Frequency Synthesizer Architecture Design for DRM and DAB Receiver

Size: px
Start display at page:

Download "Frequency Synthesizer Architecture Design for DRM and DAB Receiver"

Transcription

1 Progress In Electromagnetics Research Symposium, Hangzhou, China, March 24-28, Frequency Synthesizer Architecture Design for DRM and DAB Receiver Jianzheng Zhou 1,2 and Zhigong Wang 1 1 Institute of RF- & OE-ICs, Southeast University, Nanjing, China 2 School of Computer & Information, Hefei University of Technology, Hefei, China Abstract Based on the specifications of DRM/DAB receivers, 4 synthesizer structures were designed for the receiver which supports several radio standards including AM, DRM, FM, and DAB. Comparisons of the characteristics of the four structures were given. Analysis and calculations prove that the synthesizer structure 1 with a single VCO and a single loop filter is the most suitable one to be used in the DRM/DAB receivers with good performance in phase noise, reference spurs and lock time, at expense of little more power consumption. 1. INTRODUCTION A DRM/DAB receiver will need to support several radio standards including AM, DRM, FM, and DAB, and needs to provide the necessary flexibility for seamless receive. A key challenge in the full integration of such a DRM/DAB receiver is the design and implementation of its beating heart, i.e., the reconfigurable frequency synthesizer which acts as the local oscillator (LO) and covers all the frequency bands of the considered standards. This is due to the difficulty in meeting the performance requirements with on-chip components because of the diverse standards it needs to support. It is also due to the simulation of the synthesizer, a task that requires mixed-signal tools that should provide radio frequency, analog, and digital perspectives. We have proved that a double-conversion low-if structure is the most suitable architecture for the DRM/DAB receiver, and the first intermediate frequency (f IF1 ) is MHz and f IF2 is 2 MHz for DAB, 175 khz for other bands in this system. The receiver needs two quadrature LO signals, the first one is generated by a synthesizer and the second one is a fixed frequency, which is easy to be generated. So, only the synthesizer which generates the first quadrature LO is discussed in this work. 2. DESIGN SPECIFICATIONS Some of the main design specifications and considerations are given as follows Output Frequency Range and Resolution The output frequency range and resolution of the frequency synthesizer are listed in Table 1. Table 1: The output frequency range and resolution. Band Output frequency range (MHz) Resolution (khz) LF MF HF FM III band L band Phase Noise and Spurious Frequencies Numerical stipulation of phase noise for this design, a typical value of 80 khz is chosen. Generally speaking, all sidebands need to be approximately 70 to 80 db below the main carrier Switching Time Initial design switching time of less than 100 ms is aimed. Furthermore, generation of quadrature LO-signals is mandatory for low-if receiver architecture.

2 60 PIERS Proceedings, Hangzhou, China, March 24-28, FREQUENCY SYNTHESIZER ARCHITECTURE DESIGN [1] Since a direct analog frequency synthesizer (DAS) or a direct digital frequency synthesizer (DDFS or DDS) can provide an arbitrarily small frequency step size, at expense of higher complexity, higher dissipation and a larger die area, and thus they are often not suitable for DRM/DAB receivers, the charge-pump phase locked loop (PLL) frequency synthesizer is widely adopted. To address different application requirements, there are several PLL synthesizer architectures, such as fractional-n architecture, dual-loop architecture, or integer-n architecture. Each has advantages and drawbacks, depending upon the application. The Fractional-N PLL architecture enables a PLL synthesizer to generate output frequencies with a step size smaller than the reference frequency. But, it suffers from fractional spurs which degrade the spurious-tone performance. In Multi-Loop PLL Synthesizer [2 4], the basic idea of it is that spectral purity can be separated from the minimum step size specification, with the small tuning step requirement being satisfied with the addition of a second loop to the tuning system. This architecture can improve the tradeoff among phase noise, channel spacing, reference frequency, and locking speed of the synthesizer. Although more circuits are needed, the specifications for each building block are much relaxed [5]. Despite the advance of fractional-n or multi-loop PLL architectures, Integer-N architectures are still the most popular synthesizer architectures used in the industry due to its simple architecture, easy implementation, high reliability, low power, and low-cost in terms of design time. The basic limitation is the fact that the reference frequency is equal to the minimum step size of the PLL, which can lead to quite a few drawbacks including: (a) large division ratios increased area and power, (b) low bandwidth large lock times, and (c) reference spurious tones. So, conventional single-loop PLL synthesizers are not able to combine the requirements of small step size, good spectral purity, and wide loop bandwidth [3]. While in single-loop integer-n PLL Synthesizer with a divider shown in Fig. 1 [6 8], an additional frequency divider X is placed at the output of the VCO to allow for smaller frequency steps than the loop s reference frequency and improve the lock time, phase noise, and reference spurs. f PFD f VCO PFD/CP LPF VCO X Nf REF f DIV N Figure 1: Single-loop integer-n PLL synthesizer with divider. To address all these needs, 4 frequency synthesizer architectures are given in the following sections Synthesizer Structure 1 The frequency synthesizer architecture 1 given in Fig. 2 has been defined such that all reception bands can be accessed with a single VCO and a single loop filter. The VCO covers the band from 2600 to 3120 MHz. Mapping the frequency of the VCO to the different input bands is achieved by dividing its output frequency by different ratios, depending on the band to be received. A divide-by-2 and -4 circuits are included to generate the desired quadrature LO frequencies. Table 2 presents the frequency synthesizer parameter settings for various reception bands. In this configuration, f OUT = (f PFD N)/X. Some consequences for this architecture are given as follows. a) The minimum step size is indeed smaller than f PFD. REF DIV PFD/CP LPF VCO 1/5/6 /7/8 Main DIV 2/4/8/ 10/12 Figure 2: Synthesizer structure 1.

3 Progress In Electromagnetics Research Symposium, Hangzhou, China, March 24-28, Table 2: Reception bands with corresponding synthesizer Parameters [7]. Band (MHz) LO (MHz) X1 X2 f PFD (khz) LF: MF: HF: FM: III band: L band: b) Compared to the use of the standard integer-n architecture, the phase noise performance of this kind of synthesizer is optimized by 10 log(x) at the LO output. c) Reference spurs reduction: In this architecture, at f OUT, the spurious frequencies still exist at the integer multiples of the PFD frequency but they are reduced in amplitude by 20 log(x). d) Shorter lock time due to higher PFD frequency. The price of this improved performance is the extra cost of the output divider and the extra power consumption of the system as a whole. Thus, the improved performance must be a critical requirement for selecting this architecture Synthesizer Structure 2 Synthesizer structure 2 is shown in Fig. 3. This structure is similar to structure 1, except that f PDF, f VCO, and X is one half of these in structure 1. In other words, f VCO is divided by 40 for LF and MF bands, by 36, 32, 28, or 24 for HF band, by 12 or 10 for FM band, by 7, 6 or 5 for III band, and by 1 for L band. When X is odd number, path I is chosen, in this case a poly-phase filter (PPF) is used to generate the desired I/Q LO frequencies. When X is an even number, path II or III is chosen, a divide-by-2 circuits are included to generate the desired quadrature LO frequencies. REF DIV PFD/CP LPF VCO 1/5/7 Path II 6/8 Path I PPF Main DIV Path III 2/4/ 6/8 Figure 3: Synthesizer structure Synthesizer Structure 3 Synthesizer structure 3 is shown in Fig. 4 [9]. This structure is also similar to structure 1, but f PDF, f VCO, and X is one fourth of the counterpoint in stucture 1. In other words, the VCO covers 650 to 780 MHz, and divided by 20 for LF and MF bands, by 18, 16, 14, or 12 for HF band, by 6 or 5 for FM band, by 3.5, 3 or 2.5 for III band, and by 0.5 for L band. When X is a fraction number, such as 0.5, 2.5, and 3.5, path I is chosen. In this case the Delay-Locked loop (DLL) combines the functions of frequency multiplication and quadrature generation. It consists of a DLL with 2N

