Fourier Series Approximation of a Square Wave

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Fourier Series Approximation of a Square Wave"

Transcription

1 OpenSax-CNX module: m4 Fourier Series Approximaion of a Square Wave Don Johnson his work is produced by OpenSax-CNX and licensed under he Creaive Commons Aribuion License. Absrac Shows how o use Fourier series o approximae a square wave, as opposed o he sinusoidal waves seen previously. he Fourier series represenaion of a signal, as expressed for a square wave by s ( = a + ( 2πk a k cos + k= ( 2πk b k sin k= ( says ha he lef and righ sides are "equal". We need o invesigae equaliy hrough an example. Example Version 2.6: Jun 4, 29 2: pm -5 hp://creaivecommons.org/licenses/by/. hp://cnx.org/conen/m4/2.6/

2 OpenSax-CNX module: m4 2 Fourier series approximaion of a square wave K= - K=5 - K= - K=49 - Figure : Fourier series approximaion o sq (. he number of erms in he Fourier sum is indicaed in each plo, and he square wave is shown as a dashed line over wo periods. Le's nd he specrum of he square wave sq (. he expressions for he Fourier coeciens have he common form a k b k = 2 2 cos ( 2πk sin ( 2πk d 2 he cosine coeciens a k are all zero, and he sine coeciens are 4 πk if k is odd b k = if k is even (3 2 cos ( 2πk sin ( 2πk d (2 hus, he Fourier series for he square wave is sq ( = k {,3,... } ( 4 2πk πk sin (4 hp://cnx.org/conen/m4/2.6/

3 OpenSax-CNX module: m4 3 As we see in Figure (Fourier series approximaion of a square wave, he Fourier series requires many more erms o provide he same qualiy of approximaion as we found wih he half-wave recied sinusoid. We can verify ha more erms are needed by considering he power specrum and he approximaion error shown in Figure 2 (Power specrum and rms error. P s (k Power specrum and rms error k Relaive rms error K Figure 2: he upper plo shows he power specrum of he square wave, and he lower plo he rms error of he nie-lengh Fourier series approximaion o he square wave. he aserisk denoes he rms error when he number of erms K in he Fourier series equals 99. his dierence beween he wo Fourier series resuls because he half-wave recied sinusoid's Fourier coeciens are proporional o k while hose of he square wave are proporional o 2 k. In shor, he square wave's coeciens decay more slowly wih increasing frequency. Said anoher way, he square-wave's specrum conains more power a higher frequencies han does he halfwave-recied sinusoid. Exercise (Soluion on p. 6. Calculae he harmonic disorion for he square wave. hp://cnx.org/conen/m4/2.6/

4 OpenSax-CNX module: m4 4 Figure 3: Fourier series approximaion o sq (. he number of erms in he Fourier sum is indicaed in each plo, and he square wave is shown as a dashed line over wo periods. When comparing he square wave o is Fourier series represenaion i is no clear ha he wo are equal. he fac ha he square wave's Fourier series requires more erms for a given represenaion accuracy is no imporan. However, close inspecion of Figure 3 does reveal a poenial issue: Does he Fourier series really equal he square wave a all values of? In paricular, a each sep-change in he square wave, he Fourier series exhibis a peak followed by rapid oscillaions. As more erms are added o he series, he oscillaions seem o become more rapid and smaller, bu he peaks are no decreasing. Consider his mahemaical quesion inuiively: Can a disconinuous funcion, like he square wave, be expressed as a sum, even an innie one, of coninuous ones? One should a leas be suspicious, and in fac, i can' be hus expressed. his issue brough Fourier much criicism from he French Academy of Science (Laplace, Legendre, and Lagrange comprised he review commiee for several years afer is presenaion on 87. I was no resolved for also a cenury, and is resoluion is ineresing and imporan o undersand from a pracical viewpoin. hp://www-groups.dcs.s-and.ac.uk/ hisory/mahemaicians/fourier.hml hp://cnx.org/conen/m4/2.6/

5 OpenSax-CNX module: m4 5 he exraneous peaks in he square wave's Fourier series never disappear; hey are ermed Gibb's phenomenon afer he American physicis Josiah Willard Gibbs. hey occur whenever he signal is disconinuous, and will always be presen whenever he signal has jumps. Le's reurn o he quesion of equaliy; how can he equal sign in he deniion of he Fourier series be jusied? he parial answer is ha poinwiseeach and every value of equaliy is no guaraneed. Wha mahemaicians laer in he nineeenh cenury showed was ha he rms error of he Fourier series was always zero. limi rms (ɛ K = (5 K Wha his means is ha he dierence beween an acual signal and is Fourier series represenaion may no be zero, bu he square of his quaniy has zero inegral! I is hrough he eyes of he rms value ha we dene equaliy: wo signals s (, s 2 ( are said o be equal in he mean square if rms (s s 2 =. hese signals are said o be equal poinwise if s ( = s 2 ( for all values of. For Fourier series, Gibb's phenomenon peaks have nie heigh and zero widh: he error diers from zero only a isolaed poins whenever he periodic signal conains disconinuiiesand equals abou 9% of he size of he disconinuiy. he value of a funcion a a nie se of poins does no aec is inegral. his eec underlies he reason why dening he value of a disconinuous funcion, like we refrained from doing in dening he sep funcion 2, a is disconinuiy is meaningless. Whaever you pick for a value has no pracical relevance for eiher he signal's specrum or for how a sysem responds o he signal. he Fourier series value "a" he disconinuiy is he average of he values on eiher side of he jump. 2 "Elemenal Signals": Secion Uni Sep <hp://cnx.org/conen/m4/laes/#sepdef> hp://cnx.org/conen/m4/2.6/

