5 d. x 11. a 5 b. b 8 a 8. b 2 a 2 d. 81u 8 v 10 81. u 8 v 20 81. Name: Class: Date: Name: Class: Date: Eponent Law Review Multiple Choice Identify the choice that best completes the statement or answers the question The epression + 0 is equal to 0 Simplify 6 6 8 6 6 6 0 Simplify ( ) (

More information

y cos 3 x dx y cos 2 x cos x dx y 1 sin 2 x cos x dx

y cos 3 x dx y cos 2 x cos x dx y 1 sin 2 x cos x dx Trigonometric Integrals In this section we use trigonometric identities to integrate certain combinations of trigonometric functions. We start with powers of sine and cosine. EXAMPLE Evaluate cos 3 x dx.

More information

Math 113 HW #7 Solutions

Math 113 HW #7 Solutions Math 3 HW #7 Solutions 35 0 Given find /dx by implicit differentiation y 5 + x 2 y 3 = + ye x2 Answer: Differentiating both sides with respect to x yields 5y 4 dx + 2xy3 + x 2 3y 2 ) dx = dx ex2 + y2x)e

More information

Separable First Order Differential Equations

Separable First Order Differential Equations Separable First Order Differential Equations Form of Separable Equations which take the form = gx hy or These are differential equations = gxĥy, where gx is a continuous function of x and hy is a continuously

More information

MEMORANDUM. All students taking the CLC Math Placement Exam PLACEMENT INTO CALCULUS AND ANALYTIC GEOMETRY I, MTH 145:

MEMORANDUM. All students taking the CLC Math Placement Exam PLACEMENT INTO CALCULUS AND ANALYTIC GEOMETRY I, MTH 145: MEMORANDUM To: All students taking the CLC Math Placement Eam From: CLC Mathematics Department Subject: What to epect on the Placement Eam Date: April 0 Placement into MTH 45 Solutions This memo is an

More information

Solving Quadratic Equations

Solving Quadratic Equations 9.3 Solving Quadratic Equations by Using the Quadratic Formula 9.3 OBJECTIVES 1. Solve a quadratic equation by using the quadratic formula 2. Determine the nature of the solutions of a quadratic equation

More information

12) 13) 14) (5x)2/3. 16) x5/8 x3/8. 19) (r1/7 s1/7) 2

12) 13) 14) (5x)2/3. 16) x5/8 x3/8. 19) (r1/7 s1/7) 2 DMA 080 WORKSHEET # (8.-8.2) Name Find the square root. Assume that all variables represent positive real numbers. ) 6 2) 8 / 2) 9x8 ) -00 ) 8 27 2/ Use a calculator to approximate the square root to decimal

More information

x 2 + y 2 = 1 y 1 = x 2 + 2x y = x 2 + 2x + 1

x 2 + y 2 = 1 y 1 = x 2 + 2x y = x 2 + 2x + 1 Implicit Functions Defining Implicit Functions Up until now in this course, we have only talked about functions, which assign to every real number x in their domain exactly one real number f(x). The graphs

More information

Derivatives as Rates of Change

Derivatives as Rates of Change Derivatives as Rates of Change One-Dimensional Motion An object moving in a straight line For an object moving in more complicated ways, consider the motion of the object in just one of the three dimensions

More information

Algebra 2 Chapter 5 Practice Test (Review)

Algebra 2 Chapter 5 Practice Test (Review) Name: Class: Date: Algebra 2 Chapter 5 Practice Test (Review) Multiple Choice Identify the choice that best completes the statement or answers the question. Determine whether the function is linear or

More information

5.3 SOLVING TRIGONOMETRIC EQUATIONS. Copyright Cengage Learning. All rights reserved.

5.3 SOLVING TRIGONOMETRIC EQUATIONS. Copyright Cengage Learning. All rights reserved. 5.3 SOLVING TRIGONOMETRIC EQUATIONS Copyright Cengage Learning. All rights reserved. What You Should Learn Use standard algebraic techniques to solve trigonometric equations. Solve trigonometric equations