4 62 PIERS Proceedings, Hangzhou, China, March 24-28, 2008 tunable delay cells that can multiply the frequency of the incoming signal with a factor N, while also generating the quadrature LO-signals [10]. When X is an odd number, path I is used, but the DLL is used to generate the desired I/Q LO frequencies only. When X is an even number, path II is chosen, in which a divide-by-2 circuits are included to generate the desired quadrature LO frequencies. REF DIV PFD/ CP LPF VCO Main DIV 1/3/ 4/ 5/7 2/4/6 Path II DLL with 4 Delay Cells Path I Figure 4: Synthesizer structure Synthesizer Structure 4 Another alternative solution is to use a dual-loop architecture shown in Fig. 5. Table 3 presents the VCO frequency and frequency synthesizer parameter settings for various reception bands. The VCO1 covers 37 to 1529 MHz. f REF1 PFD/CP LPF VCO 1 PLL 1 M SSB Mixer LO-I LO-Q f REF2 PFD/CP LPF VCO 2 X PLL 2 N Figure 5: Synthesizer structure. Table 3: VCO frequency and frequency synthesizer parameter settings for various reception bands. Band f REF1 (MHz) M X N f VCO2 (MHz) LF HF HF FM III band L band Comparison of These 4 Synthesizer Structures The total phase noise in a phase locked loop (db) can be expressed as follows [6]: P N tot = P N floor + 20 log N + 10 log f REF 20 log X (1) where, P N tot is the total phase noise of the synthesizer, f REF is the incoming PFD frequency of the synthesizer, P N floor is the phase noise due to the PLL synthesizer circuit itself. This provides

5 Progress In Electromagnetics Research Symposium, Hangzhou, China, March 24-28, a figure of merit for the PLL synthesizer circuit itself. For ADF4106, this figure is 219 khz. 20 log N is the increase of phase noise due to the frequency magnification associated with the feedback ratio, 1/N. 20 log X is the improvement of phase noise due to the division with the divider ratio, 1/X. On the other hand, the spurious frequencies exist at the integer multiples of the PFD frequency, and they are reduced in amplitude by 20 log X. Furthermore, shorter lock time due to higher PFD frequency. So the phase noise of structure 1 is 3 db, 6 db better than the counterpart of structure 2 and structure 3 respectively. And the reference spurs of structure 1 is 6 db, 12 db better than the counterpart of structure 2 and structure 3, respectively. And the lock time is much shorter than structure 2 and structure 3. The f VCO of Structure 1 is two and four times of that of the structure 2 and 3, respectively, it needs more power consumption. However, it easier to implement on-chip than that of Structure 2 and 3. Moreover, Structure 2 and 3 need extra PPF or DLL to generate the quadrature LO signals, so they need a more complex circuit, a larger chip area and even more power consumption. The phase noise, reference spurs and lock time of Structure 4 maybe better than these of other structures, at expense of higher complexity and a larger die area. Especially, the tunable frequency range of VCO 1 and VCO 2 is too large to implement on-chip, and VCO 1 need output quadrature LO signals, and the performance of synthesizer also lies on the perfect single side-band mixer. So this design is not the best solution for DRM/DAB receivers synthesizer. Based on the analyses given above, we can know that the synthesizer structure 1 is the most suitable one for DRM/DAB receiver. 4. PERFORMANCE ANALYSIS OF THE SYNTHESIZER STRUCTURES Suppose that the P N floor of the PLL is better than 210 khz, we can obtain the performance of the synthesizer structure 1, which is given in Table 4, based on the formula (1) and the experiential formula that the switch time t sw < 25/f PFD. Band Table 4: The performance of synthesizer structure 1. Step Size (khz) Phase noise (dbc/hz@1 khz) Ref. spur Reduction (db) Switch Time (ms) LF 3 < < 0.1 MF 1 < < 0.3 HF 5 < 107 > 33.6 < 0.1 FM 25 < 103 > 26 < 0.05 III band 64 < 99 > 20 < 0.04 L band 64 < < CONCLUSIONS In the quest for true reconfigurable DRM/DAB receiver, four frequency synthesizer architectures are given, enabling the generation of quadrature LO signals over extremely wide frequency ranges. Theoretical analysis shows that structure 1 will be the best one to be used with good performance in phase noise, reference spurs and lock time, at expense of little more power consumption. As we can see from the Table 4, synthesizer structure 1 can meet the design specification, is very suitable for DRM/DAB receivers, need few external components and require no mechanical alignments. REFERENCES 1. Sinha, S., Design of an integrated CMOS PLL frequency synthesizer, Proceedings of 11th Mediterranean Electrotechnical Conference, MELECON 2002, , 7 9 May Leenarts, D. M. W. and C. S. Vaucher, Frequency synthesizers for RF transceivers, Proceedings of the 2003 Bipolar/BiCMOS Circuits and Technology Meeting, , Sept Vaucher, C. and D. Kasperkovitz, A wide-band tuning system for fully integrated satellite receivers, IEEE Journal of Solid-State Circuits, Vol. 33, No. 7, , July 1998.

6 64 PIERS Proceedings, Hangzhou, China, March 24-28, Yan and H. C. Luong, A 2-V 900-MHz monolithic CMOS dual-loop frequency synthesizer for GSM wireless receivers, IEEE J. Solid-State Circuits, Vol. 36, , Feb Razavi, B., Challenges in the design of frequency synthesizers for wireless applications, Proceedings of IEEE Custom IC Conference, , May Curtin, M., Design a direct 6-GHz local oscillator with a wideband integer-n PLL synthesizer, Analog Dialogue, Vol. 35, No. 6, 1 4, Vaucher, C. S., An adaptive PLL tuning system architecture combining high spectral purity and fast setting time, IEEE Journal of Solid-State Circuits, Vol. 35, No. 4, , April Luff, G. F., S. Tuncer, N. M. Troop, C. R. Taylor, and D. W. Eddowes, A compact tripleband Eureka-147 RF tuner with an FM receiver, Proceedings of 2005 IEEE International Solid-State Circuits Conference, ISSCC 2005, Vol. 1, , 6 10 Feb Van Driessche, J., J. Craninckx, and B. Come, Analysis and key specifications of a novel frequency synthesizer architecture for multi-standard transceivers, Proceedings of 2006 IEEE Radio and Wireless Symposium, , Jan Craninckx, J., V. Gravot, and S. Donnay, A harmonic quadrature LO generator using a 90 delay-locked loop, Proceedings of ESSCIRC 2004, , Sept

The front end of the receiver performs the frequency translation, channel selection and amplification of the signal.