6 OpenSax-CNX module: m4 6 Soluions o Exercises in his Module Soluion o Exercise (p. 3 oal harmonic disorion in he square wave is ( 4 π 2 = 2%. hp://cnx.org/conen/m4/2.6/

AP Calculus AB 2013 Scoring Guidelines

AP Calculus AB 2013 Scoring Guidelines AP Calculus AB 1 Scoring Guidelines The College Board The College Board is a mission-driven no-for-profi organizaion ha connecs sudens o college success and opporuniy. Founded in 19, he College Board was

More information

AP Calculus BC 2010 Scoring Guidelines

AP Calculus BC 2010 Scoring Guidelines AP Calculus BC Scoring Guidelines The College Board The College Board is a no-for-profi membership associaion whose mission is o connec sudens o college success and opporuniy. Founded in, he College Board

More information

Fourier Series & The Fourier Transform

Fourier Series & The Fourier Transform Fourier Series & The Fourier Transform Wha is he Fourier Transform? Fourier Cosine Series for even funcions and Sine Series for odd funcions The coninuous limi: he Fourier ransform (and is inverse) The

More information

17 Laplace transform. Solving linear ODE with piecewise continuous right hand sides

17 Laplace transform. Solving linear ODE with piecewise continuous right hand sides 7 Laplace ransform. Solving linear ODE wih piecewise coninuous righ hand sides In his lecure I will show how o apply he Laplace ransform o he ODE Ly = f wih piecewise coninuous f. Definiion. A funcion

More information

Random Walk in 1-D. 3 possible paths x vs n. -5 For our random walk, we assume the probabilities p,q do not depend on time (n) - stationary

Random Walk in 1-D. 3 possible paths x vs n. -5 For our random walk, we assume the probabilities p,q do not depend on time (n) - stationary Random Walk in -D Random walks appear in many cones: diffusion is a random walk process undersanding buffering, waiing imes, queuing more generally he heory of sochasic processes gambling choosing he bes

More information

cooking trajectory boiling water B (t) microwave 0 2 4 6 8 101214161820 time t (mins)

cooking trajectory boiling water B (t) microwave 0 2 4 6 8 101214161820 time t (mins) Alligaor egg wih calculus We have a large alligaor egg jus ou of he fridge (1 ) which we need o hea o 9. Now here are wo accepable mehods for heaing alligaor eggs, one is o immerse hem in boiling waer

More information

Chapter 7. Response of First-Order RL and RC Circuits

Chapter 7. Response of First-Order RL and RC Circuits Chaper 7. esponse of Firs-Order L and C Circuis 7.1. The Naural esponse of an L Circui 7.2. The Naural esponse of an C Circui 7.3. The ep esponse of L and C Circuis 7.4. A General oluion for ep and Naural

More information

Signal Rectification

Signal Rectification 9/3/25 Signal Recificaion.doc / Signal Recificaion n imporan applicaion of juncion diodes is signal recificaion. here are wo ypes of signal recifiers, half-wae and fullwae. Le s firs consider he ideal

More information

CHARGE AND DISCHARGE OF A CAPACITOR

CHARGE AND DISCHARGE OF A CAPACITOR REFERENCES RC Circuis: Elecrical Insrumens: Mos Inroducory Physics exs (e.g. A. Halliday and Resnick, Physics ; M. Sernheim and J. Kane, General Physics.) This Laboraory Manual: Commonly Used Insrumens:

More information

RC, RL and RLC circuits

RC, RL and RLC circuits Name Dae Time o Complee h m Parner Course/ Secion / Grade RC, RL and RLC circuis Inroducion In his experimen we will invesigae he behavior of circuis conaining combinaions of resisors, capaciors, and inducors.

More information

Circuit Types. () i( t) ( )

Circuit Types. () i( t) ( ) Circui Types DC Circuis Idenifying feaures: o Consan inpus: he volages of independen volage sources and currens of independen curren sources are all consan. o The circui does no conain any swiches. All

More information

The Transport Equation

The Transport Equation The Transpor Equaion Consider a fluid, flowing wih velociy, V, in a hin sraigh ube whose cross secion will be denoed by A. Suppose he fluid conains a conaminan whose concenraion a posiion a ime will be

More information

Duration and Convexity ( ) 20 = Bond B has a maturity of 5 years and also has a required rate of return of 10%. Its price is $613.

