Calculus and linear algebra for biomedical engineering Week 4: Inverse matrices and determinants


 Ferdinand Farmer
 1 years ago
 Views:
Transcription
1 Calculus and linear algebra for biomedical engineering Week 4: Inverse matrices and determinants Hartmut Führ Lehrstuhl A für Mathematik, RWTH Aachen October 30, 2008
2 Overview 1 Matrixbymatrix multiplication 2 Inverse matrices 3 Computing inverses 4 Determinants
3 Motivation Suppose that we have variables x 1,..., x m, y 1,..., y n, z 1,..., z k, which are related by the following linear equations: with suitable matrices A, B. x = Ay, y = B z, Is there a way to directly express the dependence of x on z as x = C z, in terms of a matrix C? The answer is yes, and the matrix C is the matrix product of A and B.
4 Matrix multiplication Denition. Let A R m n and B R n k. Denote the columns of B by b1,..., b k. Then the matrix AB R m k is dened as AB = (Ab1 Ab2... Ab k). Hence the jth column of AB is obtained by multiplying A with the jth column of B.
5 Properties of matrix multiplication Theorem. Let A, A R m n and B, B R n k. 1 If 0m,n denotes the zero m n matrix, then 0 k,ma = 0 k,n, A0 n,k = 0 m,k. 2 Distributive laws: A(B + B ) = AB + AB and (A + A )B = AB + A B. 3 Associativity: For all C R k l : A(BC) = (AB)C. 4 Note: Matrix multiplication is not commutative! If we regard vectors x R n as n 1matrices, matrixbyvector multiplication is a special case of matrixbymatrix multiplication. Recall motivation: If x = Ay and y = B z, how does x depend on z? By associativity: x = A(B z) = (AB)z
6 Identity matrix Denition. For m N let the (m m) identity matrix I m be dened by I m =... R m m Then I m x = x, for all x R m. As a consequence, for arbitrary A R n m : A = I n A = AI m.
7 Inverse matrix Denition. Let A R n n. Then B R n n is called inverse of A, denoted B = A 1, if AB = BA = I n. If A has an inverse, A is called invertible or regular. Theorem. Let A, B R n n. (a) If AB = I n or BA = I n, then B = A 1. (b) If A and B are invertible, then AB is invertible with (AB) 1 = B 1 A 1.
8 Invertible matrices and linear systems of equations Theorem. Let A R n n. Then the following are equivalent: (a) A is invertible. (b) For every vector y R n, the system Ax = y has a unique solution. (c) The linear system Ax = 0 has rank n. Sketch of proof: (a) (b): Dene x = A 1 y. Then Ax = A(A 1 y) = I n y = y. (b) (a): For i = 1,..., n, nd the solution x i of Ax i = e i, with e i = (0,..., 0, 1, 0,..., 0) T (entry 1 at ith position), and let X = (x1... xn). Then AX = (Ax1... Axn) = (e1... en) = I n.
9 Matrix inversion and systems of linear equations Recall: Inverting a matrix A R n n amounts to simultaneously solving n linear systems of equations Ax i = e i. Here the coecient matrix is always the same, only the right hand side changes. Linear systems are systematically solved by Gauss elimination. The steps in the Gauss elimination only depend on the coecient matrix. The Gauss algorithm should be useful for the computation of inverse matrices.
10 Matrix inversion via Gauss algorithm Let A R n n be given. 1 Introduce the extended matrix Ã = (A I n ) R n 2n. 2 Using Gauss elimination, transform the extended matrix to Ã 1 = (B C), where B R n n has upper triangular form. Make sure to apply all basic transformations to the right hand side also. 3 If B has rank < n, the matrix A is not invertible. 4 If B has rank n, apply basic transformations to Ã 1 to obtain Then C = A 1. Ã 2 = (I n C ).
11 Inverting a 4 4 matrix We wish to invert A via the Gauss algorithm, where A = Following the usual scheme, we get Ã =
12 Inverting a 4 4 matrix Now the entries above the diagonal are also removed using basic transformations
13 Inverting a 4 4 matrix Hence: A 1 =
14 General denition of determinant Denition. Let A R (n+1) (n+1), and 1 j n + 1. Then the submatrix A j R n n is obtained by deleting the rst column and jth row of A. Denition. Let A = (a i,j ) i,j be a matrix. 1 For A = (a) R 1 1, we dene det(a) = a. 2 Let det : R n n R be already dened. We then dene det : R (n+1) (n+1) R as follows: det(a) = a 1,1 det(a 1 ) a 2,1 det(a 2 ) ±... + ( 1) n a n+1,1 det(a n+1 n+1 = ( 1) j 1 a j,1 det(a j ) j=1
15 Example: Computing a 2 2determinant Let A = ( a c b d ) R 2 2 Then, in the notation of the denition, the submatrices A 1 and A 2 are given as A 1 = (d) R 1 1, A 2 = (b) R 1 1 and thus det(a) = det ( a c b d ) = ad cb.