The front end of the receiver performs the frequency translation, channel selection and amplification of the signal. Many receivers must be capable of handling a very wide range of signal powers at the input while still producing the correct output. This must be done in the presence of noise and interference which occasionally

More information

Introduction to Receivers

Introduction to Receivers Introduction to Receivers Purpose: translate RF signals to baseband Shift frequency Amplify Filter Demodulate Why is this a challenge? Interference (selectivity, images and distortion) Large dynamic range

More information

How PLL Performances Affect Wireless Systems

How PLL Performances Affect Wireless Systems May 2010 Issue: Tutorial Phase Locked Loop Systems Design for Wireless Infrastructure Applications Use of linear models of phase noise analysis in a closed loop to predict the baseline performance of various

More information

Analysis of a PLL Based Frequency Synthesizer using Switched Loop Bandwidth for Mobile WiMAX

Analysis of a PLL Based Frequency Synthesizer using Switched Loop Bandwidth for Mobile WiMAX Analysis of a PLL Based Frequency Synthesizer using Switched Loop Bandwidth for Mobile WiMAX Vaclav Valenta, Martine Villegas, Genevieve Baudoin To cite this version: Vaclav Valenta, Martine Villegas,

More information

A High Frequency Divider in 0.18 um SiGe BiCMOS Technology

A High Frequency Divider in 0.18 um SiGe BiCMOS Technology A High Frequency Divider in 0.18 um SiGe BiCMOS Technology Noorfazila Kamal 1, Yingbo Zhu 1, Leonard T. Hall 1, Said F. Al-Sarawi 1, Craig Burnet 2, Ian Holland 2, Adnan Khan 2, Andre Pollok 2, Justin

More information

Fundamentals of Phase Locked Loops (PLLs)

Fundamentals of Phase Locked Loops (PLLs) Fundamentals of Phase Locked Loops (PLLs) MT-86 TUTORIAL FUNDAMENTAL PHASE LOCKED LOOP ARCHITECTURE A phase-locked loop is a feedback system combining a voltage controlled oscillator (VCO) and a phase

More information

How To Use A Sound Card With A Subsonic Sound Card

How To Use A Sound Card With A Subsonic Sound Card !"## $#!%!"# &"#' ( "#' )*! #+ #,# "##!$ -+./0 1" 1! 2"# # -&1!"#" (2345-&1 #$6.7 -&89$## ' 6! #* #!"#" +" 1##6$ "#+# #-& :1# # $ #$#;1)+#1#+

More information

6.976 High Speed Communication Circuits and Systems Lecture 1 Overview of Course

6.976 High Speed Communication Circuits and Systems Lecture 1 Overview of Course 6.976 High Speed Communication Circuits and Systems Lecture 1 Overview of Course Michael Perrott Massachusetts Institute of Technology Copyright 2003 by Michael H. Perrott Wireless Systems Direct conversion

More information

'Possibilities and Limitations in Software Defined Radio Design.

'Possibilities and Limitations in Software Defined Radio Design. 'Possibilities and Limitations in Software Defined Radio Design. or Die Eierlegende Wollmilchsau Peter E. Chadwick Chairman, ETSI ERM_TG30, co-ordinated by ETSI ERM_RM Software Defined Radio or the answer

More information

ZLPLL Local Oscillator

ZLPLL Local Oscillator ZLPLL Local Oscillator Wayne Knowles, ZL2BKC w.knowles@xtra.co.nz Contents 1 Introduction... 3 2 Specifications... 3 3 Performance... 4 3.1 Phase Noise... 4 3.2 Output Level... 4 3.3 Harmonic Level...

More information

Application Note: Spread Spectrum Oscillators Reduce EMI for High Speed Digital Systems

Application Note: Spread Spectrum Oscillators Reduce EMI for High Speed Digital Systems Application Note: Spread Spectrum Oscillators Reduce EMI for High Speed Digital Systems Introduction to Electro-magnetic Interference Design engineers seek to minimize harmful interference between components,

More information

Optimizing VCO PLL Evaluations & PLL Synthesizer Designs

Optimizing VCO PLL Evaluations & PLL Synthesizer Designs Optimizing VCO PLL Evaluations & PLL Synthesizer Designs Today s mobile communications systems demand higher communication quality, higher data rates, higher operation, and more channels per unit bandwidth.

More information

Jeff Thomas Tom Holmes Terri Hightower. Learn RF Spectrum Analysis Basics

Jeff Thomas Tom Holmes Terri Hightower. Learn RF Spectrum Analysis Basics Jeff Thomas Tom Holmes Terri Hightower Learn RF Spectrum Analysis Basics Agenda Overview: Spectrum analysis and its measurements Theory of Operation: Spectrum analyzer hardware Frequency Specifications

More information

Measurement of Adjacent Channel Leakage Power on 3GPP W-CDMA Signals with the FSP

Measurement of Adjacent Channel Leakage Power on 3GPP W-CDMA Signals with the FSP Products: Spectrum Analyzer FSP Measurement of Adjacent Channel Leakage Power on 3GPP W-CDMA Signals with the FSP This application note explains the concept of Adjacent Channel Leakage Ratio (ACLR) measurement

More information

RF Network Analyzer Basics

RF Network Analyzer Basics RF Network Analyzer Basics A tutorial, information and overview about the basics of the RF Network Analyzer. What is a Network Analyzer and how to use them, to include the Scalar Network Analyzer (SNA),

More information

Lecture 1: Communication Circuits

Lecture 1: Communication Circuits EECS 142 Lecture 1: Communication Circuits Prof. Ali M. Niknejad University of California, Berkeley Copyright c 2005 by Ali M. Niknejad A. M. Niknejad University of California, Berkeley EECS 142 Lecture

More information

Tests on a DIGITAL TV LNB for 10GHz narrowband

Tests on a DIGITAL TV LNB for 10GHz narrowband Tests on a DIGITAL TV LNB for 10GHz narrowband Andy Talbot G4JNT Paul M0EYT mentioned that he was playing with a new low cost Satellite TV Low Noise Block that used a PLL synthesised Local Oscillator.