Duration and Convexity ( ) 20 = Bond B has a maturity of 5 years and also has a required rate of return of 10%. Its price is $613. Graduae School of Business Adminisraion Universiy of Virginia UVA-F-38 Duraion and Convexiy he price of a bond is a funcion of he promised paymens and he marke required rae of reurn. Since he promised

More information

PHYS245 Lab: RC circuits

PHYS245 Lab: RC circuits PHYS245 Lab: C circuis Purpose: Undersand he charging and discharging ransien processes of a capacior Display he charging and discharging process using an oscilloscope Undersand he physical meaning of

More information

Module 4. Single-phase AC circuits. Version 2 EE IIT, Kharagpur

Module 4. Single-phase AC circuits. Version 2 EE IIT, Kharagpur Module 4 Single-phase A circuis ersion EE T, Kharagpur esson 5 Soluion of urren in A Series and Parallel ircuis ersion EE T, Kharagpur n he las lesson, wo poins were described:. How o solve for he impedance,

More information

A Mathematical Description of MOSFET Behavior

A Mathematical Description of MOSFET Behavior 10/19/004 A Mahemaical Descripion of MOSFET Behavior.doc 1/8 A Mahemaical Descripion of MOSFET Behavior Q: We ve learned an awful lo abou enhancemen MOSFETs, bu we sill have ye o esablished a mahemaical

More information

Chapter 2 Kinematics in One Dimension

Chapter 2 Kinematics in One Dimension Chaper Kinemaics in One Dimension Chaper DESCRIBING MOTION:KINEMATICS IN ONE DIMENSION PREVIEW Kinemaics is he sudy of how hings moe how far (disance and displacemen), how fas (speed and elociy), and how

More information

AP Calculus AB 2010 Scoring Guidelines

AP Calculus AB 2010 Scoring Guidelines AP Calculus AB 1 Scoring Guidelines The College Board The College Board is a no-for-profi membership associaion whose mission is o connec sudens o college success and opporuniy. Founded in 1, he College

More information

9. Capacitor and Resistor Circuits

9. Capacitor and Resistor Circuits ElecronicsLab9.nb 1 9. Capacior and Resisor Circuis Inroducion hus far we have consider resisors in various combinaions wih a power supply or baery which provide a consan volage source or direc curren

More information

Analogue and Digital Signal Processing. First Term Third Year CS Engineering By Dr Mukhtiar Ali Unar

Analogue and Digital Signal Processing. First Term Third Year CS Engineering By Dr Mukhtiar Ali Unar Analogue and Digial Signal Processing Firs Term Third Year CS Engineering By Dr Mukhiar Ali Unar Recommended Books Haykin S. and Van Veen B.; Signals and Sysems, John Wiley& Sons Inc. ISBN: 0-7-380-7 Ifeachor

More information

Newton s Laws of Motion

Newton s Laws of Motion Newon s Laws of Moion MS4414 Theoreical Mechanics Firs Law velociy. In he absence of exernal forces, a body moves in a sraigh line wih consan F = 0 = v = cons. Khan Academy Newon I. Second Law body. The

More information

Differential Equations. Solving for Impulse Response. Linear systems are often described using differential equations.

Differential Equations. Solving for Impulse Response. Linear systems are often described using differential equations. Differenial Equaions Linear sysems are ofen described using differenial equaions. For example: d 2 y d 2 + 5dy + 6y f() d where f() is he inpu o he sysem and y() is he oupu. We know how o solve for y given

More information

Chapter 2 Problems. s = d t up. = 40km / hr d t down. 60km / hr. d t total. + t down. = t up. = 40km / hr + d. 60km / hr + 40km / hr

Chapter 2 Problems. s = d t up. = 40km / hr d t down. 60km / hr. d t total. + t down. = t up. = 40km / hr + d. 60km / hr + 40km / hr Chaper 2 Problems 2.2 A car ravels up a hill a a consan speed of 40km/h and reurns down he hill a a consan speed of 60 km/h. Calculae he average speed for he rip. This problem is a bi more suble han i

More information

Entropy: From the Boltzmann equation to the Maxwell Boltzmann distribution

Entropy: From the Boltzmann equation to the Maxwell Boltzmann distribution Enropy: From he Bolzmann equaion o he Maxwell Bolzmann disribuion A formula o relae enropy o probabiliy Ofen i is a lo more useful o hink abou enropy in erms of he probabiliy wih which differen saes are

More information

Chabot College Physics Lab RC Circuits Scott Hildreth

Chabot College Physics Lab RC Circuits Scott Hildreth Chabo College Physics Lab Circuis Sco Hildreh Goals: Coninue o advance your undersanding of circuis, measuring resisances, currens, and volages across muliple componens. Exend your skills in making breadboard

More information

RC Circuit and Time Constant

RC Circuit and Time Constant ircui and Time onsan 8M Objec: Apparaus: To invesigae he volages across he resisor and capacior in a resisor-capacior circui ( circui) as he capacior charges and discharges. We also wish o deermine he

More information

PROFIT TEST MODELLING IN LIFE ASSURANCE USING SPREADSHEETS PART ONE

PROFIT TEST MODELLING IN LIFE ASSURANCE USING SPREADSHEETS PART ONE Profi Tes Modelling in Life Assurance Using Spreadshees PROFIT TEST MODELLING IN LIFE ASSURANCE USING SPREADSHEETS PART ONE Erik Alm Peer Millingon 2004 Profi Tes Modelling in Life Assurance Using Spreadshees

More information

Permutations and Combinations

Permutations and Combinations Permuaions and Combinaions Combinaorics Copyrigh Sandards 006, Tes - ANSWERS Barry Mabillard. 0 www.mah0s.com 1. Deermine he middle erm in he expansion of ( a b) To ge he k-value for he middle erm, divide

More information

MTH6121 Introduction to Mathematical Finance Lesson 5

MTH6121 Introduction to Mathematical Finance Lesson 5 26 MTH6121 Inroducion o Mahemaical Finance Lesson 5 Conens 2.3 Brownian moion wih drif........................... 27 2.4 Geomeric Brownian moion........................... 28 2.5 Convergence of random

More information

Transient Analysis of First Order RC and RL circuits

Transient Analysis of First Order RC and RL circuits Transien Analysis of Firs Order and iruis The irui shown on Figure 1 wih he swih open is haraerized by a pariular operaing ondiion. Sine he swih is open, no urren flows in he irui (i=0) and v=0. The volage

More information

Appendix A: Area. 1 Find the radius of a circle that has circumference 12 inches.