16 Example: Computing a 3 3 determinant Let A = Using the denition, and the formula for 2 2 determinants, ( ) ( ) det(a) = 1 det ( ) ( 1) 3 2 = 1 (15 12) 3(35 24) 1(14 12) = 32.
17 Determinants and invertibility Theorem. (Cramer's rule) Let A = (a1... an) R n n, with det(a) 0. Let y R n. For i = 1,..., n, dene B i by replacing the ith column of A by y, B i = (a1... a i 1 y a i+1 an) R n n. Then the vector x = (x 1,..., x n ) T, with x i = det(b i) det(a), is the unique solution of the linear equation Ax = y. Consequence. Let A R n n. Then A is invertible if and only if det(a) 0.
18 Example: Solving a 2 2 system with Cramer's rule We want to solve the equation ( ) x = ( 8 4 ). The coecient matrix has determinant 4, thus there is a unique solution x = (x 1, x 2 ) T, with ( ) 8 3 det 4 8 x 1 = = = 19 and ( ) 2 8 det 4 4 x 2 = = 40 = Note: For high dimensions, Cramer's rule is not an ecient way to solve linear systems!
19 Computational rules for determinants Theorem. Let A R n n, A = (a i,j ) i,j=1...,n (a) Let A T = (b i,j ) i,j=1...n, where b i,j = a j,i. Then det(a T ) = det(a). (b) If A = BC for suitable matrices B, C R n n, then det(a) = det(b)det(c). (c) Let A be of the form A = ( A 1 B 0 n k,k A 2 with A 1 R k k, A 2 R (n k) (n k), and C R k (n k). Then det(a) = det(a 1 )det(a 2 ). (d) If B is upper triangular with diagonal entries d 1,..., d n, then det(b) = d 1 d 2... d n. ),
20 Determinants via basic transformations Theorem. Let A, B R n be such that B is obtained from A by a basic transformation. (a) If B is obtained by swapping two rows, then det(b) = det(a). (b) If B is obtained by multiplication of a row with a constant c, then det(b) = c det(a). (c) If B is obtained by adding a multiple of a column to another column, then det(b) = det(a). The same rules apply if B is obtained by applying a basic transformation to columns of A.
21 Example: Using basic transformations Recall the matrix A from above A = Using basic transformations, we can compute det(a) as ( ) = det 13 9 = = 32. det(a) = det
22 Example: 4 4 determinant Consider the matrix A = Then, after swapping rows det(a) = det = det ( using det(b) = det(b T ))
23 Example: 4 4 determinant... = 2det = 2det = 8det ( ) = 8(9 2) = 56. (denition of det) (swapping columns) (denition of det)
24 Example: 4 4determinant using block matrices Again consider the matrix A = Swapping columns transforms A into a block matrix: det(a) = det = det ( ) det = (9 2) ( 8) = 56 ( )
25 Summary Matrixbymatrix multiplication and its properties. Identity matrix Invertible matrices Computing inverse matrices by the Gauss algorithm Denition and basic properties of determinants Determinants and invertibility. Cramer's rule. Computing determinants: Gauss algorithm, block matrices, etc.
2.5 Elementary Row Operations and the Determinant
2.5 Elementary Row Operations and the Determinant Recall: Let A be a 2 2 matrtix : A = a b. The determinant of A, denoted by det(a) c d or A, is the number ad bc. So for example if A = 2 4, det(a) = 2(5)
More informationUsing row reduction to calculate the inverse and the determinant of a square matrix
Using row reduction to calculate the inverse and the determinant of a square matrix Notes for MATH 0290 Honors by Prof. Anna Vainchtein 1 Inverse of a square matrix An n n square matrix A is called invertible
More informationMATRIX ALGEBRA AND SYSTEMS OF EQUATIONS. + + x 2. x n. a 11 a 12 a 1n b 1 a 21 a 22 a 2n b 2 a 31 a 32 a 3n b 3. a m1 a m2 a mn b m
MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS 1. SYSTEMS OF EQUATIONS AND MATRICES 1.1. Representation of a linear system. The general system of m equations in n unknowns can be written a 11 x 1 + a 12 x 2 +
More informationMATRIX ALGEBRA AND SYSTEMS OF EQUATIONS
MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS Systems of Equations and Matrices Representation of a linear system The general system of m equations in n unknowns can be written a x + a 2 x 2 + + a n x n b a
More information4. MATRICES Matrices
4. MATRICES 170 4. Matrices 4.1. Definitions. Definition 4.1.1. A matrix is a rectangular array of numbers. A matrix with m rows and n columns is said to have dimension m n and may be represented as follows:
More informationCofactor Expansion: Cramer s Rule
Cofactor Expansion: Cramer s Rule MATH 322, Linear Algebra I J. Robert Buchanan Department of Mathematics Spring 2015 Introduction Today we will focus on developing: an efficient method for calculating
More informationUnit 18 Determinants
Unit 18 Determinants Every square matrix has a number associated with it, called its determinant. In this section, we determine how to calculate this number, and also look at some of the properties of
More informationMath 115A HW4 Solutions University of California, Los Angeles. 5 2i 6 + 4i. (5 2i)7i (6 + 4i)( 3 + i) = 35i + 14 ( 22 6i) = 36 + 41i.