More information

HD Radio FM Transmission System Specifications Rev. F August 24, 2011

HD Radio FM Transmission System Specifications Rev. F August 24, 2011 HD Radio FM Transmission System Specifications Rev. F August 24, 2011 SY_SSS_1026s TRADEMARKS HD Radio and the HD, HD Radio, and Arc logos are proprietary trademarks of ibiquity Digital Corporation. ibiquity,

More information

MAINTENANCE & ADJUSTMENT

MAINTENANCE & ADJUSTMENT MAINTENANCE & ADJUSTMENT Circuit Theory The concept of PLL system frequency synthesization is not of recent development, however, it has not been a long age since the digital theory has been couplet with

More information

Phase Noise Measurement Methods and Techniques

Phase Noise Measurement Methods and Techniques Phase Noise Measurement Methods and Techniques Presented by: Kay Gheen, Agilent Technologies Introduction Extracting electronic signals from noise is a challenge for most electronics engineers. As engineers

More information

Maximizing Receiver Dynamic Range for Spectrum Monitoring

Maximizing Receiver Dynamic Range for Spectrum Monitoring Home Maximizing Receiver Dynamic Range for Spectrum Monitoring Brian Avenell, National Instruments Corp., Austin, TX October 15, 2012 As consumers continue to demand more data wirelessly through mobile

More information

RAPID PROTOTYPING FOR RF-TRANSMITTERS AND RECEIVERS

RAPID PROTOTYPING FOR RF-TRANSMITTERS AND RECEIVERS RAPID PROTOTYPING FOR -TRANSMITTERS AND RECEIVERS Robert Langwieser email: robert.langwieser@nt.tuwien.ac.at Michael Fischer email: michael.fischer@nt.tuwien.ac.at Arpad L. Scholtz email: arpad.scholtz@tuwien.ac.at

More information

Tx/Rx A high-performance FM receiver for audio and digital applicatons

Tx/Rx A high-performance FM receiver for audio and digital applicatons Tx/Rx A high-performance FM receiver for audio and digital applicatons This receiver design offers high sensitivity and low distortion for today s demanding high-signal environments. By Wayne C. Ryder

More information

Clocking Solutions. Wired Communications / Networking Wireless Communications Industrial Automotive Consumer Computing. ti.

Clocking Solutions. Wired Communications / Networking Wireless Communications Industrial Automotive Consumer Computing. ti. ing Solutions Wired Communications / Networking Wireless Communications Industrial Automotive Consumer Computing ti.com/clocks 2014 Accelerate Time-to-Market with Easy-to-Use ing Solutions Texas Instruments

More information

CIRCUITS AND SYSTEMS Circuits and Systems for Radiofrequency and Telecommunications Dente Del Corso

CIRCUITS AND SYSTEMS Circuits and Systems for Radiofrequency and Telecommunications Dente Del Corso CIRCUITS AND SYSTEMS FOR RADIOFREQUENCY AND TELECOMMUNICATIONS Dante Del Corso Politecnico di Torino, Torino, Italy. Keywords: Heterodyne, direct conversion, ZIF, image frequency, mixer, SDR, LNA, PA,

More information

Coherent sub-thz transmission systems in Silicon technologies: design challenges for frequency synthesis

Coherent sub-thz transmission systems in Silicon technologies: design challenges for frequency synthesis Coherent sub-thz transmission systems in Silicon technologies: design challenges for frequency synthesis Alexandre Siligaris www.cea.fr Cliquez pour modifier le style du Outline titre Introduction-context

More information

VCO Phase noise. Characterizing Phase Noise

VCO Phase noise. Characterizing Phase Noise VCO Phase noise Characterizing Phase Noise The term phase noise is widely used for describing short term random frequency fluctuations of a signal. Frequency stability is a measure of the degree to which

More information

Abstract. Cycle Domain Simulator for Phase-Locked Loops

Abstract. Cycle Domain Simulator for Phase-Locked Loops Abstract Cycle Domain Simulator for Phase-Locked Loops Norman James December 1999 As computers become faster and more complex, clock synthesis becomes critical. Due to the relatively slower bus clocks

More information

EVALUATION KIT AVAILABLE Single-Chip Global Positioning System Receiver Front-End BIAS CBIAS GND GND RFIN GND GND IFSEL

EVALUATION KIT AVAILABLE Single-Chip Global Positioning System Receiver Front-End BIAS CBIAS GND GND RFIN GND GND IFSEL 19-3469; Rev 2; 4/08 EVALUATION KIT AVAILABLE Single-Chip Global Positioning System General Description The complete single-chip global positioning system (GPS) RF front-end utilizes many innovative and

More information

Adjacent Channel Interference. Adaptive Modulation and Coding. Advanced Mobile Phone System. Automatic Repeat Request. Additive White Gaussian Noise

Adjacent Channel Interference. Adaptive Modulation and Coding. Advanced Mobile Phone System. Automatic Repeat Request. Additive White Gaussian Noise Apéndice A. Lista de s ACI AM AMC AMPS ARQ AWGN BB BER BPSK BPF BW CCK CD CDMA CDPD COFDM CRL CSI CWTS Adjacent Channel Interference Amplitude Modulation Adaptive Modulation and Coding Advanced Mobile

More information

Wireless Communication and RF System Design Using MATLAB and Simulink Giorgia Zucchelli Technical Marketing RF & Mixed-Signal

Wireless Communication and RF System Design Using MATLAB and Simulink Giorgia Zucchelli Technical Marketing RF & Mixed-Signal Wireless Communication and RF System Design Using MATLAB and Simulink Giorgia Zucchelli Technical Marketing RF & Mixed-Signal 2013 The MathWorks, Inc. 1 Outline of Today s Presentation Introduction to

More information

R&S FSW signal and spectrum analyzer: best in class now up to 50 GHz

R&S FSW signal and spectrum analyzer: best in class now up to 50 GHz R&S FSW signal and spectrum analyzer: best in class now up to 50 GHz The new R&S FSW 43 and R&S FSW 50 signal and spectrum analyzers make the outstanding features of the R&S FSW family available now also

More information

Choosing a Phase Noise Measurement Technique Concepts and Implementation Terry Decker Bob Temple

Choosing a Phase Noise Measurement Technique Concepts and Implementation Terry Decker Bob Temple Choosing a Phase Noise Measurement Technique Concepts and Implementation Terry Decker Bob Temple RF & Microwave Measurement Symposium and Exhibition Terry Decker, received her BA in Physics from Carleton

More information

Analog Devices Welcomes Hittite Microwave Corporation NO CONTENT ON THE ATTACHED DOCUMENT HAS CHANGED

Analog Devices Welcomes Hittite Microwave Corporation NO CONTENT ON THE ATTACHED DOCUMENT HAS CHANGED Analog Devices Welcomes Hittite Microwave Corporation NO CONTENT ON THE ATTACHED DOCUMENT HAS CHANGED www.analog.com www.hittite.com THIS PAGE INTENTIONALLY LEFT BLANK PLL & PLL with Integrated VCO Evaluation

More information

Optimizing IP3 and ACPR Measurements

Optimizing IP3 and ACPR Measurements Optimizing IP3 and ACPR Measurements Table of Contents 1. Overview... 2 2. Theory of Intermodulation Distortion... 2 3. Optimizing IP3 Measurements... 4 4. Theory of Adjacent Channel Power Ratio... 9 5.

