# Lecture 21: The Inverse of a Matrix

Save this PDF as:

Size: px
Start display at page:

## Transcription

1 Lecture 21: The Inverse of a Matrix Winfried Just, Ohio University October 16, 2015

2 Review: Our chemical reaction system Recall our chemical reaction system A + 2B 2C A + B D A + 2C 2D B + D 2C If we write reaction vectors as columns, then he stoichiometric matrix can be written as S =

3 Review: Background for Homework 51 The rank of the stoichiometric matrix is r(s) = 2. 3 For w 1 = 2 ( ) 2 we have r S w 1 = 2. 4 Thus the vector w 1 will already be a linear combination of 2 reaction vectors. Homework 51: Suppose we know that exactly two of the four reactions combined to give the net change vector w 1. (a) Can we infer which pair of reactions occurred? Can we at least eliminate some of the 6 possibilities? (b) Can we narrow down the possibilities (further) if we know that only the the forward reactions are energetically plausible?

4 Solution for Homework 51 Let v 1, v 2, v 3, v 4 denote the reaction vectors: v 1 = 2 2 v 2 = 0 2 v 3 = 1 0 v 4 = Now the problem boils down to considering each of the 6 pairs {i, j} of distinct numbers 1 i < j 4 and trying to express w 1 as a linear combination of v i and v j. That is, we will try to find rate constants k i, k j such that w 1 = k i v i + k j v j. (a) If such rate constants k i, k j can be found, then it is possible that reaction i and reaction j (and no other reaction) did occur. If not, we can rule out the pair {i, j} as a possibility. (b) If only forward reactions are energetically plausible, then we can rule out a pair {i, j} of reactions when for every linear combination as above at least one of the rate constants k i, k j is negative. Ohio University Since Winfried 1804 Just, Ohio University MATH3200, Lecture 21: The Department Inverse Matrix of Mathematics

5 Solution for Homework 51, the pair {i, j} = {1, 2} By solving the relevant systems of linear equations, in this example we can find unique pairs of rate constants k i, k j for each pair of reactions {i, j}. For i = 1, j = 2 we find that w 1 = v v 2 : w 1 = 2 2 = = v v Here k 1 = 1, k 2 = 2. Both rate constants are positive. We cannot rule out the pair {1, 2} even if only the forward reactions are energetically plausible. It is possible that only the following reactions occurred: A + 2B 2C A + 2C 2D

6 Solution for Homework 51, the pair {i, j} = {1, 3} For i = 1, j = 3 we find that w 1 = v v 3 : w 1 = 2 2 = = v v Here k 1 = 1, k 2 = 4. We cannot rule out the pair {1, 3} when reactions can proceed in either direction. It is then possible that only the following reactions occurred: A + 2B 2C A + B D But this is not an option if only the forward reactions are plausible. Now complete the exercise by considering the remaining pairs {1, 4}, {2, 3}, {2, 4}, {3, 4}.

7 The definition of the matrix inverse Let A be an n n square matrix. The inverse of A is an n n matrix A 1 such that A 1 A = I n. Theorem The inverse A 1, if it exists, is unique and satisfies AA 1 = I n. Note that the inverse of a matrix is the analogue of a reciprocal a 1 = 1 a of a number. Note that the reciprocal 1 a of a number exists if, and only if, a 0.

8 An example of an inverse matrix Let A = and let B = ? Let AB = = ??

9 An example of an inverse matrix Let A = and let B = AB = = ??

10 An example of an inverse matrix Let A = and let B = AB = = ?

11 An example of an inverse matrix Let A = and let B = AB = = = I When we switch the order of multiplication: ? BA = = ??

12 An example of an inverse matrix Let A = and let B = AB = = = I When we switch the order of multiplication: BA = = ??

13 An example of an inverse matrix Let A = and let B = AB = = = I When we switch the order of multiplication: BA = = ?

14 An example of an inverse matrix Let A = and let B = AB = = = I When we switch the order of multiplication: BA = = = I We can see that B = A 1 and A = B 1. We can also see that: Verifying whether a given pair of matrices are inverses of each other is easy. You just need to multiply them and check whether the product is an identity matrix I.