More information

a b c d e You have two hours to do this exam. Please write your name on this page, and at the top of page three. GOOD LUCK! 3. a b c d e 12.

a b c d e You have two hours to do this exam. Please write your name on this page, and at the top of page three. GOOD LUCK! 3. a b c d e 12. MA123 Elem. Calculus Fall 2015 Exam 2 2015-10-22 Name: Sec.: Do not remove this answer page you will turn in the entire exam. No books or notes may be used. You may use an ACT-approved calculator during

More information

Worksheet 1. What You Need to Know About Motion Along the x-axis (Part 1)

Worksheet 1. What You Need to Know About Motion Along the x-axis (Part 1) Worksheet 1. What You Need to Know About Motion Along the x-axis (Part 1) In discussing motion, there are three closely related concepts that you need to keep straight. These are: If x(t) represents the

More information

6 Further differentiation and integration techniques

6 Further differentiation and integration techniques 56 6 Further differentiation and integration techniques Here are three more rules for differentiation and two more integration techniques. 6.1 The product rule for differentiation Textbook: Section 2.7

More information

Chapter 3 Practice Test

Chapter 3 Practice Test Chapter 3 Practice Test Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Which of the following is a physical quantity that has both magnitude and direction?

More information

Solutions to old Exam 1 problems

Solutions to old Exam 1 problems Solutions to old Exam 1 problems Hi students! I am putting this old version of my review for the first midterm review, place and time to be announced. Check for updates on the web site as to which sections

More information

Calculus 1st Semester Final Review

Calculus 1st Semester Final Review Calculus st Semester Final Review Use the graph to find lim f ( ) (if it eists) 0 9 Determine the value of c so that f() is continuous on the entire real line if f ( ) R S T, c /, > 0 Find the limit: lim

More information

x(x + 5) x 2 25 (x + 5)(x 5) = x 6(x 4) x ( x 4) + 3

x(x + 5) x 2 25 (x + 5)(x 5) = x 6(x 4) x ( x 4) + 3 CORE 4 Summary Notes Rational Expressions Factorise all expressions where possible Cancel any factors common to the numerator and denominator x + 5x x(x + 5) x 5 (x + 5)(x 5) x x 5 To add or subtract -

More information

18.01 Single Variable Calculus Fall 2006

18.01 Single Variable Calculus Fall 2006 MIT OpenCourseWare http://ocw.mit.edu 8.0 Single Variable Calculus Fall 2006 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. Unit : Derivatives A. What

More information

Homework #1 Solutions

Homework #1 Solutions MAT 303 Spring 203 Homework # Solutions Problems Section.:, 4, 6, 34, 40 Section.2:, 4, 8, 30, 42 Section.4:, 2, 3, 4, 8, 22, 24, 46... Verify that y = x 3 + 7 is a solution to y = 3x 2. Solution: From

More information

Section 1: Instantaneous Rate of Change and Tangent Lines Instantaneous Velocity

Section 1: Instantaneous Rate of Change and Tangent Lines Instantaneous Velocity Chapter 2 The Derivative Business Calculus 74 Section 1: Instantaneous Rate of Change and Tangent Lines Instantaneous Velocity Suppose we drop a tomato from the top of a 100 foot building and time its

More information

( 1)2 + 2 2 + 2 2 = 9 = 3 We would like to make the length 6. The only vectors in the same direction as v are those

( 1)2 + 2 2 + 2 2 = 9 = 3 We would like to make the length 6. The only vectors in the same direction as v are those 1.(6pts) Which of the following vectors has the same direction as v 1,, but has length 6? (a), 4, 4 (b),, (c) 4,, 4 (d), 4, 4 (e) 0, 6, 0 The length of v is given by ( 1) + + 9 3 We would like to make

More information

Section 2.7 One-to-One Functions and Their Inverses

Section 2.7 One-to-One Functions and Their Inverses Section. One-to-One Functions and Their Inverses One-to-One Functions HORIZONTAL LINE TEST: A function is one-to-one if and only if no horizontal line intersects its graph more than once. EXAMPLES: 1.