Appendix A: Area. 1 Find the radius of a circle that has circumference 12 inches. Appendi A: Area worked-ou s o Odd-Numbered Eercises Do no read hese worked-ou s before aemping o do he eercises ourself. Oherwise ou ma mimic he echniques shown here wihou undersanding he ideas. Bes wa

More information

Fourier Series and Fourier Transform

Fourier Series and Fourier Transform Fourier Series and Fourier ransform Complex exponenials Complex version of Fourier Series ime Shifing, Magniude, Phase Fourier ransform Copyrigh 2007 by M.H. Perro All righs reserved. 6.082 Spring 2007

More information

4 Convolution. Recommended Problems. x2[n] 1 2[n]

4 Convolution. Recommended Problems. x2[n] 1 2[n] 4 Convoluion Recommended Problems P4.1 This problem is a simple example of he use of superposiion. Suppose ha a discree-ime linear sysem has oupus y[n] for he given inpus x[n] as shown in Figure P4.1-1.

More information

5.8 Resonance 231. The study of vibrating mechanical systems ends here with the theory of pure and practical resonance.

5.8 Resonance 231. The study of vibrating mechanical systems ends here with the theory of pure and practical resonance. 5.8 Resonance 231 5.8 Resonance The sudy of vibraing mechanical sysems ends here wih he heory of pure and pracical resonance. Pure Resonance The noion of pure resonance in he differenial equaion (1) ()

More information

Suggested Reading. Signals and Systems 4-2

Suggested Reading. Signals and Systems 4-2 4 Convoluion In Lecure 3 we inroduced and defined a variey of sysem properies o which we will make frequen reference hroughou he course. Of paricular imporance are he properies of lineariy and ime invariance,

More information

Chapter 2: Principles of steady-state converter analysis

Chapter 2: Principles of steady-state converter analysis Chaper 2 Principles of Seady-Sae Converer Analysis 2.1. Inroducion 2.2. Inducor vol-second balance, capacior charge balance, and he small ripple approximaion 2.3. Boos converer example 2.4. Cuk converer

More information

Capacitors and inductors

Capacitors and inductors Capaciors and inducors We coninue wih our analysis of linear circuis by inroducing wo new passive and linear elemens: he capacior and he inducor. All he mehods developed so far for he analysis of linear

More information

Chapter 8: Regression with Lagged Explanatory Variables

Chapter 8: Regression with Lagged Explanatory Variables Chaper 8: Regression wih Lagged Explanaory Variables Time series daa: Y for =1,..,T End goal: Regression model relaing a dependen variable o explanaory variables. Wih ime series new issues arise: 1. One

More information

A Probability Density Function for Google s stocks

A Probability Density Function for Google s stocks A Probabiliy Densiy Funcion for Google s socks V.Dorobanu Physics Deparmen, Poliehnica Universiy of Timisoara, Romania Absrac. I is an approach o inroduce he Fokker Planck equaion as an ineresing naural

More information

Imagine a Source (S) of sound waves that emits waves having frequency f and therefore

Imagine a Source (S) of sound waves that emits waves having frequency f and therefore heoreical Noes: he oppler Eec wih ound Imagine a ource () o sound waes ha emis waes haing requency and hereore period as measured in he res rame o he ource (). his means ha any eecor () ha is no moing

More information

Chapter 6: Business Valuation (Income Approach)

Chapter 6: Business Valuation (Income Approach) Chaper 6: Business Valuaion (Income Approach) Cash flow deerminaion is one of he mos criical elemens o a business valuaion. Everyhing may be secondary. If cash flow is high, hen he value is high; if he

More information

Inductance and Transient Circuits

Inductance and Transient Circuits Chaper H Inducance and Transien Circuis Blinn College - Physics 2426 - Terry Honan As a consequence of Faraday's law a changing curren hrough one coil induces an EMF in anoher coil; his is known as muual

More information

4. International Parity Conditions

4. International Parity Conditions 4. Inernaional ariy ondiions 4.1 urchasing ower ariy he urchasing ower ariy ( heory is one of he early heories of exchange rae deerminaion. his heory is based on he concep ha he demand for a counry's currency

More information

1 HALF-LIFE EQUATIONS

1 HALF-LIFE EQUATIONS R.L. Hanna Page HALF-LIFE EQUATIONS The basic equaion ; he saring poin ; : wrien for ime: x / where fracion of original maerial and / number of half-lives, and / log / o calculae he age (# ears): age (half-life)

More information

Form measurement systems from Hommel-Etamic Geometrical tolerancing in practice DKD-K-02401. Precision is our business.