Math 5A HW4 Solutions September 5, 202 University of California, Los Angeles Problem 4..3b Calculate the determinant, 5 2i 6 + 4i 3 + i 7i Solution: The textbook s instructions give us, (5 2i)7i (6 + 4i)(
More informationLinear Algebra Notes for Marsden and Tromba Vector Calculus
Linear Algebra Notes for Marsden and Tromba Vector Calculus ndimensional Euclidean Space and Matrices Definition of n space As was learned in Math b, a point in Euclidean three space can be thought of
More informationHelpsheet. Giblin Eunson Library MATRIX ALGEBRA. library.unimelb.edu.au/libraries/bee. Use this sheet to help you:
Helpsheet Giblin Eunson Library ATRIX ALGEBRA Use this sheet to help you: Understand the basic concepts and definitions of matrix algebra Express a set of linear equations in matrix notation Evaluate determinants
More informationSimilarity and Diagonalization. Similar Matrices
MATH022 Linear Algebra Brief lecture notes 48 Similarity and Diagonalization Similar Matrices Let A and B be n n matrices. We say that A is similar to B if there is an invertible n n matrix P such that
More informationa 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a 2n x n = b 2.
Chapter 1 LINEAR EQUATIONS 1.1 Introduction to linear equations A linear equation in n unknowns x 1, x,, x n is an equation of the form a 1 x 1 + a x + + a n x n = b, where a 1, a,..., a n, b are given
More informationLecture 6. Inverse of Matrix
Lecture 6 Inverse of Matrix Recall that any linear system can be written as a matrix equation In one dimension case, ie, A is 1 1, then can be easily solved as A x b Ax b x b A 1 A b A 1 b provided that
More informationDirect Methods for Solving Linear Systems. Matrix Factorization
Direct Methods for Solving Linear Systems Matrix Factorization Numerical Analysis (9th Edition) R L Burden & J D Faires Beamer Presentation Slides prepared by John Carroll Dublin City University c 2011
More informationUniversity of Lille I PC first year list of exercises n 7. Review
University of Lille I PC first year list of exercises n 7 Review Exercise Solve the following systems in 4 different ways (by substitution, by the Gauss method, by inverting the matrix of coefficients
More informationChapter 7. Matrices. Definition. An m n matrix is an array of numbers set out in m rows and n columns. Examples. ( 1 1 5 2 0 6
Chapter 7 Matrices Definition An m n matrix is an array of numbers set out in m rows and n columns Examples (i ( 1 1 5 2 0 6 has 2 rows and 3 columns and so it is a 2 3 matrix (ii 1 0 7 1 2 3 3 1 is a
More informationDiagonal, Symmetric and Triangular Matrices
Contents 1 Diagonal, Symmetric Triangular Matrices 2 Diagonal Matrices 2.1 Products, Powers Inverses of Diagonal Matrices 2.1.1 Theorem (Powers of Matrices) 2.2 Multiplying Matrices on the Left Right by
More informationB such that AB = I and BA = I. (We say B is an inverse of A.) Definition A square matrix A is invertible (or nonsingular) if matrix
Matrix inverses Recall... Definition A square matrix A is invertible (or nonsingular) if matrix B such that AB = and BA =. (We say B is an inverse of A.) Remark Not all square matrices are invertible.
More informationLecture Notes: Matrix Inverse. 1 Inverse Definition
Lecture Notes: Matrix Inverse Yufei Tao Department of Computer Science and Engineering Chinese University of Hong Kong taoyf@cse.cuhk.edu.hk Inverse Definition We use I to represent identity matrices,
More informationSolution. Area(OABC) = Area(OAB) + Area(OBC) = 1 2 det( [ 5 2 1 2. Question 2. Let A = (a) Calculate the nullspace of the matrix A.