More information

4.3 Lagrange Approximation

4.3 Lagrange Approximation 206 CHAP. 4 INTERPOLATION AND POLYNOMIAL APPROXIMATION Lagrange Polynomial Approximation 4.3 Lagrange Approximation Interpolation means to estimate a missing function value by taking a weighted average

More information

Answer Key for the Review Packet for Exam #3

Answer Key for the Review Packet for Exam #3 Answer Key for the Review Packet for Eam # Professor Danielle Benedetto Math Ma-Min Problems. Show that of all rectangles with a given area, the one with the smallest perimeter is a square. Diagram: y

More information

PRACTICE FINAL. Problem 1. Find the dimensions of the isosceles triangle with largest area that can be inscribed in a circle of radius 10cm.

PRACTICE FINAL. Problem 1. Find the dimensions of the isosceles triangle with largest area that can be inscribed in a circle of radius 10cm. PRACTICE FINAL Problem 1. Find the dimensions of the isosceles triangle with largest area that can be inscribed in a circle of radius 1cm. Solution. Let x be the distance between the center of the circle

More information

Copyrighted Material. Chapter 1 DEGREE OF A CURVE

Copyrighted Material. Chapter 1 DEGREE OF A CURVE Chapter 1 DEGREE OF A CURVE Road Map The idea of degree is a fundamental concept, which will take us several chapters to explore in depth. We begin by explaining what an algebraic curve is, and offer two

More information

Answers to the Practice Problems for Test 2

Answers to the Practice Problems for Test 2 Answers to the Practice Problems for Test 2 Davi Murphy. Fin f (x) if it is known that x [f(2x)] = x2. By the chain rule, x [f(2x)] = f (2x) 2, so 2f (2x) = x 2. Hence f (2x) = x 2 /2, but the lefthan

More information

Projectile motion simulator. http://www.walter-fendt.de/ph11e/projectile.htm

Projectile motion simulator. http://www.walter-fendt.de/ph11e/projectile.htm More Chapter 3 Projectile motion simulator http://www.walter-fendt.de/ph11e/projectile.htm The equations of motion for constant acceleration from chapter 2 are valid separately for both motion in the x

More information

Course outline, MA 113, Spring 2014 Part A, Functions and limits. 1.1 1.2 Functions, domain and ranges, A1.1-1.2-Review (9 problems)

Course outline, MA 113, Spring 2014 Part A, Functions and limits. 1.1 1.2 Functions, domain and ranges, A1.1-1.2-Review (9 problems) Course outline, MA 113, Spring 2014 Part A, Functions and limits 1.1 1.2 Functions, domain and ranges, A1.1-1.2-Review (9 problems) Functions, domain and range Domain and range of rational and algebraic

More information

L 2 : x = s + 1, y = s, z = 4s + 4. 3. Suppose that C has coordinates (x, y, z). Then from the vector equality AC = BD, one has

L 2 : x = s + 1, y = s, z = 4s + 4. 3. Suppose that C has coordinates (x, y, z). Then from the vector equality AC = BD, one has The line L through the points A and B is parallel to the vector AB = 3, 2, and has parametric equations x = 3t + 2, y = 2t +, z = t Therefore, the intersection point of the line with the plane should satisfy:

More information

Version 005 Exam Review Practice Problems NOT FOR A GRADE alexander (55715) 1. Hence

Version 005 Exam Review Practice Problems NOT FOR A GRADE alexander (55715) 1. Hence Version 005 Eam Review Practice Problems NOT FOR A GRADE aleander 5575 This print-out should have 47 questions Multiple-choice questions may continue on the net column or page find all choices before answering