Form measurement systems from Hommel-Etamic Geometrical tolerancing in practice DKD-K-02401. Precision is our business. Form measuremen sysems from Hommel-Eamic Geomerical olerancing in pracice DKD-K-02401 Precision is our business. Drawing enries Tolerance frame 0.01 0.01 Daum leer Tolerance value in mm Symbol for he oleranced

More information

Forecasting, Ordering and Stock- Holding for Erratic Demand

Forecasting, Ordering and Stock- Holding for Erratic Demand ISF 2002 23 rd o 26 h June 2002 Forecasing, Ordering and Sock- Holding for Erraic Demand Andrew Eaves Lancaser Universiy / Andalus Soluions Limied Inroducion Erraic and slow-moving demand Demand classificaion

More information

Full-wave rectification, bulk capacitor calculations Chris Basso January 2009

Full-wave rectification, bulk capacitor calculations Chris Basso January 2009 ull-wave recificaion, bulk capacior calculaions Chris Basso January 9 This shor paper shows how o calculae he bulk capacior value based on ripple specificaions and evaluae he rms curren ha crosses i. oal

More information

A Note on Using the Svensson procedure to estimate the risk free rate in corporate valuation

A Note on Using the Svensson procedure to estimate the risk free rate in corporate valuation A Noe on Using he Svensson procedure o esimae he risk free rae in corporae valuaion By Sven Arnold, Alexander Lahmann and Bernhard Schwezler Ocober 2011 1. The risk free ineres rae in corporae valuaion

More information

Motion Along a Straight Line

Motion Along a Straight Line Moion Along a Sraigh Line On Sepember 6, 993, Dave Munday, a diesel mechanic by rade, wen over he Canadian edge of Niagara Falls for he second ime, freely falling 48 m o he waer (and rocks) below. On his

More information

A Further Examination of Insurance Pricing and Underwriting Cycles

A Further Examination of Insurance Pricing and Underwriting Cycles A Furher Examinaion of Insurance ricing and Underwriing Cycles AFIR Conference, Sepember 2005, Zurich, Swizerland Chris K. Madsen, GE Insurance Soluions, Copenhagen, Denmark Svend Haasrup, GE Insurance

More information

Acceleration Lab Teacher s Guide

Acceleration Lab Teacher s Guide Acceleraion Lab Teacher s Guide Objecives:. Use graphs of disance vs. ime and velociy vs. ime o find acceleraion of a oy car.. Observe he relaionship beween he angle of an inclined plane and he acceleraion

More information

Table of contents Chapter 1 Interest rates and factors Chapter 2 Level annuities Chapter 3 Varying annuities

Table of contents Chapter 1 Interest rates and factors Chapter 2 Level annuities Chapter 3 Varying annuities Table of conens Chaper 1 Ineres raes and facors 1 1.1 Ineres 2 1.2 Simple ineres 4 1.3 Compound ineres 6 1.4 Accumulaed value 10 1.5 Presen value 11 1.6 Rae of discoun 13 1.7 Consan force of ineres 17

More information

Voltage level shifting

Voltage level shifting rek Applicaion Noe Number 1 r. Maciej A. Noras Absrac A brief descripion of volage shifing circuis. 1 Inroducion In applicaions requiring a unipolar A volage signal, he signal may be delivered from a bi-polar

More information

Mathematics in Pharmacokinetics What and Why (A second attempt to make it clearer)

Mathematics in Pharmacokinetics What and Why (A second attempt to make it clearer) Mahemaics in Pharmacokineics Wha and Why (A second aemp o make i clearer) We have used equaions for concenraion () as a funcion of ime (). We will coninue o use hese equaions since he plasma concenraions

More information

AP Calculus AB 2007 Scoring Guidelines

AP Calculus AB 2007 Scoring Guidelines AP Calculus AB 7 Scoring Guidelines The College Board: Connecing Sudens o College Success The College Board is a no-for-profi membership associaion whose mission is o connec sudens o college success and

More information

MA261-A Calculus III 2006 Fall Homework 4 Solutions Due 9/29/2006 8:00AM

MA261-A Calculus III 2006 Fall Homework 4 Solutions Due 9/29/2006 8:00AM MA6-A Calculus III 006 Fall Homework 4 Soluions Due 9/9/006 00AM 97 #4 Describe in words he surface 3 A half-lane in he osiive x and y erriory (See Figure in Page 67) 97 # Idenify he surface cos We see

More information

Graduate Macro Theory II: Notes on Neoclassical Growth Model

Graduate Macro Theory II: Notes on Neoclassical Growth Model Graduae Macro Theory II: Noes on Neoclassical Growh Model Eric Sims Universiy of Nore Dame Spring 2011 1 Basic Neoclassical Growh Model The economy is populaed by a large number of infiniely lived agens.

More information

Market Liquidity and the Impacts of the Computerized Trading System: Evidence from the Stock Exchange of Thailand

Market Liquidity and the Impacts of the Computerized Trading System: Evidence from the Stock Exchange of Thailand 36 Invesmen Managemen and Financial Innovaions, 4/4 Marke Liquidiy and he Impacs of he Compuerized Trading Sysem: Evidence from he Sock Exchange of Thailand Sorasar Sukcharoensin 1, Pariyada Srisopisawa,

More information

Emergence of Fokker-Planck Dynamics within a Closed Finite Spin System

Emergence of Fokker-Planck Dynamics within a Closed Finite Spin System Emergence of Fokker-Planck Dynamics wihin a Closed Finie Spin Sysem H. Niemeyer(*), D. Schmidke(*), J. Gemmer(*), K. Michielsen(**), H. de Raed(**) (*)Universiy of Osnabrück, (**) Supercompuing Cener Juelich

More information

Kinematics in 1-D From Problems and Solutions in Introductory Mechanics (Draft version, August 2014) David Morin, morin@physics.harvard.