Solutions to Math 30 Takehome prelim Question. Find the area of the quadrilateral OABC on the figure below, coordinates given in brackets. [See pp. 60 63 of the book.] y C(, 4) B(, ) A(5, ) O x Area(OABC)
More informationLecture 2 Matrix Operations
Lecture 2 Matrix Operations transpose, sum & difference, scalar multiplication matrix multiplication, matrixvector product matrix inverse 2 1 Matrix transpose transpose of m n matrix A, denoted A T or
More informationNotes on Determinant
ENGG2012B Advanced Engineering Mathematics Notes on Determinant Lecturer: Kenneth Shum Lecture 918/02/2013 The determinant of a system of linear equations determines whether the solution is unique, without
More information2.1: MATRIX OPERATIONS
.: MATRIX OPERATIONS What are diagonal entries and the main diagonal of a matrix? What is a diagonal matrix? When are matrices equal? Scalar Multiplication 45 Matrix Addition Theorem (pg 0) Let A, B, and
More informationThe Inverse of a Matrix
The Inverse of a Matrix 7.4 Introduction In number arithmetic every number a ( 0) has a reciprocal b written as a or such that a ba = ab =. Some, but not all, square matrices have inverses. If a square
More informationDETERMINANTS. b 2. x 2
DETERMINANTS 1 Systems of two equations in two unknowns A system of two equations in two unknowns has the form a 11 x 1 + a 12 x 2 = b 1 a 21 x 1 + a 22 x 2 = b 2 This can be written more concisely in
More informationMA 242 LINEAR ALGEBRA C1, Solutions to Second Midterm Exam
MA 4 LINEAR ALGEBRA C, Solutions to Second Midterm Exam Prof. Nikola Popovic, November 9, 6, 9:3am  :5am Problem (5 points). Let the matrix A be given by 5 6 5 4 5 (a) Find the inverse A of A, if it exists.
More information1. LINEAR EQUATIONS. A linear equation in n unknowns x 1, x 2,, x n is an equation of the form
1. LINEAR EQUATIONS A linear equation in n unknowns x 1, x 2,, x n is an equation of the form a 1 x 1 + a 2 x 2 + + a n x n = b, where a 1, a 2,..., a n, b are given real numbers. For example, with x and
More informationWe know a formula for and some properties of the determinant. Now we see how the determinant can be used.
Cramer s rule, inverse matrix, and volume We know a formula for and some properties of the determinant. Now we see how the determinant can be used. Formula for A We know: a b d b =. c d ad bc c a Can we
More information1 Introduction to Matrices
1 Introduction to Matrices In this section, important definitions and results from matrix algebra that are useful in regression analysis are introduced. While all statements below regarding the columns
More informationEC9A0: Presessional Advanced Mathematics Course
University of Warwick, EC9A0: Presessional Advanced Mathematics Course Peter J. Hammond & Pablo F. Beker 1 of 55 EC9A0: Presessional Advanced Mathematics Course Slides 1: Matrix Algebra Peter J. Hammond
More information13 MATH FACTS 101. 2 a = 1. 7. The elements of a vector have a graphical interpretation, which is particularly easy to see in two or three dimensions.