More information

MATH 121 FINAL EXAM FALL 2010-2011. December 6, 2010

MATH 121 FINAL EXAM FALL 2010-2011. December 6, 2010 MATH 11 FINAL EXAM FALL 010-011 December 6, 010 NAME: SECTION: Instructions: Show all work and mark your answers clearly to receive full credit. This is a closed notes, closed book exam. No electronic

More information

y cos 3 x dx y cos 2 x cos x dx y 1 sin 2 x cos x dx y 1 u 2 du u 1 3u 3 C

y cos 3 x dx y cos 2 x cos x dx y 1 sin 2 x cos x dx y 1 u 2 du u 1 3u 3 C Trigonometric Integrals In this section we use trigonometric identities to integrate certain combinations of trigonometric functions. We start with powers of sine and cosine. EXAMPLE Evaluate cos 3 x dx.

More information

Graphing Trigonometric Skills

Graphing Trigonometric Skills Name Period Date Show all work neatly on separate paper. (You may use both sides of your paper.) Problems should be labeled clearly. If I can t find a problem, I ll assume it s not there, so USE THE TEMPLATE

More information

2.2. Instantaneous Velocity

2.2. Instantaneous Velocity 2.2. Instantaneous Velocity toc Assuming that your are not familiar with the technical aspects of this section, when you think about it, your knowledge of velocity is limited. In terms of your own mathematical

More information

2 Integrating Both Sides

2 Integrating Both Sides 2 Integrating Both Sides So far, the only general method we have for solving differential equations involves equations of the form y = f(x), where f(x) is any function of x. The solution to such an equation

More information

2008 AP Calculus AB Multiple Choice Exam

2008 AP Calculus AB Multiple Choice Exam 008 AP Multiple Choice Eam Name 008 AP Calculus AB Multiple Choice Eam Section No Calculator Active AP Calculus 008 Multiple Choice 008 AP Calculus AB Multiple Choice Eam Section Calculator Active AP Calculus

More information

What does the number m in y = mx + b measure? To find out, suppose (x 1, y 1 ) and (x 2, y 2 ) are two points on the graph of y = mx + b.

What does the number m in y = mx + b measure? To find out, suppose (x 1, y 1 ) and (x 2, y 2 ) are two points on the graph of y = mx + b. PRIMARY CONTENT MODULE Algebra - Linear Equations & Inequalities T-37/H-37 What does the number m in y = mx + b measure? To find out, suppose (x 1, y 1 ) and (x 2, y 2 ) are two points on the graph of

More information

1.3.1 Position, Distance and Displacement

1.3.1 Position, Distance and Displacement In the previous section, you have come across many examples of motion. You have learnt that to describe the motion of an object we must know its position at different points of time. The position of an

More information

Definition: A vector is a directed line segment that has and. Each vector has an initial point and a terminal point.

Definition: A vector is a directed line segment that has and. Each vector has an initial point and a terminal point. 6.1 Vectors in the Plane PreCalculus 6.1 VECTORS IN THE PLANE Learning Targets: 1. Find the component form and the magnitude of a vector.. Perform addition and scalar multiplication of two vectors. 3.

More information

RELEASED. Student Booklet. Precalculus. Fall 2014 NC Final Exam. Released Items

RELEASED. Student Booklet. Precalculus. Fall 2014 NC Final Exam. Released Items Released Items Public Schools of North arolina State oard of Education epartment of Public Instruction Raleigh, North arolina 27699-6314 Fall 2014 N Final Exam Precalculus Student ooklet opyright 2014

More information

Slope-Intercept Equation. Example

Slope-Intercept Equation. Example 1.4 Equations of Lines and Modeling Find the slope and the y intercept of a line given the equation y = mx + b, or f(x) = mx + b. Graph a linear equation using the slope and the y-intercept. Determine

More information

Solutions to Practice Problems for Test 4

Solutions to Practice Problems for Test 4 olutions to Practice Problems for Test 4 1. Let be the line segmentfrom the point (, 1, 1) to the point (,, 3). Evaluate the line integral y ds. Answer: First, we parametrize the line segment from (, 1,