Kinematics in 1-D From Problems and Solutions in Introductory Mechanics (Draft version, August 2014) David Morin, morin@physics.harvard. Chaper 2 Kinemaics in 1-D From Problems and Soluions in Inroducory Mechanics (Draf ersion, Augus 2014) Daid Morin, morin@physics.harard.edu As menioned in he preface, his book should no be hough of as

More information

Chapter 2 Problems. 3600s = 25m / s d = s t = 25m / s 0.5s = 12.5m. Δx = x(4) x(0) =12m 0m =12m

Chapter 2 Problems. 3600s = 25m / s d = s t = 25m / s 0.5s = 12.5m. Δx = x(4) x(0) =12m 0m =12m Chaper 2 Problems 2.1 During a hard sneeze, your eyes migh shu for 0.5s. If you are driving a car a 90km/h during such a sneeze, how far does he car move during ha ime s = 90km 1000m h 1km 1h 3600s = 25m

More information

4.2 Trigonometric Functions; The Unit Circle

4.2 Trigonometric Functions; The Unit Circle 4. Trigonomeric Funcions; The Uni Circle Secion 4. Noes Page A uni circle is a circle cenered a he origin wih a radius of. Is equaion is as shown in he drawing below. Here he leer represens an angle measure.

More information

Solution of a differential equation of the second order by the method of NIGAM

Solution of a differential equation of the second order by the method of NIGAM Tire : Résoluion d'une équaion différenielle du second[...] Dae : 16/02/2011 Page : 1/6 Soluion of a differenial equaion of he second order by he mehod of NIGAM Summarized: We presen in his documen, a

More information

Time-Expanded Sampling (TES) For Ensemble-based Data Assimilation Applied To Conventional And Satellite Observations

Time-Expanded Sampling (TES) For Ensemble-based Data Assimilation Applied To Conventional And Satellite Observations 27 h WAF/23 rd NWP, 29 June 3 July 2015, Chicago IL. 1 Time-Expanded Sampling (TES) For Ensemble-based Daa Assimilaion Applied To Convenional And Saellie Observaions Allen Zhao 1, Qin Xu 2, Yi Jin 1, Jusin

More information

Pulse-Width Modulation Inverters

Pulse-Width Modulation Inverters SECTION 3.6 INVERTERS 189 Pulse-Widh Modulaion Inverers Pulse-widh modulaion is he process of modifying he widh of he pulses in a pulse rain in direc proporion o a small conrol signal; he greaer he conrol

More information

Mortality Variance of the Present Value (PV) of Future Annuity Payments

Mortality Variance of the Present Value (PV) of Future Annuity Payments Morali Variance of he Presen Value (PV) of Fuure Annui Pamens Frank Y. Kang, Ph.D. Research Anals a Frank Russell Compan Absrac The variance of he presen value of fuure annui pamens plas an imporan role

More information

Signal Processing and Linear Systems I

Signal Processing and Linear Systems I Sanford Universiy Summer 214-215 Signal Processing and Linear Sysems I Lecure 5: Time Domain Analysis of Coninuous Time Sysems June 3, 215 EE12A:Signal Processing and Linear Sysems I; Summer 14-15, Gibbons

More information

Example What is the minimum bandwidth for transmitting data at a rate of 33.6 kbps without ISI?

Example What is the minimum bandwidth for transmitting data at a rate of 33.6 kbps without ISI? Emple Wh is he minimum ndwidh for rnsmiing d re of 33.6 kps wihou ISI? Answer: he minimum ndwidh is equl o he yquis ndwidh. herefore, BW min W R / 33.6/ 6.8 khz oe: If % roll-off chrcerisic is used, ndwidh

More information

Strategic Optimization of a Transportation Distribution Network

Strategic Optimization of a Transportation Distribution Network Sraegic Opimizaion of a Transporaion Disribuion Nework K. John Sophabmixay, Sco J. Mason, Manuel D. Rossei Deparmen of Indusrial Engineering Universiy of Arkansas 4207 Bell Engineering Cener Fayeeville,

More information

Chapter 6 Interest Rates and Bond Valuation

Chapter 6 Interest Rates and Bond Valuation Chaper 6 Ineres Raes and Bond Valuaion Definiion and Descripion of Bonds Long-erm deb-loosely, bonds wih a mauriy of one year or more Shor-erm deb-less han a year o mauriy, also called unfunded deb Bond-sricly

More information

Equation for a line. Synthetic Impulse Response 0.5 0.5. 0 5 10 15 20 25 Time (sec) x(t) m

Equation for a line. Synthetic Impulse Response 0.5 0.5. 0 5 10 15 20 25 Time (sec) x(t) m Fundamenals of Signals Overview Definiion Examples Energy and power Signal ransformaions Periodic signals Symmery Exponenial & sinusoidal signals Basis funcions Equaion for a line x() m x() =m( ) You will