3 MATH FACTS 0 3 MATH FACTS 3. Vectors 3.. Definition We use the overhead arrow to denote a column vector, i.e., a linear segment with a direction. For example, in threespace, we write a vector in terms
More informationSECTION 8.3: THE INVERSE OF A SQUARE MATRIX
(Section 8.3: The Inverse of a Square Matrix) 8.47 SECTION 8.3: THE INVERSE OF A SQUARE MATRIX PART A: (REVIEW) THE INVERSE OF A REAL NUMBER If a is a nonzero real number, then aa 1 = a 1 a = 1. a 1, or
More informationLecture 4: Partitioned Matrices and Determinants
Lecture 4: Partitioned Matrices and Determinants 1 Elementary row operations Recall the elementary operations on the rows of a matrix, equivalent to premultiplying by an elementary matrix E: (1) multiplying
More informationINTRODUCTORY LINEAR ALGEBRA WITH APPLICATIONS B. KOLMAN, D. R. HILL
SOLUTIONS OF THEORETICAL EXERCISES selected from INTRODUCTORY LINEAR ALGEBRA WITH APPLICATIONS B. KOLMAN, D. R. HILL Eighth Edition, Prentice Hall, 2005. Dr. Grigore CĂLUGĂREANU Department of Mathematics
More informationMatrices, Determinants and Linear Systems
September 21, 2014 Matrices A matrix A m n is an array of numbers in rows and columns a 11 a 12 a 1n r 1 a 21 a 22 a 2n r 2....... a m1 a m2 a mn r m c 1 c 2 c n We say that the dimension of A is m n (we
More informationMatrix Algebra and Applications
Matrix Algebra and Applications Dudley Cooke Trinity College Dublin Dudley Cooke (Trinity College Dublin) Matrix Algebra and Applications 1 / 49 EC2040 Topic 2  Matrices and Matrix Algebra Reading 1 Chapters
More information8 Square matrices continued: Determinants
8 Square matrices continued: Determinants 8. Introduction Determinants give us important information about square matrices, and, as we ll soon see, are essential for the computation of eigenvalues. You
More informationNOTES on LINEAR ALGEBRA 1
School of Economics, Management and Statistics University of Bologna Academic Year 205/6 NOTES on LINEAR ALGEBRA for the students of Stats and Maths This is a modified version of the notes by Prof Laura
More informationThe Inverse of a Square Matrix
These notes closely follow the presentation of the material given in David C Lay s textbook Linear Algebra and its Applications (3rd edition) These notes are intended primarily for inclass presentation
More informationDecember 4, 2013 MATH 171 BASIC LINEAR ALGEBRA B. KITCHENS
December 4, 2013 MATH 171 BASIC LINEAR ALGEBRA B KITCHENS The equation 1 Lines in twodimensional space (1) 2x y = 3 describes a line in twodimensional space The coefficients of x and y in the equation
More informationMath 313 Lecture #10 2.2: The Inverse of a Matrix
Math 1 Lecture #10 2.2: The Inverse of a Matrix Matrix algebra provides tools for creating many useful formulas just like real number algebra does. For example, a real number a is invertible if there is
More informationThe Characteristic Polynomial
Physics 116A Winter 2011 The Characteristic Polynomial 1 Coefficients of the characteristic polynomial Consider the eigenvalue problem for an n n matrix A, A v = λ v, v 0 (1) The solution to this problem
More informationMATH10212 Linear Algebra B Homework 7
MATH22 Linear Algebra B Homework 7 Students are strongly advised to acquire a copy of the Textbook: D C Lay, Linear Algebra and its Applications Pearson, 26 (or other editions) Normally, homework assignments
More informationSolving Linear Systems, Continued and The Inverse of a Matrix
, Continued and The of a Matrix Calculus III Summer 2013, Session II Monday, July 15, 2013 Agenda 1. The rank of a matrix 2. The inverse of a square matrix Gaussian Gaussian solves a linear system by reducing
More informationNOTES ON LINEAR TRANSFORMATIONS
NOTES ON LINEAR TRANSFORMATIONS Definition 1. Let V and W be vector spaces. A function T : V W is a linear transformation from V to W if the following two properties hold. i T v + v = T v + T v for all
More informationMatrix algebra for beginners, Part I matrices, determinants, inverses
Matrix algebra for beginners, Part I matrices, determinants, inverses Jeremy Gunawardena Department of Systems Biology Harvard Medical School 200 Longwood Avenue, Cambridge, MA 02115, USA jeremy@hmsharvardedu
More informationMatrix Algebra. Some Basic Matrix Laws. Before reading the text or the following notes glance at the following list of basic matrix algebra laws.
Matrix Algebra A. Doerr Before reading the text or the following notes glance at the following list of basic matrix algebra laws. Some Basic Matrix Laws Assume the orders of the matrices are such that
More informationSystems of Linear Equations
Systems of Linear Equations Beifang Chen Systems of linear equations Linear systems A linear equation in variables x, x,, x n is an equation of the form a x + a x + + a n x n = b, where a, a,, a n and
More informationIntroduction to Matrix Algebra I
Appendix A Introduction to Matrix Algebra I Today we will begin the course with a discussion of matrix algebra. Why are we studying this? We will use matrix algebra to derive the linear regression model
More informationLecture Notes 1: Matrix Algebra Part B: Determinants and Inverses
University of Warwick, EC9A0 Maths for Economists Peter J. Hammond 1 of 57 Lecture Notes 1: Matrix Algebra Part B: Determinants and Inverses Peter J. Hammond email: p.j.hammond@warwick.ac.uk Autumn 2012,
More informationSolving Systems of Linear Equations
LECTURE 5 Solving Systems of Linear Equations Recall that we introduced the notion of matrices as a way of standardizing the expression of systems of linear equations In today s lecture I shall show how
More information6. Cholesky factorization
6. Cholesky factorization EE103 (Fall 201112) triangular matrices forward and backward substitution the Cholesky factorization solving Ax = b with A positive definite inverse of a positive definite matrix
More informationMATH 304 Linear Algebra Lecture 9: Subspaces of vector spaces (continued). Span. Spanning set.