More information

Agilent AN 1315 Optimizing RF and Microwave Spectrum Analyzer Dynamic Range. Application Note

Agilent AN 1315 Optimizing RF and Microwave Spectrum Analyzer Dynamic Range. Application Note Agilent AN 1315 Optimizing RF and Microwave Spectrum Analyzer Dynamic Range Application Note Table of Contents 3 3 3 4 4 4 5 6 7 7 7 7 9 10 10 11 11 12 12 13 13 14 15 1. Introduction What is dynamic range?

More information

CONDUCTED EMISSION MEASUREMENT OF A CELL PHONE PROCESSOR MODULE

CONDUCTED EMISSION MEASUREMENT OF A CELL PHONE PROCESSOR MODULE Progress In Electromagnetics esearch C, Vol. 42, 191 203, 2013 CONDUCTED EMISSION MEASUEMENT OF A CELL PHONE POCESSO MODULE Fayu Wan *, Junxiang Ge, and Mengxiang Qu Nanjing University of Information Science

More information

Amplifier for Small Magnetic and Electric Wideband Receiving Antennas (model AAA-1B)

Amplifier for Small Magnetic and Electric Wideband Receiving Antennas (model AAA-1B) Amplifier for Small Magnetic and Electric Wideband Receiving Antennas (model AAA-1B) 1. Description and Specifications Contents 1.1 Description 1.2 1.2 Specifications 1.3 1.3 Tested parameters in production

More information

LTE System Specifications and their Impact on RF & Base Band Circuits. Application Note. Products: R&S FSW R&S SMU R&S SFU R&S FSV R&S SMJ R&S FSUP

LTE System Specifications and their Impact on RF & Base Band Circuits. Application Note. Products: R&S FSW R&S SMU R&S SFU R&S FSV R&S SMJ R&S FSUP Application Note Dr. Oliver Werther/Roland Minihold 04.2013 1MA221_1E LTE System Specifications and their Impact on RF & Base Band Circuits Application Note Products: R&S FSW R&S SMU R&S SFU R&S FSV R&S

More information

Modification Details.

Modification Details. Front end receiver modification for DRM: AKD Target Communications receiver. Model HF3. Summary. The receiver was modified and capable of receiving DRM, but performance was limited by the phase noise from

More information

PLL DESIGN AND CLOCK/FREQUENCY GENERATION (PLL 设 计 与 时 钟 / 频 率 产 生 ) Woogeun Rhee Institute of Microelectronics Tsinghua University

PLL DESIGN AND CLOCK/FREQUENCY GENERATION (PLL 设 计 与 时 钟 / 频 率 产 生 ) Woogeun Rhee Institute of Microelectronics Tsinghua University PLL DESIGN AND CLOCK/FREQUENCY GENERATION (PLL 设 计 与 时 钟 / 频 率 产 生 ) Woogeun Rhee Institute of Microelectronics Tsinghua University Course Objective This course gives insights into phase-locked clocking

More information

Jeff Thomas Tom Holmes Terri Hightower. Learn RF Spectrum Analysis Basics

Jeff Thomas Tom Holmes Terri Hightower. Learn RF Spectrum Analysis Basics Jeff Thomas Tom Holmes Terri Hightower Learn RF Spectrum Analysis Basics Learning Objectives Name the major measurement strengths of a swept-tuned spectrum analyzer Explain the importance of frequency

More information

Local Oscillator for FM broadcast band 88-108 MHz

Local Oscillator for FM broadcast band 88-108 MHz Local Oscillator for FM broadcast band 88-108 MHz Wang Luhao Yan Shubo Supervisor: Göran Jönsson Department of Electrical and Information Technology Lund University 2012.05.15 Abstract In this project

More information

Achieving New Levels of Channel Density in Downstream Cable Transmitter Systems: RF DACs Deliver Smaller Size and Lower Power Consumption

Achieving New Levels of Channel Density in Downstream Cable Transmitter Systems: RF DACs Deliver Smaller Size and Lower Power Consumption Achieving New Levels of Channel Density in Downstream Cable Transmitter Systems: RF DACs Deliver Smaller Size and Lower Power Consumption Introduction By: Analog Devices, Inc. (ADI) Daniel E. Fague, Applications

More information

Analysis of Immunity by RF Wireless Communication Signals

Analysis of Immunity by RF Wireless Communication Signals 64 PIERS Proceedings, Guangzhou, China, August 25 28, 2014 Analysis of Immunity by RF Wireless Communication Signals Hongsik Keum 1, Jungyu Yang 2, and Heung-Gyoon Ryu 3 1 EletroMagneticwave Technology

More information

ISSCC 2003 / SESSION 13 / 40Gb/s COMMUNICATION ICS / PAPER 13.7

ISSCC 2003 / SESSION 13 / 40Gb/s COMMUNICATION ICS / PAPER 13.7 ISSCC 2003 / SESSION 13 / 40Gb/s COMMUNICATION ICS / PAPER 13.7 13.7 A 40Gb/s Clock and Data Recovery Circuit in 0.18µm CMOS Technology Jri Lee, Behzad Razavi University of California, Los Angeles, CA

More information

AMS/RF-CMOS circuit design for wireless transceivers

AMS/RF-CMOS circuit design for wireless transceivers AMS/RF-CMOS circuit design for wireless transceivers Mobile phones have evolved from simple devices allowing phone calls over a wireless link to all-in-one devices. Besides keeping us always best connected,

More information

QAM Demodulation. Performance Conclusion. o o o o o. (Nyquist shaping, Clock & Carrier Recovery, AGC, Adaptive Equaliser) o o. Wireless Communications

QAM Demodulation. Performance Conclusion. o o o o o. (Nyquist shaping, Clock & Carrier Recovery, AGC, Adaptive Equaliser) o o. Wireless Communications 0 QAM Demodulation o o o o o Application area What is QAM? What are QAM Demodulation Functions? General block diagram of QAM demodulator Explanation of the main function (Nyquist shaping, Clock & Carrier

More information

A Wideband mm-wave CMOS Receiver for Gb/s Communications Employing Interstage Coupled Resonators

A Wideband mm-wave CMOS Receiver for Gb/s Communications Employing Interstage Coupled Resonators A Wideband mm-wave CMOS Receiver for Gb/s Communications Employing Interstage Coupled Resonators Federico Vecchi 1,2, Stefano Bozzola 3, Massimo Pozzoni 4, Davide Guermandi 5, Enrico Temporiti 4, Matteo

More information

Short Course On Phase-Locked Loops and Their Applications Day 1, PM Lecture. Advanced Analog Frequency Synthesizers, Clock and Data Recovery

Short Course On Phase-Locked Loops and Their Applications Day 1, PM Lecture. Advanced Analog Frequency Synthesizers, Clock and Data Recovery Short Course On Phase-Locked Loops and Their Applications Day 1, PM Lecture Advanced Analog Frequency Synthesizers, Clock and Data Recovery Michael Perrott August 11, 2008 Copyright 2008 by Michael H.