More information

Variance Swap. by Fabrice Douglas Rouah

Variance Swap. by Fabrice Douglas Rouah Variance wap by Fabrice Douglas Rouah www.frouah.com www.volopa.com In his Noe we presen a deailed derivaion of he fair value of variance ha is used in pricing a variance swap. We describe he approach

More information

Part 1: White Noise and Moving Average Models

Part 1: White Noise and Moving Average Models Chaper 3: Forecasing From Time Series Models Par 1: Whie Noise and Moving Average Models Saionariy In his chaper, we sudy models for saionary ime series. A ime series is saionary if is underlying saisical

More information

Rotational Inertia of a Point Mass

Rotational Inertia of a Point Mass Roaional Ineria of a Poin Mass Saddleback College Physics Deparmen, adaped from PASCO Scienific PURPOSE The purpose of his experimen is o find he roaional ineria of a poin experimenally and o verify ha

More information

SKF Documented Solutions

SKF Documented Solutions SKF Documened Soluions Real world savings and we can prove i! How much can SKF save you? Le s do he numbers. The SKF Documened Soluions Program SKF is probably no he firs of your supplier parners o alk

More information

A Two-Account Life Insurance Model for Scenario-Based Valuation Including Event Risk Jensen, Ninna Reitzel; Schomacker, Kristian Juul

A Two-Account Life Insurance Model for Scenario-Based Valuation Including Event Risk Jensen, Ninna Reitzel; Schomacker, Kristian Juul universiy of copenhagen Universiy of Copenhagen A Two-Accoun Life Insurance Model for Scenario-Based Valuaion Including Even Risk Jensen, Ninna Reizel; Schomacker, Krisian Juul Published in: Risks DOI:

More information

Two Compartment Body Model and V d Terms by Jeff Stark

Two Compartment Body Model and V d Terms by Jeff Stark Two Comparmen Body Model and V d Terms by Jeff Sark In a one-comparmen model, we make wo imporan assumpions: (1) Linear pharmacokineics - By his, we mean ha eliminaion is firs order and ha pharmacokineic

More information

Module 3 Design for Strength. Version 2 ME, IIT Kharagpur

Module 3 Design for Strength. Version 2 ME, IIT Kharagpur Module 3 Design for Srengh Lesson 2 Sress Concenraion Insrucional Objecives A he end of his lesson, he sudens should be able o undersand Sress concenraion and he facors responsible. Deerminaion of sress

More information

The Torsion of Thin, Open Sections

The Torsion of Thin, Open Sections EM 424: Torsion of hin secions 26 The Torsion of Thin, Open Secions The resuls we obained for he orsion of a hin recangle can also be used be used, wih some qualificaions, for oher hin open secions such

More information

Return Calculation of U.S. Treasury Constant Maturity Indices

Return Calculation of U.S. Treasury Constant Maturity Indices Reurn Calculaion of US Treasur Consan Mauri Indices Morningsar Mehodolog Paper Sepeber 30 008 008 Morningsar Inc All righs reserved The inforaion in his docuen is he proper of Morningsar Inc Reproducion

More information

Name: Algebra II Review for Quiz #13 Exponential and Logarithmic Functions including Modeling

Name: Algebra II Review for Quiz #13 Exponential and Logarithmic Functions including Modeling Name: Algebra II Review for Quiz #13 Exponenial and Logarihmic Funcions including Modeling TOPICS: -Solving Exponenial Equaions (The Mehod of Common Bases) -Solving Exponenial Equaions (Using Logarihms)

More information

RC (Resistor-Capacitor) Circuits. AP Physics C

RC (Resistor-Capacitor) Circuits. AP Physics C (Resisor-Capacior Circuis AP Physics C Circui Iniial Condiions An circui is one where you have a capacior and resisor in he same circui. Suppose we have he following circui: Iniially, he capacior is UNCHARGED

More information

11/6/2013. Chapter 14: Dynamic AD-AS. Introduction. Introduction. Keeping track of time. The model s elements

11/6/2013. Chapter 14: Dynamic AD-AS. Introduction. Introduction. Keeping track of time. The model s elements Inroducion Chaper 14: Dynamic D-S dynamic model of aggregae and aggregae supply gives us more insigh ino how he economy works in he shor run. I is a simplified version of a DSGE model, used in cuing-edge

More information

Morningstar Investor Return

Morningstar Investor Return Morningsar Invesor Reurn Morningsar Mehodology Paper Augus 31, 2010 2010 Morningsar, Inc. All righs reserved. The informaion in his documen is he propery of Morningsar, Inc. Reproducion or ranscripion

More information

CALCULATION OF OMX TALLINN

CALCULATION OF OMX TALLINN CALCULATION OF OMX TALLINN CALCULATION OF OMX TALLINN 1. OMX Tallinn index...3 2. Terms in use...3 3. Comuaion rules of OMX Tallinn...3 3.1. Oening, real-ime and closing value of he Index...3 3.2. Index

More information

Answer, Key Homework 2 David McIntyre 45123 Mar 25, 2004 1

Answer, Key Homework 2 David McIntyre 45123 Mar 25, 2004 1 Answer, Key Homework 2 Daid McInyre 4123 Mar 2, 2004 1 This prin-ou should hae 1 quesions. Muliple-choice quesions may coninue on he ne column or page find all choices before making your selecion. The

More information

6.5. Modelling Exercises. Introduction. Prerequisites. Learning Outcomes

6.5. Modelling Exercises. Introduction. Prerequisites. Learning Outcomes Modelling Exercises 6.5 Inroducion This Secion provides examples and asks employing exponenial funcions and logarihmic funcions, such as growh and decay models which are imporan hroughou science and engineering.