More information

Section 5.4 More Trigonometric Graphs. Graphs of the Tangent, Cotangent, Secant, and Cosecant Function

Section 5.4 More Trigonometric Graphs. Graphs of the Tangent, Cotangent, Secant, and Cosecant Function Section 5. More Trigonometric Graphs Graphs of the Tangent, Cotangent, Secant, and Cosecant Function 1 REMARK: Many curves have a U shape near zero. For example, notice that the functions secx and x +

More information

INVERSE TRIGONOMETRIC FUNCTIONS. Colin Cox

INVERSE TRIGONOMETRIC FUNCTIONS. Colin Cox INVERSE TRIGONOMETRIC FUNCTIONS Colin Cox WHAT IS AN INVERSE TRIG FUNCTION? Used to solve for the angle when you know two sides of a right triangle. For example if a ramp is resting against a trailer,

More information

AP Calculus AB 2010 Free-Response Questions Form B

AP Calculus AB 2010 Free-Response Questions Form B AP Calculus AB 2010 Free-Response Questions Form B The College Board The College Board is a not-for-profit membership association whose mission is to connect students to college success and opportunity.

More information

AP Calculus BC 2001 Free-Response Questions

AP Calculus BC 2001 Free-Response Questions AP Calculus BC 001 Free-Response Questions The materials included in these files are intended for use by AP teachers for course and exam preparation in the classroom; permission for any other use must

More information

x 2 y 2 +3xy ] = d dx dx [10y] dy dx = 2xy2 +3y

x 2 y 2 +3xy ] = d dx dx [10y] dy dx = 2xy2 +3y MA7 - Calculus I for thelife Sciences Final Exam Solutions Spring -May-. Consider the function defined implicitly near (,) byx y +xy =y. (a) [7 points] Use implicit differentiation to find the derivative

More information

Graphing Rational Functions

Graphing Rational Functions Graphing Rational Functions A rational function is defined here as a function that is equal to a ratio of two polynomials p(x)/q(x) such that the degree of q(x) is at least 1. Examples: is a rational function

More information

Partial Derivatives. @x f (x; y) = @ x f (x; y) @x x2 y + @ @x y2 and then we evaluate the derivative as if y is a constant.

Partial Derivatives. @x f (x; y) = @ x f (x; y) @x x2 y + @ @x y2 and then we evaluate the derivative as if y is a constant. Partial Derivatives Partial Derivatives Just as derivatives can be used to eplore the properties of functions of 1 variable, so also derivatives can be used to eplore functions of 2 variables. In this

More information

AP Calculus AB 2004 Scoring Guidelines

AP Calculus AB 2004 Scoring Guidelines AP Calculus AB 4 Scoring Guidelines The materials included in these files are intended for noncommercial use by AP teachers for course and eam preparation; permission for any other use must be sought from

More information

Algebra 2: Q1 & Q2 Review

Algebra 2: Q1 & Q2 Review Name: Class: Date: ID: A Algebra 2: Q1 & Q2 Review Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Which is the graph of y = 2(x 2) 2 4? a. c. b. d. Short

More information

Algebra 1 Chapter 08 review

Algebra 1 Chapter 08 review Name: Class: Date: ID: A Algebra 1 Chapter 08 review Multiple Choice Identify the choice that best completes the statement or answers the question. Simplify the difference. 1. (4w 2 4w 8) (2w 2 + 3w 6)

More information

Average rate of change of y = f(x) with respect to x as x changes from a to a + h:

Average rate of change of y = f(x) with respect to x as x changes from a to a + h: L15-1 Lecture 15: Section 3.4 Definition of the Derivative Recall the following from Lecture 14: For function y = f(x), the average rate of change of y with respect to x as x changes from a to b (on [a,

More information

Section 6-3 Double-Angle and Half-Angle Identities

Section 6-3 Double-Angle and Half-Angle Identities 6-3 Double-Angle and Half-Angle Identities 47 Section 6-3 Double-Angle and Half-Angle Identities Double-Angle Identities Half-Angle Identities This section develops another important set of identities