15 Examples of non-invertible matrices 1 0 c11 c Example 1: Let A = and consider C = c 21 c c11 c Then AC = 12 c11 c = = I 0 0 c 21 c No matrix C can be the inverse matrix A c11 c Example 2: Let A = and consider C = c 21 c c11 c AC = 12 c11 + 2c = 21 c c c 21 c 22 3c c 21 3c c No matrix C can be the inverse matrix B 1. A square matrix A without an inverse A 1 is called non-invertible or singular. If A 1 exists, then A is invertible or non-singular. Neither of the singular matrices A, B of our examples was an (obviously singular) zero matrix Z. But note that neither of them had full rank. Ohio University Since Winfried 1804 Just, Ohio University MATH3200, Lecture 21: The Department Inverse Matrix of Mathematics

16 Linear equations for numbers and matrices Numbers: Consider a linear equation ax = b. If a = 1, then x = b is the unique solution. If a 0, then a 1 ax = 1x = a 1 b so that x = a 1 b = b a is the unique solution. If a = 0, then there may be infinitely many solutions or none. Matrices: Consider a linear equation A x = b, where A is square. If A = I, then I x = x = b is the unique solution. If A is invertible, then A 1 A x = I x = x = A 1 b so that x = A 1 b is the unique solution. If A is non-invertible, then the system is either underdetermined or inconsistent.

17 Solving a system with the help of A 1 : An example Consider the system A x = b of linear equations x 1 + 2x 2 = 5 3x 1 + 4x 2 = 1 The coefficient matrix and its inverse are A = A 1 = The unique solution can be obtained as x1 x = x 2 [ 2 1 ] = A b = =

18 More on systems with square coefficient matrices Let A be an n n square matrix. The following statements are equivalent, that is, express the same property of A: r(a) = n (that is, A has full rank). The column vectors of A form a linearly independent set. The row vectors of A form a linearly independent set. Every b in R n is a linear combination of the columns of A. T A maps R n onto R n. Every system A x = b is consistent. The system A x = 0 has exactly one solution. Every system A x = b has exactly one solution. The linear transformation T A is a one-to-one map. A is invertible, that is, A 1 exists.

19 Inverse matrices and linear transformations Consider transformations (functions) T : R n R n. The identity transformation T I maps every vector to itself: T I ( x) = I x = x. It does nothing. The inverse of a transformation T : R n R n is a transformation T 1 : R n R n that undoes the action of T, that is, such that T 1 (T ( x)) = (T 1 T )( x) = x = (T T 1 )( x) = T (T 1 ( x)). If T, T 1 are linear transformations of the form T = T A, T 1 = T B for some n n matrices A, B, then we must have: T 1 T = T I = T B T A = T BA and T T 1 = T I = T A T B = T AB. Thus BA = I = AB, and we must have B = A 1 and A = B 1. The inverse matrix A 1 defines the inverse transformation T A 1 = T 1 A. It undoes the action of A on any vector (or matrix).

20 Inverses of rotations of R 2 Let T α : R 2 R 2 be a rotation by an angle α. It is of the form T α = T Rα, where cos α sin α R α = sin α cos α To undo this transformation, we need to rotate by an angle α, that is, Tα 1 = T α = T R α. cos α sin α cos( α) sin( α) R α R α = sin α cos α sin( α) cos( α) cos(α α) sin(α α) cos 0 sin = = = sin(α α) cos(α α) 0 cos We can see that R 1 α = R α. = I 2

21 Stretching and compressing along coordinate axes Consider the transformation T A : R 2 R 2, where 3 0 x 3x A = T A = y 0.5y This transformation corresponds to a threefold stretch in the horizontal (x-) direction and a twofold compression in the vertical (y-) direction. We can undo this transformation by a threefold compression in the x-direction and twofold stretch in the y-direction: [ ] = A 1 = [ 1 ] Note that the matrix A in this example is a diagonal matrix.

22 More coordinates: Inverses of diagonal matrices Consider a diagonal matrix of order n n: λ λ D = λ n If λ i 0 for all i = 1, 2,..., n, then 1 D 1 =. λ λ λ n If λ i = 0 for at least one i = 1, 2,..., n, then r(d) < n and D 1 does not exist.

23 Why does this work? By Homework 25, the product of any two n n diagonal matrices is: λ κ λ 1 κ λ κ = 0 λ 2 κ λ n κ n λ n κ n In particular: 1 λ λ λ n λ λ λ n λ 1 λ λ. = 0 2 λ = I n λ n λ n

24 An example: Elementary row operation (E2) Recall that performing elementary row operation (E 2): Multiply row i of A by λ 0 is the same as computing EA, where E = e ii = λ To undo this operation, we divide row i of A by λ, which is another instance of (E2). The inverse E 1 is given by replacing e ii = λ with e ii = 1 λ in E.