More information

RF Communication System. EE 172 Systems Group Presentation

RF Communication System. EE 172 Systems Group Presentation RF Communication System EE 172 Systems Group Presentation RF System Outline Transmitter Components Receiver Components Noise Figure Link Budget Test Equipment System Success Design Remedy Transmitter Components

More information

How To Make A Power Source From A Power Supply

How To Make A Power Source From A Power Supply Copyright 2012 IEEE Reprinted from IEEE transactions on microwave theory and techniques Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current

More information

Microelectronics Students Group. Wi-Rex. Design of an Integrated Circuit for a Wireless Receiver

Microelectronics Students Group. Wi-Rex. Design of an Integrated Circuit for a Wireless Receiver Microelectronics Students Group Wi-Rex Design of an Integrated Circuit for a Wireless Receiver D. Oliveira, M. Pina, C. Duarte, V. G. Tavares, and P. Guedes de Oliveira February 17, 2011 Microelectronics

More information

RECOMMENDATION ITU-R BS.704 *, ** Characteristics of FM sound broadcasting reference receivers for planning purposes

RECOMMENDATION ITU-R BS.704 *, ** Characteristics of FM sound broadcasting reference receivers for planning purposes Rec. ITU-R BS.704 1 RECOMMENDATION ITU-R BS.704 *, ** Characteristics of FM sound broadcasting reference receivers for planning purposes (1990) The ITU Radiocommunication Assembly, considering a) that

More information

Radiated emission measurement of a cell phone processor module using TEM cell

Radiated emission measurement of a cell phone processor module using TEM cell , pp.48-53 http://dx.doi.org/10.14257/astl.2013.28.09 Radiated emission measurement of a cell phone processor module using TEM cell Fayu Wan 1,2*, Qi Liu 3, Jian Shen 3, Jin Wang 3 and Nigel Linge 4 1

More information

Multi-Carrier GSM with State of the Art ADC technology

Multi-Carrier GSM with State of the Art ADC technology Multi-Carrier GSM with State of the Art ADC technology Analog Devices, October 2002 revised August 29, 2005, May 1, 2006, May 10, 2006, November 30, 2006, June 19, 2007, October 3, 2007, November 12, 2007

More information

A 2.7 V DECT RF-Transceiver/Synthesizer/Modem Chip Set

A 2.7 V DECT RF-Transceiver/Synthesizer/Modem Chip Set A 2.7 V DECT RF-Transceiver/Synthesizer/Modem Chip Set Matthijs Pardoen, Jakob Jongsma, Gerhard Schultes, Gerhard Fritz, Ferenc Mernyei*, Janos Erdelyi*, Tibor Kerekes* Abstract Austria Mikro Systeme International

More information

Chapter 6 PLL and Clock Generator

Chapter 6 PLL and Clock Generator Chapter 6 PLL and Clock Generator The DSP56300 core features a Phase Locked Loop (PLL) clock generator in its central processing module. The PLL allows the processor to operate at a high internal clock

More information

ISSCC 2003 / SESSION 4 / CLOCK RECOVERY AND BACKPLANE TRANSCEIVERS / PAPER 4.7

ISSCC 2003 / SESSION 4 / CLOCK RECOVERY AND BACKPLANE TRANSCEIVERS / PAPER 4.7 ISSCC 2003 / SESSION 4 / CLOCK RECOVERY AND BACKPLANE TRANSCEIVERS / PAPER 4.7 4.7 A 2.7 Gb/s CDMA-Interconnect Transceiver Chip Set with Multi-Level Signal Data Recovery for Re-configurable VLSI Systems

More information

Simple SDR Receiver. Looking for some hardware to learn about SDR? This project may be just what you need to explore this hot topic!

Simple SDR Receiver. Looking for some hardware to learn about SDR? This project may be just what you need to explore this hot topic! Michael Hightower, KF6SJ 13620 White Rock Station Rd, Poway, CA 92064; kf6sj@arrl.net Simple SDR Receiver Looking for some hardware to learn about SDR? This project may be just what you need to explore

More information

Demonstration of a Software Defined Radio Platform for dynamic spectrum allocation.

Demonstration of a Software Defined Radio Platform for dynamic spectrum allocation. Demonstration of a Software Defined Radio Platform for dynamic spectrum allocation. Livia Ruiz Centre for Telecommunications Value-Chain Research Institute of Microelectronic and Wireless Systems, NUI

More information

In 3G/WCDMA mobile. IP2 and IP3 Nonlinearity Specifications for 3G/WCDMA Receivers 3G SPECIFICATIONS

In 3G/WCDMA mobile. IP2 and IP3 Nonlinearity Specifications for 3G/WCDMA Receivers 3G SPECIFICATIONS From June 009 High Frequency Electronics Copyright 009 Summit Technical Media, LLC IP and IP3 Nonlinearity Specifications for 3G/WCDMA Receivers By Chris W. Liu and Morten Damgaard Broadcom Corporation

More information

Phase-Locked Loop Based Clock Generators

Phase-Locked Loop Based Clock Generators Phase-Locked Loop Based Clock Generators INTRODUCTION As system clock frequencies reach 100 MHz and beyond maintaining control over clock becomes very important In addition to generating the various clocks

More information

Homebuilt HF Radios for Use Underground Paul R. Jorgenson KE7HR

Homebuilt HF Radios for Use Underground Paul R. Jorgenson KE7HR Homebuilt HF Radios for Use Underground Paul R. Jorgenson KE7HR With the good success in using Amateur Band HF radio for underground communications, I started looking for cheaper alternatives to the $500+

More information

AN-756 APPLICATION NOTE One Technology Way P.O. Box 9106 Norwood, MA 02062-9106 Tel: 781/329-4700 Fax: 781/326-8703 www.analog.com

AN-756 APPLICATION NOTE One Technology Way P.O. Box 9106 Norwood, MA 02062-9106 Tel: 781/329-4700 Fax: 781/326-8703 www.analog.com APPLICATION NOTE One Technology Way P.O. Box 9106 Norwood, MA 02062-9106 Tel: 781/329-4700 Fax: 781/326-8703 www.analog.com Sampled Systems and the Effects of Clock Phase Noise and Jitter by Brad Brannon

More information

AM/FM/ϕM Measurement Demodulator FS-K7

AM/FM/ϕM Measurement Demodulator FS-K7 Data sheet Version 02.00 AM/FM/ϕM Measurement Demodulator FS-K7 July 2005 for the Analyzers FSQ/FSU/FSP and the Test Receivers ESCI/ESPI AM/FM/ϕM demodulator for measuring analog modulation parameters