MATH 304 Linear Algebra Lecture 9: Subspaces of vector spaces (continued). Span. Spanning set. Vector space A vector space is a set V equipped with two operations, addition V V (x,y) x + y V and scalar
More information5.3 Determinants and Cramer s Rule
290 5.3 Determinants and Cramer s Rule Unique Solution of a 2 2 System The 2 2 system (1) ax + by = e, cx + dy = f, has a unique solution provided = ad bc is nonzero, in which case the solution is given
More informationThe basic unit in matrix algebra is a matrix, generally expressed as: a 11 a 12. a 13 A = a 21 a 22 a 23
(copyright by Scott M Lynch, February 2003) Brief Matrix Algebra Review (Soc 504) Matrix algebra is a form of mathematics that allows compact notation for, and mathematical manipulation of, highdimensional
More information1 Eigenvalues and Eigenvectors
Math 20 Chapter 5 Eigenvalues and Eigenvectors Eigenvalues and Eigenvectors. Definition: A scalar λ is called an eigenvalue of the n n matrix A is there is a nontrivial solution x of Ax = λx. Such an x
More informationThe Determinant: a Means to Calculate Volume
The Determinant: a Means to Calculate Volume Bo Peng August 20, 2007 Abstract This paper gives a definition of the determinant and lists many of its wellknown properties Volumes of parallelepipeds are
More informationMatrix Differentiation
1 Introduction Matrix Differentiation ( and some other stuff ) Randal J. Barnes Department of Civil Engineering, University of Minnesota Minneapolis, Minnesota, USA Throughout this presentation I have
More informationMAT188H1S Lec0101 Burbulla
Winter 206 Linear Transformations A linear transformation T : R m R n is a function that takes vectors in R m to vectors in R n such that and T (u + v) T (u) + T (v) T (k v) k T (v), for all vectors u
More informationLINEAR ALGEBRA. September 23, 2010
LINEAR ALGEBRA September 3, 00 Contents 0. LUdecomposition.................................... 0. Inverses and Transposes................................. 0.3 Column Spaces and NullSpaces.............................
More informationMATH10212 Linear Algebra. Systems of Linear Equations. Definition. An ndimensional vector is a row or a column of n numbers (or letters): a 1.
MATH10212 Linear Algebra Textbook: D. Poole, Linear Algebra: A Modern Introduction. Thompson, 2006. ISBN 0534405967. Systems of Linear Equations Definition. An ndimensional vector is a row or a column
More informationSection 2.1. Section 2.2. Exercise 6: We have to compute the product AB in two ways, where , B =. 2 1 3 5 A =
Section 2.1 Exercise 6: We have to compute the product AB in two ways, where 4 2 A = 3 0 1 3, B =. 2 1 3 5 Solution 1. Let b 1 = (1, 2) and b 2 = (3, 1) be the columns of B. Then Ab 1 = (0, 3, 13) and
More informationDETERMINANTS TERRY A. LORING
DETERMINANTS TERRY A. LORING 1. Determinants: a Row Operation ByProduct The determinant is best understood in terms of row operations, in my opinion. Most books start by defining the determinant via formulas
More information4. Matrix inverses. left and right inverse. linear independence. nonsingular matrices. matrices with linearly independent columns
L. Vandenberghe EE133A (Spring 2016) 4. Matrix inverses left and right inverse linear independence nonsingular matrices matrices with linearly independent columns matrices with linearly independent rows
More informationLinear Algebra: Determinants, Inverses, Rank
D Linear Algebra: Determinants, Inverses, Rank D 1 Appendix D: LINEAR ALGEBRA: DETERMINANTS, INVERSES, RANK TABLE OF CONTENTS Page D.1. Introduction D 3 D.2. Determinants D 3 D.2.1. Some Properties of
More informationMATH 304 Linear Algebra Lecture 18: Rank and nullity of a matrix.
MATH 304 Linear Algebra Lecture 18: Rank and nullity of a matrix. Nullspace Let A = (a ij ) be an m n matrix. Definition. The nullspace of the matrix A, denoted N(A), is the set of all ndimensional column
More informationMatrices Worksheet. Adding the results together, using the matrices, gives
Matrices Worksheet This worksheet is designed to help you increase your confidence in handling MATRICES. This worksheet contains both theory and exercises which cover. Introduction. Order, Addition and
More informationMatrices Summary. To add or subtract matrices they must be the same dimensions. Just add or subtract the corresponding numbers.