25 How about elementary row operation (E1)? Recall that performing elementary row operation (E 1): Exchange rows i and j of A amounts to computing EA, where E was described in Lecture 12. For the special case n = 5 and rows i = 2, j = 5, E looks like this: E = Homework 52: How would one undo elementary row operation (E1)? Form a conjecture about how E 1 is in general related to E for this operation and verify it for the special case shown above.

26 How about elementary row operation (E3)? Recall that performing elementary row operation (E 3): Add λ(row i) to row j of A amounts to computing EA, where E was constructed in Homework 28 for the special case n = 4, λ = and rows i = 3, j = 4: E = Homework 53: (a) How would one undo elementary row operation (E3)? (b) Form a conjecture about how E 1 is in general related to E for this operation. Hint: Look up the solution for Homework 28 first. (c) Verify your conjecture for the special case shown above.

27 So far so good... We have seen that It is easy to verify that a given pair of matrices are inverses of each other (multiply them and check whether the product is an identity matrix I). It can be relatively easy to find A 1 when A has an intuitive interpretation in terms of linear transformations of vectors or other matrices. But how do we find A 1 in general? Even for a seemingly simple matrix like A = this seems hard.

28 An observation An n n matrix A can have an inverse only if r(a) = n. Then Gaussian elimination produces a matrix with all diagonal elements equal to 1. For n = 3 this looks as follows: a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33 Gaussian elimination 1?? 0 1? Now we can keep going and apply elementary row operation (E3) more times until we get I: 1?? 0 1? More applications of (E3) So what? How could this help?

29 A magic trick Let A be an n n matrix. Form an n 2n matrix C by dropping the internal brackets in [A, I n ] and replacing them with a vertical dividing line for visual clarity. For n = 3 we get: a 11 a 12 a a 21 a 22 a a 31 a 32 a Perform Gaussian elimination. If the first half of the resulting row-reduced matrix has a zero row, then r(a) < n and A is not invertible. Otherwise keep going and apply instances of (E3) until the first half turn into I n. For n = 3 the result will look like: b 11 b 12 b b 21 b 22 b b 31 b 32 b 33 Let s see what we get for the matrix B in the second half.

30 Trying out the magic trick Let A = Here we already know A 1 = Form a 2 4 matrix C and do Gaussian elimination on it: [ 1 2 C = ] subtract 3(row 1) from row divide row 2 by Apply (E3) one more time to turn the first half into I 2 : [ subtract 2(row 2) from row ] Magically, the matrix B in the right half is A 1!

31 Trying the magic trick on another matrix Let A = Here we don t know A Form a 3 6 matrix C and do Gaussian elimination on it. Start by subtracting row 1 from row 2: C = Next add row 2 to row 3:

32 Trying the magic trick on another matrix, continued Multiply row 1 by 2: Multiply row 2 by -2: The first half is now in row-reduced form. We still need to get rid of its off-diagonal nonzero elements.

33 Trying the magic trick on another matrix, completed Add row 3 to row 2: Subtract row 2 from row 1: Did the magic work? Homework 54: Check whether the matrix B on the right is A 1.

### Math 313 Lecture #10 2.2: The Inverse of a Matrix

Math 1 Lecture #10 2.2: The Inverse of a Matrix Matrix algebra provides tools for creating many useful formulas just like real number algebra does. For example, a real number a is invertible if there is

### 2.1: MATRIX OPERATIONS

.: MATRIX OPERATIONS What are diagonal entries and the main diagonal of a matrix? What is a diagonal matrix? When are matrices equal? Scalar Multiplication 45 Matrix Addition Theorem (pg 0) Let A, B, and

### Solving Linear Systems, Continued and The Inverse of a Matrix

, Continued and The of a Matrix Calculus III Summer 2013, Session II Monday, July 15, 2013 Agenda 1. The rank of a matrix 2. The inverse of a square matrix Gaussian Gaussian solves a linear system by reducing

### MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS

MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS Systems of Equations and Matrices Representation of a linear system The general system of m equations in n unknowns can be written a x + a 2 x 2 + + a n x n b a