More information

Geometry Notes PERIMETER AND AREA

Geometry Notes PERIMETER AND AREA Perimeter and Area Page 1 of 57 PERIMETER AND AREA Objectives: After completing this section, you should be able to do the following: Calculate the area of given geometric figures. Calculate the perimeter

More information

Objectives. Materials

Objectives. Materials Activity 4 Objectives Understand what a slope field represents in terms of Create a slope field for a given differential equation Materials TI-84 Plus / TI-83 Plus Graph paper Introduction One of the ways

More information

cos Newington College HSC Mathematics Ext 1 Trial Examination 2011 QUESTION ONE (12 Marks) (b) Find the exact value of if. 2 . 3

cos Newington College HSC Mathematics Ext 1 Trial Examination 2011 QUESTION ONE (12 Marks) (b) Find the exact value of if. 2 . 3 1 QUESTION ONE (12 Marks) Marks (a) Find tan x e 1 2 cos dx x (b) Find the exact value of if. 2 (c) Solve 5 3 2x 1. 3 (d) If are the roots of the equation 2 find the value of. (e) Use the substitution

More information

Physics Notes Class 11 CHAPTER 3 MOTION IN A STRAIGHT LINE

Physics Notes Class 11 CHAPTER 3 MOTION IN A STRAIGHT LINE 1 P a g e Motion Physics Notes Class 11 CHAPTER 3 MOTION IN A STRAIGHT LINE If an object changes its position with respect to its surroundings with time, then it is called in motion. Rest If an object

More information

f(x) f(a) x a Our intuition tells us that the slope of the tangent line to the curve at the point P is m P Q =

f(x) f(a) x a Our intuition tells us that the slope of the tangent line to the curve at the point P is m P Q = Lecture 6 : Derivatives and Rates of Cange In tis section we return to te problem of finding te equation of a tangent line to a curve, y f(x) If P (a, f(a)) is a point on te curve y f(x) and Q(x, f(x))

More information

Math 241, Exam 1 Information.

Math 241, Exam 1 Information. Math 241, Exam 1 Information. 9/24/12, LC 310, 11:15-12:05. Exam 1 will be based on: Sections 12.1-12.5, 14.1-14.3. The corresponding assigned homework problems (see http://www.math.sc.edu/ boylan/sccourses/241fa12/241.html)

More information

Geometry Notes RIGHT TRIANGLE TRIGONOMETRY

Geometry Notes RIGHT TRIANGLE TRIGONOMETRY Right Triangle Trigonometry Page 1 of 15 RIGHT TRIANGLE TRIGONOMETRY Objectives: After completing this section, you should be able to do the following: Calculate the lengths of sides and angles of a right

More information

Derive 5: The Easiest... Just Got Better!

Derive 5: The Easiest... Just Got Better! Liverpool John Moores University, 1-15 July 000 Derive 5: The Easiest... Just Got Better! Michel Beaudin École de Technologie Supérieure, Canada Email; mbeaudin@seg.etsmtl.ca 1. Introduction Engineering

More information

This copy of the text was produced at 16:02 on 5/31/2009.

This copy of the text was produced at 16:02 on 5/31/2009. Calculus This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License To view a copy of this license, visit http://creativecommonsorg/licenses/by-nc-sa/30/ or send a letter

More information

1. Which of the 12 parent functions we know from chapter 1 are power functions? List their equations and names.

1. Which of the 12 parent functions we know from chapter 1 are power functions? List their equations and names. Pre Calculus Worksheet. 1. Which of the 1 parent functions we know from chapter 1 are power functions? List their equations and names.. Analyze each power function using the terminology from lesson 1-.