More information

Differential Equations and Linear Superposition

Differential Equations and Linear Superposition Differenial Equaions and Linear Superposiion Basic Idea: Provide soluion in closed form Like Inegraion, no general soluions in closed form Order of equaion: highes derivaive in equaion e.g. dy d dy 2 y

More information

Lecture Note on the Real Exchange Rate

Lecture Note on the Real Exchange Rate Lecure Noe on he Real Exchange Rae Barry W. Ickes Fall 2004 0.1 Inroducion The real exchange rae is he criical variable (along wih he rae of ineres) in deermining he capial accoun. As we shall see, his

More information

Chapter 4: Exponential and Logarithmic Functions

Chapter 4: Exponential and Logarithmic Functions Chaper 4: Eponenial and Logarihmic Funcions Secion 4.1 Eponenial Funcions... 15 Secion 4. Graphs of Eponenial Funcions... 3 Secion 4.3 Logarihmic Funcions... 4 Secion 4.4 Logarihmic Properies... 53 Secion

More information

CHAPTER FIVE. Solutions for Section 5.1

CHAPTER FIVE. Solutions for Section 5.1 CHAPTER FIVE 5. SOLUTIONS 87 Soluions for Secion 5.. (a) The velociy is 3 miles/hour for he firs hours, 4 miles/hour for he ne / hour, and miles/hour for he las 4 hours. The enire rip lass + / + 4 = 6.5

More information

Using RCtime to Measure Resistance

Using RCtime to Measure Resistance Basic Express Applicaion Noe Using RCime o Measure Resisance Inroducion One common use for I/O pins is o measure he analog value of a variable resisance. Alhough a buil-in ADC (Analog o Digial Converer)

More information

Term Structure of Prices of Asian Options

Term Structure of Prices of Asian Options Term Srucure of Prices of Asian Opions Jirô Akahori, Tsuomu Mikami, Kenji Yasuomi and Teruo Yokoa Dep. of Mahemaical Sciences, Risumeikan Universiy 1-1-1 Nojihigashi, Kusasu, Shiga 525-8577, Japan E-mail:

More information

A Re-examination of the Joint Mortality Functions

A Re-examination of the Joint Mortality Functions Norh merican cuarial Journal Volume 6, Number 1, p.166-170 (2002) Re-eaminaion of he Join Morali Funcions bsrac. Heekung Youn, rkad Shemakin, Edwin Herman Universi of S. Thomas, Sain Paul, MN, US Morali

More information

The Derivative of a Constant is Zero

The Derivative of a Constant is Zero Sme Simple Algrihms fr Calculaing Derivaives The Derivaive f a Cnsan is Zer Suppse we are l ha x x where x is a cnsan an x represens he psiin f an bjec n a sraigh line pah, in her wrs, he isance ha he

More information

2.5 Life tables, force of mortality and standard life insurance products

2.5 Life tables, force of mortality and standard life insurance products Soluions 5 BS4a Acuarial Science Oford MT 212 33 2.5 Life ables, force of moraliy and sandard life insurance producs 1. (i) n m q represens he probabiliy of deah of a life currenly aged beween ages + n

More information

1. y 5y + 6y = 2e t Solution: Characteristic equation is r 2 5r +6 = 0, therefore r 1 = 2, r 2 = 3, and y 1 (t) = e 2t,

1. y 5y + 6y = 2e t Solution: Characteristic equation is r 2 5r +6 = 0, therefore r 1 = 2, r 2 = 3, and y 1 (t) = e 2t, Homework6 Soluions.7 In Problem hrough 4 use he mehod of variaion of parameers o find a paricular soluion of he given differenial equaion. Then check your answer by using he mehod of undeermined coeffiens..

More information

Hedging with Forwards and Futures

Hedging with Forwards and Futures Hedging wih orwards and uures Hedging in mos cases is sraighforward. You plan o buy 10,000 barrels of oil in six monhs and you wish o eliminae he price risk. If you ake he buy-side of a forward/fuures

More information

SOLID MECHANICS TUTORIAL GEAR SYSTEMS. This work covers elements of the syllabus for the Edexcel module 21722P HNC/D Mechanical Principles OUTCOME 3.

SOLID MECHANICS TUTORIAL GEAR SYSTEMS. This work covers elements of the syllabus for the Edexcel module 21722P HNC/D Mechanical Principles OUTCOME 3. SOLI MEHNIS TUTORIL GER SYSTEMS This work covers elemens of he syllabus for he Edexcel module 21722P HN/ Mechanical Principles OUTOME 3. On compleion of his shor uorial you should be able o do he following.

More information

Follow links Class Use and other Permissions. For more information, send to:

Follow links Class Use and other Permissions. For more information, send  to: COPYRIGHT NOTICE: David A. Kendrick, P. Ruben Mercado, and Hans M. Amman: Compuaional Economics is published by Princeon Universiy Press and copyrighed, 2006, by Princeon Universiy Press. All righs reserved.

More information