### The Inverse of a Matrix

The Inverse of a Matrix 7.4 Introduction In number arithmetic every number a ( 0) has a reciprocal b written as a or such that a ba = ab =. Some, but not all, square matrices have inverses. If a square

### MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS. + + x 2. x n. a 11 a 12 a 1n b 1 a 21 a 22 a 2n b 2 a 31 a 32 a 3n b 3. a m1 a m2 a mn b m

MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS 1. SYSTEMS OF EQUATIONS AND MATRICES 1.1. Representation of a linear system. The general system of m equations in n unknowns can be written a 11 x 1 + a 12 x 2 +

### Linear Dependence Tests

Linear Dependence Tests The book omits a few key tests for checking the linear dependence of vectors. These short notes discuss these tests, as well as the reasoning behind them. Our first test checks

### B such that AB = I and BA = I. (We say B is an inverse of A.) Definition A square matrix A is invertible (or nonsingular) if matrix

Matrix inverses Recall... Definition A square matrix A is invertible (or nonsingular) if matrix B such that AB = and BA =. (We say B is an inverse of A.) Remark Not all square matrices are invertible.

### Solving Systems of Linear Equations; Row Reduction

Harvey Mudd College Math Tutorial: Solving Systems of Linear Equations; Row Reduction Systems of linear equations arise in all sorts of applications in many different fields of study The method reviewed

### Lecture Notes 2: Matrices as Systems of Linear Equations

2: Matrices as Systems of Linear Equations 33A Linear Algebra, Puck Rombach Last updated: April 13, 2016 Systems of Linear Equations Systems of linear equations can represent many things You have probably

### Lecture Notes: Matrix Inverse. 1 Inverse Definition

Lecture Notes: Matrix Inverse Yufei Tao Department of Computer Science and Engineering Chinese University of Hong Kong taoyf@cse.cuhk.edu.hk Inverse Definition We use I to represent identity matrices,

### Lecture 6. Inverse of Matrix

Lecture 6 Inverse of Matrix Recall that any linear system can be written as a matrix equation In one dimension case, ie, A is 1 1, then can be easily solved as A x b Ax b x b A 1 A b A 1 b provided that

### MATH10212 Linear Algebra. Systems of Linear Equations. Definition. An n-dimensional vector is a row or a column of n numbers (or letters): a 1.

MATH10212 Linear Algebra Textbook: D. Poole, Linear Algebra: A Modern Introduction. Thompson, 2006. ISBN 0-534-40596-7. Systems of Linear Equations Definition. An n-dimensional vector is a row or a column

### Using row reduction to calculate the inverse and the determinant of a square matrix

Using row reduction to calculate the inverse and the determinant of a square matrix Notes for MATH 0290 Honors by Prof. Anna Vainchtein 1 Inverse of a square matrix An n n square matrix A is called invertible

### 4. Matrix inverses. left and right inverse. linear independence. nonsingular matrices. matrices with linearly independent columns

L. Vandenberghe EE133A (Spring 2016) 4. Matrix inverses left and right inverse linear independence nonsingular matrices matrices with linearly independent columns matrices with linearly independent rows

### Introduction to Matrix Algebra I

Appendix A Introduction to Matrix Algebra I Today we will begin the course with a discussion of matrix algebra. Why are we studying this? We will use matrix algebra to derive the linear regression model

### Diagonal, Symmetric and Triangular Matrices

Contents 1 Diagonal, Symmetric Triangular Matrices 2 Diagonal Matrices 2.1 Products, Powers Inverses of Diagonal Matrices 2.1.1 Theorem (Powers of Matrices) 2.2 Multiplying Matrices on the Left Right by

### 1 Introduction to Matrices

1 Introduction to Matrices In this section, important definitions and results from matrix algebra that are useful in regression analysis are introduced. While all statements below regarding the columns

### SECTION 8.3: THE INVERSE OF A SQUARE MATRIX

(Section 8.3: The Inverse of a Square Matrix) 8.47 SECTION 8.3: THE INVERSE OF A SQUARE MATRIX PART A: (REVIEW) THE INVERSE OF A REAL NUMBER If a is a nonzero real number, then aa 1 = a 1 a = 1. a 1, or

### ( ) which must be a vector

MATH 37 Linear Transformations from Rn to Rm Dr. Neal, WKU Let T : R n R m be a function which maps vectors from R n to R m. Then T is called a linear transformation if the following two properties are