More information

Calculus (6th edition) by James Stewart

Calculus (6th edition) by James Stewart Calculus (6th edition) by James Stewart Section 3.8- Related Rates 9. If and find when and Differentiate both sides with respect to. Remember that, and similarly and So we get Solve for The only thing

More information

1 of 7 9/5/2009 6:12 PM

1 of 7 9/5/2009 6:12 PM 1 of 7 9/5/2009 6:12 PM Chapter 2 Homework Due: 9:00am on Tuesday, September 8, 2009 Note: To understand how points are awarded, read your instructor's Grading Policy. [Return to Standard Assignment View]

More information

Physics: Principles and Applications, 6e Giancoli Chapter 2 Describing Motion: Kinematics in One Dimension

Physics: Principles and Applications, 6e Giancoli Chapter 2 Describing Motion: Kinematics in One Dimension Physics: Principles and Applications, 6e Giancoli Chapter 2 Describing Motion: Kinematics in One Dimension Conceptual Questions 1) Suppose that an object travels from one point in space to another. Make

More information

Math Placement Test Practice Problems

Math Placement Test Practice Problems Math Placement Test Practice Problems The following problems cover material that is used on the math placement test to place students into Math 1111 College Algebra, Math 1113 Precalculus, and Math 2211

More information

Second Order Linear Differential Equations

Second Order Linear Differential Equations CHAPTER 2 Second Order Linear Differential Equations 2.. Homogeneous Equations A differential equation is a relation involving variables x y y y. A solution is a function f x such that the substitution

More information

a. all of the above b. none of the above c. B, C, D, and F d. C, D, F e. C only f. C and F

a. all of the above b. none of the above c. B, C, D, and F d. C, D, F e. C only f. C and F FINAL REVIEW WORKSHEET COLLEGE ALGEBRA Chapter 1. 1. Given the following equations, which are functions? (A) y 2 = 1 x 2 (B) y = 9 (C) y = x 3 5x (D) 5x + 2y = 10 (E) y = ± 1 2x (F) y = 3 x + 5 a. all

More information

Semester 2, Unit 4: Activity 21

Semester 2, Unit 4: Activity 21 Resources: SpringBoard- PreCalculus Online Resources: PreCalculus Springboard Text Unit 4 Vocabulary: Identity Pythagorean Identity Trigonometric Identity Cofunction Identity Sum and Difference Identities

More information

MATH 10034 Fundamental Mathematics IV

MATH 10034 Fundamental Mathematics IV MATH 0034 Fundamental Mathematics IV http://www.math.kent.edu/ebooks/0034/funmath4.pdf Department of Mathematical Sciences Kent State University January 2, 2009 ii Contents To the Instructor v Polynomials.

More information

SOLUTIONS. f x = 6x 2 6xy 24x, f y = 3x 2 6y. To find the critical points, we solve

SOLUTIONS. f x = 6x 2 6xy 24x, f y = 3x 2 6y. To find the critical points, we solve SOLUTIONS Problem. Find the critical points of the function f(x, y = 2x 3 3x 2 y 2x 2 3y 2 and determine their type i.e. local min/local max/saddle point. Are there any global min/max? Partial derivatives

More information

Give an expression that generates all angles coterminal with the given angle. Let n represent any integer. 9) 179

Give an expression that generates all angles coterminal with the given angle. Let n represent any integer. 9) 179 Trigonometry Chapters 1 & 2 Test 1 Name Provide an appropriate response. 1) Find the supplement of an angle whose measure is 7. Find the measure of each angle in the problem. 2) Perform the calculation.

More information

MATH 34A REVIEW FOR MIDTERM 2, WINTER 2012. 1. Lines. (1) Find the equation of the line passing through (2,-1) and (-2,9). y = 5

MATH 34A REVIEW FOR MIDTERM 2, WINTER 2012. 1. Lines. (1) Find the equation of the line passing through (2,-1) and (-2,9). y = 5 MATH 34A REVIEW FOR MIDTERM 2, WINTER 2012 ANSWERS 1. Lines (1) Find the equation of the line passing through (2,-1) and (-2,9). y = 5 2 x + 4. (2) Find the equation of the line which meets the x-axis