More information

INJECTION of a periodic signal into an oscillator leads

INJECTION of a periodic signal into an oscillator leads IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 39, NO. 9, SEPTEMBER 2004 1415 A Study of Injection Locking and Pulling in Oscillators Behzad Razavi, Fellow, IEEE Abstract Injection locking characteristics

More information

MEASUREMENT UNCERTAINTY IN VECTOR NETWORK ANALYZER

MEASUREMENT UNCERTAINTY IN VECTOR NETWORK ANALYZER MEASUREMENT UNCERTAINTY IN VECTOR NETWORK ANALYZER W. Li, J. Vandewege Department of Information Technology (INTEC) University of Gent, St.Pietersnieuwstaat 41, B-9000, Gent, Belgium Abstract: Precision

More information

IN RECENT YEARS, the increase of data transmission over

IN RECENT YEARS, the increase of data transmission over 1356 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 39, NO. 8, AUGUST 2004 A 3.125-Gb/s Clock and Data Recovery Circuit for the 10-Gbase-LX4 Ethernet Rong-Jyi Yang, Student Member, IEEE, Shang-Ping Chen, and

More information

Vi, fi input. Vphi output VCO. Vosc, fosc. voltage-controlled oscillator

Vi, fi input. Vphi output VCO. Vosc, fosc. voltage-controlled oscillator Experiment #4 CMOS 446 Phase-Locked Loop c 1997 Dragan Maksimovic Department of Electrical and Computer Engineering University of Colorado, Boulder The purpose of this lab assignment is to introduce operating

More information

Understand the effects of clock jitter and phase noise on sampled systems A s higher resolution data converters that can

Understand the effects of clock jitter and phase noise on sampled systems A s higher resolution data converters that can designfeature By Brad Brannon, Analog Devices Inc MUCH OF YOUR SYSTEM S PERFORMANCE DEPENDS ON JITTER SPECIFICATIONS, SO CAREFUL ASSESSMENT IS CRITICAL. Understand the effects of clock jitter and phase

More information

INTEGRATED CIRCUITS DATA SHEET. TDA7000 FM radio circuit. Product specification File under Integrated Circuits, IC01

INTEGRATED CIRCUITS DATA SHEET. TDA7000 FM radio circuit. Product specification File under Integrated Circuits, IC01 INTEGRATED CIRCUITS DATA SHEET File under Integrated Circuits, IC01 May 1992 GENERAL DESCRIPTION The is a monolithic integrated circuit for mono FM portable radios, where a minimum on peripheral components

More information

A 3.2Gb/s Clock and Data Recovery Circuit Without Reference Clock for a High-Speed Serial Data Link

A 3.2Gb/s Clock and Data Recovery Circuit Without Reference Clock for a High-Speed Serial Data Link A 3.2Gb/s Clock and Data Recovery Circuit Without Reference Clock for a High-Speed Serial Data Link Kang jik Kim, Ki sang Jeong, Seong ik Cho The Department of Electronics Engineering Chonbuk National

More information

Scalable Frequency Generation from Single Optical Wave

Scalable Frequency Generation from Single Optical Wave Scalable Frequency Generation from Single Optical Wave S. Radic Jacobs School Of Engineering Qualcomm Institute University of California San Diego - Motivation - Bandwidth Engineering - Noise Inhibition

More information

A New Programmable RF System for System-on-Chip Applications

A New Programmable RF System for System-on-Chip Applications Vol. 6, o., April, 011 A ew Programmable RF System for System-on-Chip Applications Jee-Youl Ryu 1, Sung-Woo Kim 1, Jung-Hun Lee 1, Seung-Hun Park 1, and Deock-Ho Ha 1 1 Dept. of Information and Communications

More information

RF System Design. Peter Kinget. Bell Laboratories Lucent Technologies Murray Hill, NJ, USA

RF System Design. Peter Kinget. Bell Laboratories Lucent Technologies Murray Hill, NJ, USA RF System Design Peter Kinget Bell Laboratories Lucent Technologies Murray Hill, NJ, USA Outline Circuits for Wireless Wireless Communications duplex, access, and cellular communication systems standards

More information

PLL frequency synthesizer

PLL frequency synthesizer ANALOG & TELECOMMUNICATION ELECTRONICS LABORATORY EXERCISE 4 Lab 4: PLL frequency synthesizer 1.1 Goal The goals of this lab exercise are: - Verify the behavior of a and of a complete PLL - Find capture

More information

A Reflection-Type Vector Modulator with Balanced Loads

A Reflection-Type Vector Modulator with Balanced Loads 45 A Reflection-Type Vector Modulator with Balanced Loads Franco Di Paolo, Mauro Ferrari, Franco Giannini, Ernesto Limiti Department of Electronic Engineering, University of Rome Tor Vergata Via del Politecnico

More information

APPLICATION NOTE. RF System Architecture Considerations ATAN0014. Description

APPLICATION NOTE. RF System Architecture Considerations ATAN0014. Description APPLICATION NOTE RF System Architecture Considerations ATAN0014 Description Highly integrated and advanced radio designs available today, such as the Atmel ATA5830 transceiver and Atmel ATA5780 receiver,

More information

Agilent AN 1316 Optimizing Spectrum Analyzer Amplitude Accuracy

Agilent AN 1316 Optimizing Spectrum Analyzer Amplitude Accuracy Agilent AN 1316 Optimizing Spectrum Analyzer Amplitude Accuracy Application Note RF & Microwave Spectrum Analyzers Table of Contents 3 3 4 4 5 7 8 8 13 13 14 16 16 Introduction Absolute versus relative

More information

THE BASICS OF PLL FREQUENCY SYNTHESIS

THE BASICS OF PLL FREQUENCY SYNTHESIS Supplementary Reading for 27 - Oscillators Ron Bertrand VK2DQ http://www.radioelectronicschool.com THE BASICS OF PLL FREQUENCY SYNTHESIS The phase locked loop (PLL) method of frequency synthesis is now

More information

@'pproved for release by NSA on 12-01-2011, Transparency Case# 6385~SSIFIED. Receiver Dynamics

@'pproved for release by NSA on 12-01-2011, Transparency Case# 6385~SSIFIED. Receiver Dynamics @'pproved for release by NSA on 12-01-2011, Transparency Case# 6385~SSIFIED Receiver Dynamics STATUTORILY EXEMPT Editor's Note: This paper was written before the author retired (1995), In K4 we use a number

More information

2398 9 khz to 2.7 GHz Spectrum Analyzer

2398 9 khz to 2.7 GHz Spectrum Analyzer Spectrum Analyzers 2398 9 khz to 2.7 GHz Spectrum Analyzer A breakthrough in high performance spectrum analysis, combining cost effectiveness and portability in a new lightweight instrument 9 khz to 2.7

More information

Conquering Noise for Accurate RF and Microwave Signal Measurements. Presented by: Ernie Jackson