### DETERMINANTS. b 2. x 2

DETERMINANTS 1 Systems of two equations in two unknowns A system of two equations in two unknowns has the form a 11 x 1 + a 12 x 2 = b 1 a 21 x 1 + a 22 x 2 = b 2 This can be written more concisely in

### 7.4. The Inverse of a Matrix. Introduction. Prerequisites. Learning Style. Learning Outcomes

The Inverse of a Matrix 7.4 Introduction In number arithmetic every number a 0 has a reciprocal b written as a or such that a ba = ab =. Similarly a square matrix A may have an inverse B = A where AB =

### MathQuest: Linear Algebra. 1. Which of the following matrices does not have an inverse?

MathQuest: Linear Algebra Matrix Inverses 1. Which of the following matrices does not have an inverse? 1 2 (a) 3 4 2 2 (b) 4 4 1 (c) 3 4 (d) 2 (e) More than one of the above do not have inverses. (f) All

### Basic Terminology for Systems of Equations in a Nutshell. E. L. Lady. 3x 1 7x 2 +4x 3 =0 5x 1 +8x 2 12x 3 =0.

Basic Terminology for Systems of Equations in a Nutshell E L Lady A system of linear equations is something like the following: x 7x +4x =0 5x +8x x = Note that the number of equations is not required

### Solution. Area(OABC) = Area(OAB) + Area(OBC) = 1 2 det( [ 5 2 1 2. Question 2. Let A = (a) Calculate the nullspace of the matrix A.

Solutions to Math 30 Take-home prelim Question. Find the area of the quadrilateral OABC on the figure below, coordinates given in brackets. [See pp. 60 63 of the book.] y C(, 4) B(, ) A(5, ) O x Area(OABC)

### Lecture 2 Matrix Operations

Lecture 2 Matrix Operations transpose, sum & difference, scalar multiplication matrix multiplication, matrix-vector product matrix inverse 2 1 Matrix transpose transpose of m n matrix A, denoted A T or

### Abstract: We describe the beautiful LU factorization of a square matrix (or how to write Gaussian elimination in terms of matrix multiplication).

MAT 2 (Badger, Spring 202) LU Factorization Selected Notes September 2, 202 Abstract: We describe the beautiful LU factorization of a square matrix (or how to write Gaussian elimination in terms of matrix

### The Inverse of a Square Matrix

These notes closely follow the presentation of the material given in David C Lay s textbook Linear Algebra and its Applications (3rd edition) These notes are intended primarily for in-class presentation

### We seek a factorization of a square matrix A into the product of two matrices which yields an

LU Decompositions We seek a factorization of a square matrix A into the product of two matrices which yields an efficient method for solving the system where A is the coefficient matrix, x is our variable

### MAT188H1S Lec0101 Burbulla

Winter 206 Linear Transformations A linear transformation T : R m R n is a function that takes vectors in R m to vectors in R n such that and T (u + v) T (u) + T (v) T (k v) k T (v), for all vectors u

### MAT 200, Midterm Exam Solution. a. (5 points) Compute the determinant of the matrix A =

MAT 200, Midterm Exam Solution. (0 points total) a. (5 points) Compute the determinant of the matrix 2 2 0 A = 0 3 0 3 0 Answer: det A = 3. The most efficient way is to develop the determinant along the

### December 4, 2013 MATH 171 BASIC LINEAR ALGEBRA B. KITCHENS

December 4, 2013 MATH 171 BASIC LINEAR ALGEBRA B KITCHENS The equation 1 Lines in two-dimensional space (1) 2x y = 3 describes a line in two-dimensional space The coefficients of x and y in the equation

### Cofactor Expansion: Cramer s Rule

Cofactor Expansion: Cramer s Rule MATH 322, Linear Algebra I J. Robert Buchanan Department of Mathematics Spring 2015 Introduction Today we will focus on developing: an efficient method for calculating

### [1] Diagonal factorization

8.03 LA.6: Diagonalization and Orthogonal Matrices [ Diagonal factorization [2 Solving systems of first order differential equations [3 Symmetric and Orthonormal Matrices [ Diagonal factorization Recall:

### 1 Review of Least Squares Solutions to Overdetermined Systems

cs4: introduction to numerical analysis /9/0 Lecture 7: Rectangular Systems and Numerical Integration Instructor: Professor Amos Ron Scribes: Mark Cowlishaw, Nathanael Fillmore Review of Least Squares

### Solutions to Linear Algebra Practice Problems 1. form (because the leading 1 in the third row is not to the right of the

Solutions to Linear Algebra Practice Problems. Determine which of the following augmented matrices are in row echelon from, row reduced echelon form or neither. Also determine which variables are free

### Helpsheet. Giblin Eunson Library MATRIX ALGEBRA. library.unimelb.edu.au/libraries/bee. Use this sheet to help you:

Helpsheet Giblin Eunson Library ATRIX ALGEBRA Use this sheet to help you: Understand the basic concepts and definitions of matrix algebra Express a set of linear equations in matrix notation Evaluate determinants

### SYSTEMS OF EQUATIONS AND MATRICES WITH THE TI-89. by Joseph Collison

SYSTEMS OF EQUATIONS AND MATRICES WITH THE TI-89 by Joseph Collison Copyright 2000 by Joseph Collison All rights reserved Reproduction or translation of any part of this work beyond that permitted by Sections

### Chapter 6. Orthogonality

6.3 Orthogonal Matrices 1 Chapter 6. Orthogonality 6.3 Orthogonal Matrices Definition 6.4. An n n matrix A is orthogonal if A T A = I. Note. We will see that the columns of an orthogonal matrix must be

### Math 240: Linear Systems and Rank of a Matrix

Math 240: Linear Systems and Rank of a Matrix Ryan Blair University of Pennsylvania Thursday January 20, 2011 Ryan Blair (U Penn) Math 240: Linear Systems and Rank of a Matrix Thursday January 20, 2011

### We know a formula for and some properties of the determinant. Now we see how the determinant can be used.

Cramer s rule, inverse matrix, and volume We know a formula for and some properties of the determinant. Now we see how the determinant can be used. Formula for A We know: a b d b =. c d ad bc c a Can we

### Notes on Determinant

ENGG2012B Advanced Engineering Mathematics Notes on Determinant Lecturer: Kenneth Shum Lecture 9-18/02/2013 The determinant of a system of linear equations determines whether the solution is unique, without

### MATH2210 Notebook 1 Fall Semester 2016/2017. 1 MATH2210 Notebook 1 3. 1.1 Solving Systems of Linear Equations... 3

MATH0 Notebook Fall Semester 06/07 prepared by Professor Jenny Baglivo c Copyright 009 07 by Jenny A. Baglivo. All Rights Reserved. Contents MATH0 Notebook 3. Solving Systems of Linear Equations........................

### Methods for Finding Bases

Methods for Finding Bases Bases for the subspaces of a matrix Row-reduction methods can be used to find bases. Let us now look at an example illustrating how to obtain bases for the row space, null space,

### MATH 304 Linear Algebra Lecture 18: Rank and nullity of a matrix.

MATH 304 Linear Algebra Lecture 18: Rank and nullity of a matrix. Nullspace Let A = (a ij ) be an m n matrix. Definition. The nullspace of the matrix A, denoted N(A), is the set of all n-dimensional column

### 1 Eigenvalues and Eigenvectors

Math 20 Chapter 5 Eigenvalues and Eigenvectors Eigenvalues and Eigenvectors. Definition: A scalar λ is called an eigenvalue of the n n matrix A is there is a nontrivial solution x of Ax = λx. Such an x

### ELEMENTS OF VECTOR ALGEBRA

ELEMENTS OF VECTOR ALGEBRA A.1. VECTORS AND SCALAR QUANTITIES We have now proposed sets of basic dimensions and secondary dimensions to describe certain aspects of nature, but more than just dimensions

### Matrix Algebra and Applications

Matrix Algebra and Applications Dudley Cooke Trinity College Dublin Dudley Cooke (Trinity College Dublin) Matrix Algebra and Applications 1 / 49 EC2040 Topic 2 - Matrices and Matrix Algebra Reading 1 Chapters

### LINEAR ALGEBRA. September 23, 2010

LINEAR ALGEBRA September 3, 00 Contents 0. LU-decomposition.................................... 0. Inverses and Transposes................................. 0.3 Column Spaces and NullSpaces.............................