More information

New Higher-Proposed Order-Combined Approach. Block 1. Lines 1.1 App. Vectors 1.4 EF. Quadratics 1.1 RC. Polynomials 1.1 RC

New Higher-Proposed Order-Combined Approach. Block 1. Lines 1.1 App. Vectors 1.4 EF. Quadratics 1.1 RC. Polynomials 1.1 RC New Higher-Proposed Order-Combined Approach Block 1 Lines 1.1 App Vectors 1.4 EF Quadratics 1.1 RC Polynomials 1.1 RC Differentiation-but not optimisation 1.3 RC Block 2 Functions and graphs 1.3 EF Logs

More information

Calculus. Contents. Paul Sutcliffe. Office: CM212a.

Calculus. Contents. Paul Sutcliffe. Office: CM212a. Calculus Paul Sutcliffe Office: CM212a. www.maths.dur.ac.uk/~dma0pms/calc/calc.html Books One and several variables calculus, Salas, Hille & Etgen. Calculus, Spivak. Mathematical methods in the physical

More information

MAT12X Intermediate Algebra

MAT12X Intermediate Algebra MAT12X Intermediate Algebra Workshop I - Exponential Functions LEARNING CENTER Overview Workshop I Exponential Functions of the form y = ab x Properties of the increasing and decreasing exponential functions

More information

Good Questions. Answer: (a). Both f and g are given by the same rule, and are defined on the same domain, hence they are the same function.

Good Questions. Answer: (a). Both f and g are given by the same rule, and are defined on the same domain, hence they are the same function. Good Questions Limits 1. [Q] Let f be the function defined by f(x) = sin x + cos x and let g be the function defined by g(u) = sin u + cos u, for all real numbers x and u. Then, (a) f and g are exactly

More information

Polynomials. Key Terms. quadratic equation parabola conjugates trinomial. polynomial coefficient degree monomial binomial GCF

Polynomials. Key Terms. quadratic equation parabola conjugates trinomial. polynomial coefficient degree monomial binomial GCF Polynomials 5 5.1 Addition and Subtraction of Polynomials and Polynomial Functions 5.2 Multiplication of Polynomials 5.3 Division of Polynomials Problem Recognition Exercises Operations on Polynomials

More information

7.2 Quadratic Equations

7.2 Quadratic Equations 476 CHAPTER 7 Graphs, Equations, and Inequalities 7. Quadratic Equations Now Work the Are You Prepared? problems on page 48. OBJECTIVES 1 Solve Quadratic Equations by Factoring (p. 476) Solve Quadratic

More information

Objective: Use calculator to comprehend transformations.

Objective: Use calculator to comprehend transformations. math111 (Bradford) Worksheet #1 Due Date: Objective: Use calculator to comprehend transformations. Here is a warm up for exploring manipulations of functions. specific formula for a function, say, Given

More information

AP Physics - Chapter 8 Practice Test

AP Physics - Chapter 8 Practice Test AP Physics - Chapter 8 Practice Test Multiple Choice Identify the choice that best completes the statement or answers the question. 1. A single conservative force F x = (6.0x 12) N (x is in m) acts on

More information

Solutions to Exercises, Section 5.1

Solutions to Exercises, Section 5.1 Instructor s Solutions Manual, Section 5.1 Exercise 1 Solutions to Exercises, Section 5.1 1. Find all numbers t such that ( 1 3,t) is a point on the unit circle. For ( 1 3,t)to be a point on the unit circle

More information

Algebra 1 Course Title

Algebra 1 Course Title Algebra 1 Course Title Course- wide 1. What patterns and methods are being used? Course- wide 1. Students will be adept at solving and graphing linear and quadratic equations 2. Students will be adept

More information

AP Calculus AB 2004 Free-Response Questions

AP Calculus AB 2004 Free-Response Questions AP Calculus AB 2004 Free-Response Questions The materials included in these files are intended for noncommercial use by AP teachers for course and exam preparation; permission for any other use must be

More information