Matrices Summary To transpose a matrix write the rows as columns. Academic Skills Advice For example: 2 1 A = [ 1 2 1 0 0 9] A T = 4 2 2 1 2 1 1 0 4 0 9 2 To add or subtract matrices they must be the same
More information4.6 Null Space, Column Space, Row Space
NULL SPACE, COLUMN SPACE, ROW SPACE Null Space, Column Space, Row Space In applications of linear algebra, subspaces of R n typically arise in one of two situations: ) as the set of solutions of a linear
More informationIntroduction to Matrices for Engineers
Introduction to Matrices for Engineers C.T.J. Dodson, School of Mathematics, Manchester Universit 1 What is a Matrix? A matrix is a rectangular arra of elements, usuall numbers, e.g. 1 08 4 01 1 0 11
More information1. True/False: Circle the correct answer. No justifications are needed in this exercise. (1 point each)
Math 33 AH : Solution to the Final Exam Honors Linear Algebra and Applications 1. True/False: Circle the correct answer. No justifications are needed in this exercise. (1 point each) (1) If A is an invertible
More informationIntroduction to Matrix Algebra
Psychology 7291: Multivariate Statistics (Carey) 8/27/98 Matrix Algebra  1 Introduction to Matrix Algebra Definitions: A matrix is a collection of numbers ordered by rows and columns. It is customary
More information1 0 5 3 3 A = 0 0 0 1 3 0 0 0 0 0 0 0 0 0 0
Solutions: Assignment 4.. Find the redundant column vectors of the given matrix A by inspection. Then find a basis of the image of A and a basis of the kernel of A. 5 A The second and third columns are
More informationSOLVING LINEAR SYSTEMS
SOLVING LINEAR SYSTEMS Linear systems Ax = b occur widely in applied mathematics They occur as direct formulations of real world problems; but more often, they occur as a part of the numerical analysis
More informationMatrix Algebra, Class Notes (part 1) by Hrishikesh D. Vinod Copyright 1998 by Prof. H. D. Vinod, Fordham University, New York. All rights reserved.
Matrix Algebra, Class Notes (part 1) by Hrishikesh D. Vinod Copyright 1998 by Prof. H. D. Vinod, Fordham University, New York. All rights reserved. 1 Sum, Product and Transpose of Matrices. If a ij with
More informationAbstract: We describe the beautiful LU factorization of a square matrix (or how to write Gaussian elimination in terms of matrix multiplication).
MAT 2 (Badger, Spring 202) LU Factorization Selected Notes September 2, 202 Abstract: We describe the beautiful LU factorization of a square matrix (or how to write Gaussian elimination in terms of matrix
More informationby the matrix A results in a vector which is a reflection of the given
Eigenvalues & Eigenvectors Example Suppose Then So, geometrically, multiplying a vector in by the matrix A results in a vector which is a reflection of the given vector about the yaxis We observe that
More information[1] Diagonal factorization
8.03 LA.6: Diagonalization and Orthogonal Matrices [ Diagonal factorization [2 Solving systems of first order differential equations [3 Symmetric and Orthonormal Matrices [ Diagonal factorization Recall:
More informationChapter 6. Orthogonality
6.3 Orthogonal Matrices 1 Chapter 6. Orthogonality 6.3 Orthogonal Matrices Definition 6.4. An n n matrix A is orthogonal if A T A = I. Note. We will see that the columns of an orthogonal matrix must be
More informationThe Hadamard Product
The Hadamard Product Elizabeth Million April 12, 2007 1 Introduction and Basic Results As inexperienced mathematicians we may have once thought that the natural definition for matrix multiplication would
More informationLectures notes on orthogonal matrices (with exercises) 92.222  Linear Algebra II  Spring 2004 by D. Klain
Lectures notes on orthogonal matrices (with exercises) 92.222  Linear Algebra II  Spring 2004 by D. Klain 1. Orthogonal matrices and orthonormal sets An n n realvalued matrix A is said to be an orthogonal
More informationSolution to Homework 2
Solution to Homework 2 Olena Bormashenko September 23, 2011 Section 1.4: 1(a)(b)(i)(k), 4, 5, 14; Section 1.5: 1(a)(b)(c)(d)(e)(n), 2(a)(c), 13, 16, 17, 18, 27 Section 1.4 1. Compute the following, if
More informationL12. Special Matrix Operations: Permutations, Transpose, Inverse, Augmentation 12 Aug 2014
L12. Special Matrix Operations: Permutations, Transpose, Inverse, Augmentation 12 Aug 2014 Unfortunately, no one can be told what the Matrix is. You have to see it for yourself.  Morpheus Primary concepts:
More informationLinear Dependence Tests
Linear Dependence Tests The book omits a few key tests for checking the linear dependence of vectors. These short notes discuss these tests, as well as the reasoning behind them. Our first test checks
More informationLinear Algebra: Matrices
B Linear Algebra: Matrices B 1 Appendix B: LINEAR ALGEBRA: MATRICES TABLE OF CONTENTS Page B.1. Matrices B 3 B.1.1. Concept................... B 3 B.1.2. Real and Complex Matrices............ B 3 B.1.3.