### T ( a i x i ) = a i T (x i ).

Chapter 2 Defn 1. (p. 65) Let V and W be vector spaces (over F ). We call a function T : V W a linear transformation form V to W if, for all x, y V and c F, we have (a) T (x + y) = T (x) + T (y) and (b)

### Solving Systems of Linear Equations

LECTURE 5 Solving Systems of Linear Equations Recall that we introduced the notion of matrices as a way of standardizing the expression of systems of linear equations In today s lecture I shall show how

### 1 0 5 3 3 A = 0 0 0 1 3 0 0 0 0 0 0 0 0 0 0

Solutions: Assignment 4.. Find the redundant column vectors of the given matrix A by inspection. Then find a basis of the image of A and a basis of the kernel of A. 5 A The second and third columns are

### Linear Algebra Notes for Marsden and Tromba Vector Calculus

Linear Algebra Notes for Marsden and Tromba Vector Calculus n-dimensional Euclidean Space and Matrices Definition of n space As was learned in Math b, a point in Euclidean three space can be thought of

### Matrix Norms. Tom Lyche. September 28, Centre of Mathematics for Applications, Department of Informatics, University of Oslo

Matrix Norms Tom Lyche Centre of Mathematics for Applications, Department of Informatics, University of Oslo September 28, 2009 Matrix Norms We consider matrix norms on (C m,n, C). All results holds for

### Linear Equations ! 25 30 35\$ & " 350 150% & " 11,750 12,750 13,750% MATHEMATICS LEARNING SERVICE Centre for Learning and Professional Development

MathsTrack (NOTE Feb 2013: This is the old version of MathsTrack. New books will be created during 2013 and 2014) Topic 4 Module 9 Introduction Systems of to Matrices Linear Equations Income = Tickets!

### Solutions to Linear Algebra Practice Problems

Solutions to Linear Algebra Practice Problems. Find all solutions to the following systems of linear equations. (a) x x + x 5 x x x + x + x 5 (b) x + x + x x + x + x x + x + 8x Answer: (a) We create the

### Presentation 3: Eigenvalues and Eigenvectors of a Matrix

Colleen Kirksey, Beth Van Schoyck, Dennis Bowers MATH 280: Problem Solving November 18, 2011 Presentation 3: Eigenvalues and Eigenvectors of a Matrix Order of Presentation: 1. Definitions of Eigenvalues

### L1-2. Special Matrix Operations: Permutations, Transpose, Inverse, Augmentation 12 Aug 2014

L1-2. Special Matrix Operations: Permutations, Transpose, Inverse, Augmentation 12 Aug 2014 Unfortunately, no one can be told what the Matrix is. You have to see it for yourself. -- Morpheus Primary concepts:

### MATH10212 Linear Algebra B Homework 7

MATH22 Linear Algebra B Homework 7 Students are strongly advised to acquire a copy of the Textbook: D C Lay, Linear Algebra and its Applications Pearson, 26 (or other editions) Normally, homework assignments

### Solving Systems of Linear Equations. Substitution

Solving Systems of Linear Equations There are two basic methods we will use to solve systems of linear equations: Substitution Elimination We will describe each for a system of two equations in two unknowns,

### Similarity and Diagonalization. Similar Matrices

MATH022 Linear Algebra Brief lecture notes 48 Similarity and Diagonalization Similar Matrices Let A and B be n n matrices. We say that A is similar to B if there is an invertible n n matrix P such that

### Matrices, Determinants and Linear Systems

September 21, 2014 Matrices A matrix A m n is an array of numbers in rows and columns a 11 a 12 a 1n r 1 a 21 a 22 a 2n r 2....... a m1 a m2 a mn r m c 1 c 2 c n We say that the dimension of A is m n (we

### The basic unit in matrix algebra is a matrix, generally expressed as: a 11 a 12. a 13 A = a 21 a 22 a 23

(copyright by Scott M Lynch, February 2003) Brief Matrix Algebra Review (Soc 504) Matrix algebra is a form of mathematics that allows compact notation for, and mathematical manipulation of, high-dimensional

### Chapter 17. Orthogonal Matrices and Symmetries of Space

Chapter 17. Orthogonal Matrices and Symmetries of Space Take a random matrix, say 1 3 A = 4 5 6, 7 8 9 and compare the lengths of e 1 and Ae 1. The vector e 1 has length 1, while Ae 1 = (1, 4, 7) has length