Conquering Noise for Accurate RF and Microwave Signal Measurements. Presented by: Ernie Jackson Conquering Noise for Accurate RF and Microwave Signal Measurements Presented by: Ernie Jackson The Noise Presentation Review of Basics, Some Advanced & Newer Approaches Noise in Signal Measurements-Summary

More information

A Guide to Calibrating Your Spectrum Analyzer

A Guide to Calibrating Your Spectrum Analyzer A Guide to Calibrating Your Application Note Introduction As a technician or engineer who works with electronics, you rely on your spectrum analyzer to verify that the devices you design, manufacture,

More information

Product & Operating Guide

Product & Operating Guide PLLs WITH INTEGRTED VCO - RF PPLICTIONS PRODUCT & OPERTING GUIDE Table of Contents 1.0 pplicable Products...4 2.0 General Description........................................................ 4 3.0 Functional

More information

Application Note Receiving HF Signals with a USRP Device Ettus Research

Application Note Receiving HF Signals with a USRP Device Ettus Research Application Note Receiving HF Signals with a USRP Device Ettus Research Introduction The electromagnetic (EM) spectrum between 3 and 30 MHz is commonly referred to as the HF band. Due to the propagation

More information

Application Note SAW-Components

Application Note SAW-Components Application Note SAW-Components Principles of SAWR-stabilized oscillators and transmitters. App: Note #1 This application note describes the physical principle of SAW-stabilized oscillator. Oscillator

More information

Design and Analysis of Integrated RF Front-end Transceiver System Using Printed Circuit Technology for 5 GHz Wireless Communication Applications

Design and Analysis of Integrated RF Front-end Transceiver System Using Printed Circuit Technology for 5 GHz Wireless Communication Applications 2014 First International Conference on Systems Informatics, Modelling and Simulation Design and Analysis of Integrated RF Front-end Transceiver System Using Printed Circuit Technology for 5 GHz Wireless

More information

RECOMMENDATION ITU-R SM.1792. Measuring sideband emissions of T-DAB and DVB-T transmitters for monitoring purposes

RECOMMENDATION ITU-R SM.1792. Measuring sideband emissions of T-DAB and DVB-T transmitters for monitoring purposes Rec. ITU-R SM.1792 1 RECOMMENDATION ITU-R SM.1792 Measuring sideband emissions of T-DAB and DVB-T transmitters for monitoring purposes (2007) Scope This Recommendation provides guidance to measurement

More information

Simulation and Design of Printed Circuit Boards Utilizing Novel Embedded Capacitance Material

Simulation and Design of Printed Circuit Boards Utilizing Novel Embedded Capacitance Material Simulation and Design of Printed Circuit Boards Utilizing Novel Embedded Capacitance Material Yu Xuequan, Yan Hang, Zhang Gezi, Wang Haisan Huawei Technologies Co., Ltd Lujiazui Subpark, Pudong Software

More information

Telephony Solution for Local Multi-Point Distribution Service

Telephony Solution for Local Multi-Point Distribution Service Telephony Solution for Local Multi-Point Distribution Service Derek Lam Computer Systems Laboratory Aly F. Elrefaie, Lynn Plouse, Yee-Hsiang Chang Video Communications Division HPL-97-165 December, 1997

More information

Automated Switching Mechanism for Multi-Standard RFID Transponder

Automated Switching Mechanism for Multi-Standard RFID Transponder Automated Switching Mechanism for Multi-Standard RFID Transponder Teh Kim Ting and Khaw Mei Kum Faculty of Engineering Multimedia University Cyberjaya, Malaysia mkkhaw@mmu.edu.my Abstract This paper presents

More information

DESIGN OF MIXED SIGNAL CIRCUITS AND SYSTEMS FOR WIRELESS APPLICATIONS

DESIGN OF MIXED SIGNAL CIRCUITS AND SYSTEMS FOR WIRELESS APPLICATIONS DESIGN OF MIXED SIGNAL CIRCUITS AND SYSTEMS FOR WIRELESS APPLICATIONS Vladimir LANTSOV Computer Engineering Department, Vladimir State University, Gorky Street, 87, 600026, VLADIMIR, Russia, phone: +7

More information

APSYN420A/B Specification 1.24. 0.65-20.0 GHz Low Phase Noise Synthesizer

APSYN420A/B Specification 1.24. 0.65-20.0 GHz Low Phase Noise Synthesizer APSYN420A/B Specification 1.24 0.65-20.0 GHz Low Phase Noise Synthesizer 1 Introduction The APSYN420 is a wideband low phase-noise synthesizer operating from 0.65 to 20 GHz. The nominal output power is

More information

Efficient Interconnect Design with Novel Repeater Insertion for Low Power Applications

Efficient Interconnect Design with Novel Repeater Insertion for Low Power Applications Efficient Interconnect Design with Novel Repeater Insertion for Low Power Applications TRIPTI SHARMA, K. G. SHARMA, B. P. SINGH, NEHA ARORA Electronics & Communication Department MITS Deemed University,

More information

HF Receiver Testing. Issues & Advances. (also presented at APDXC 2014, Osaka, Japan, November 2014)

HF Receiver Testing. Issues & Advances. (also presented at APDXC 2014, Osaka, Japan, November 2014) HF Receiver Testing: Issues & Advances (also presented at APDXC 2014, Osaka, Japan, November 2014) Adam Farson VA7OJ/AB4OJ Copyright 2014 North Shore Amateur Radio Club 1 HF Receiver Performance Specs

More information

AN1200.04. Application Note: FCC Regulations for ISM Band Devices: 902-928 MHz. FCC Regulations for ISM Band Devices: 902-928 MHz

AN1200.04. Application Note: FCC Regulations for ISM Band Devices: 902-928 MHz. FCC Regulations for ISM Band Devices: 902-928 MHz AN1200.04 Application Note: FCC Regulations for ISM Band Devices: Copyright Semtech 2006 1 of 15 www.semtech.com 1 Table of Contents 1 Table of Contents...2 1.1 Index of Figures...2 1.2 Index of Tables...2

More information

GSM/EDGE Output RF Spectrum on the V93000 Joe Kelly and Max Seminario, Verigy

GSM/EDGE Output RF Spectrum on the V93000 Joe Kelly and Max Seminario, Verigy GSM/EDGE Output RF Spectrum on the V93000 Joe Kelly and Max Seminario, Verigy Introduction A key transmitter measurement for GSM and EDGE is the Output RF Spectrum, or ORFS. The basis of this measurement

More information

Reconfigurable Low Area Complexity Filter Bank Architecture for Software Defined Radio

Reconfigurable Low Area Complexity Filter Bank Architecture for Software Defined Radio Reconfigurable Low Area Complexity Filter Bank Architecture for Software Defined Radio 1 Anuradha S. Deshmukh, 2 Prof. M. N. Thakare, 3 Prof.G.D.Korde 1 M.Tech (VLSI) III rd sem Student, 2 Assistant Professor(Selection

More information