More information160 CHAPTER 4. VECTOR SPACES
160 CHAPTER 4. VECTOR SPACES 4. Rank and Nullity In this section, we look at relationships between the row space, column space, null space of a matrix and its transpose. We will derive fundamental results
More informationDiagonalisation. Chapter 3. Introduction. Eigenvalues and eigenvectors. Reading. Definitions
Chapter 3 Diagonalisation Eigenvalues and eigenvectors, diagonalisation of a matrix, orthogonal diagonalisation fo symmetric matrices Reading As in the previous chapter, there is no specific essential
More informationFactorization Theorems
Chapter 7 Factorization Theorems This chapter highlights a few of the many factorization theorems for matrices While some factorization results are relatively direct, others are iterative While some factorization
More informationMath 312 Homework 1 Solutions
Math 31 Homework 1 Solutions Last modified: July 15, 01 This homework is due on Thursday, July 1th, 01 at 1:10pm Please turn it in during class, or in my mailbox in the main math office (next to 4W1) Please
More information15.062 Data Mining: Algorithms and Applications Matrix Math Review
.6 Data Mining: Algorithms and Applications Matrix Math Review The purpose of this document is to give a brief review of selected linear algebra concepts that will be useful for the course and to develop
More informationMAT 200, Midterm Exam Solution. a. (5 points) Compute the determinant of the matrix A =
MAT 200, Midterm Exam Solution. (0 points total) a. (5 points) Compute the determinant of the matrix 2 2 0 A = 0 3 0 3 0 Answer: det A = 3. The most efficient way is to develop the determinant along the
More informationMATH 551  APPLIED MATRIX THEORY
MATH 55  APPLIED MATRIX THEORY FINAL TEST: SAMPLE with SOLUTIONS (25 points NAME: PROBLEM (3 points A web of 5 pages is described by a directed graph whose matrix is given by A Do the following ( points
More informationName: Section Registered In:
Name: Section Registered In: Math 125 Exam 3 Version 1 April 24, 2006 60 total points possible 1. (5pts) Use Cramer s Rule to solve 3x + 4y = 30 x 2y = 8. Be sure to show enough detail that shows you are
More informationSolutions to Linear Algebra Practice Problems 1. form (because the leading 1 in the third row is not to the right of the
Solutions to Linear Algebra Practice Problems. Determine which of the following augmented matrices are in row echelon from, row reduced echelon form or neither. Also determine which variables are free
More information7 Gaussian Elimination and LU Factorization
7 Gaussian Elimination and LU Factorization In this final section on matrix factorization methods for solving Ax = b we want to take a closer look at Gaussian elimination (probably the best known method
More informationLecture 3: Finding integer solutions to systems of linear equations
Lecture 3: Finding integer solutions to systems of linear equations Algorithmic Number Theory (Fall 2014) Rutgers University Swastik Kopparty Scribe: Abhishek Bhrushundi 1 Overview The goal of this lecture
More informationR mp nq. (13.1) a m1 B a mn B
This electronic version is for personal use and may not be duplicated or distributed Chapter 13 Kronecker Products 131 Definition and Examples Definition 131 Let A R m n, B R p q Then the Kronecker product
More informationAlgebraic and Combinatorial Circuits
C H A P T E R Algebraic and Combinatorial Circuits Algebraic circuits combine operations drawn from an algebraic system. In this chapter we develop algebraic and combinatorial circuits for a variety of
More informationSection 5.3. Section 5.3. u m ] l jj. = l jj u j + + l mj u m. v j = [ u 1 u j. l mj
Section 5. l j v j = [ u u j u m ] l jj = l jj u j + + l mj u m. l mj Section 5. 5.. Not orthogonal, the column vectors fail to be perpendicular to each other. 5..2 his matrix is orthogonal. Check that
More informationequations Karl Lundengård December 3, 2012 MAA704: Matrix functions and matrix equations Matrix functions Matrix equations Matrix equations, cont d
and and Karl Lundengård December 3, 2012 Solving General, Contents of todays lecture and (Kroenecker product) Solving General, Some useful from calculus and : f (x) = x n, x C, n Z + : f (x) = n x, x R,
More information