### 1 Sets and Set Notation.

LINEAR ALGEBRA MATH 27.6 SPRING 23 (COHEN) LECTURE NOTES Sets and Set Notation. Definition (Naive Definition of a Set). A set is any collection of objects, called the elements of that set. We will most

### 8 Square matrices continued: Determinants

8 Square matrices continued: Determinants 8. Introduction Determinants give us important information about square matrices, and, as we ll soon see, are essential for the computation of eigenvalues. You

### 4. MATRICES Matrices

4. MATRICES 170 4. Matrices 4.1. Definitions. Definition 4.1.1. A matrix is a rectangular array of numbers. A matrix with m rows and n columns is said to have dimension m n and may be represented as follows:

### MATH 551 - APPLIED MATRIX THEORY

MATH 55 - APPLIED MATRIX THEORY FINAL TEST: SAMPLE with SOLUTIONS (25 points NAME: PROBLEM (3 points A web of 5 pages is described by a directed graph whose matrix is given by A Do the following ( points

### Lecture notes on linear algebra

Lecture notes on linear algebra David Lerner Department of Mathematics University of Kansas These are notes of a course given in Fall, 2007 and 2008 to the Honors sections of our elementary linear algebra

### Question 2: How do you solve a matrix equation using the matrix inverse?

Question : How do you solve a matrix equation using the matrix inverse? In the previous question, we wrote systems of equations as a matrix equation AX B. In this format, the matrix A contains the coefficients

### 13 MATH FACTS 101. 2 a = 1. 7. The elements of a vector have a graphical interpretation, which is particularly easy to see in two or three dimensions.

3 MATH FACTS 0 3 MATH FACTS 3. Vectors 3.. Definition We use the overhead arrow to denote a column vector, i.e., a linear segment with a direction. For example, in three-space, we write a vector in terms

### Linear Algebra Notes

Linear Algebra Notes Chapter 19 KERNEL AND IMAGE OF A MATRIX Take an n m matrix a 11 a 12 a 1m a 21 a 22 a 2m a n1 a n2 a nm and think of it as a function A : R m R n The kernel of A is defined as Note

### Similar matrices and Jordan form

Similar matrices and Jordan form We ve nearly covered the entire heart of linear algebra once we ve finished singular value decompositions we ll have seen all the most central topics. A T A is positive

### Au = = = 3u. Aw = = = 2w. so the action of A on u and w is very easy to picture: it simply amounts to a stretching by 3 and 2, respectively.

Chapter 7 Eigenvalues and Eigenvectors In this last chapter of our exploration of Linear Algebra we will revisit eigenvalues and eigenvectors of matrices, concepts that were already introduced in Geometry

### Chapter 19. General Matrices. An n m matrix is an array. a 11 a 12 a 1m a 21 a 22 a 2m A = a n1 a n2 a nm. The matrix A has n row vectors

Chapter 9. General Matrices An n m matrix is an array a a a m a a a m... = [a ij]. a n a n a nm The matrix A has n row vectors and m column vectors row i (A) = [a i, a i,..., a im ] R m a j a j a nj col

### Vector algebra Christian Miller CS Fall 2011

Vector algebra Christian Miller CS 354 - Fall 2011 Vector algebra A system commonly used to describe space Vectors, linear operators, tensors, etc. Used to build classical physics and the vast majority

### 5.3 The Cross Product in R 3

53 The Cross Product in R 3 Definition 531 Let u = [u 1, u 2, u 3 ] and v = [v 1, v 2, v 3 ] Then the vector given by [u 2 v 3 u 3 v 2, u 3 v 1 u 1 v 3, u 1 v 2 u 2 v 1 ] is called the cross product (or

### EC9A0: Pre-sessional Advanced Mathematics Course

University of Warwick, EC9A0: Pre-sessional Advanced Mathematics Course Peter J. Hammond & Pablo F. Beker 1 of 55 EC9A0: Pre-sessional Advanced Mathematics Course Slides 1: Matrix Algebra Peter J. Hammond

### Lecture L3 - Vectors, Matrices and Coordinate Transformations

S. Widnall 16.07 Dynamics Fall 2009 Lecture notes based on J. Peraire Version 2.0 Lecture L3 - Vectors, Matrices and Coordinate Transformations By using vectors and defining appropriate operations between

### Section 2.1. Section 2.2. Exercise 6: We have to compute the product AB in two ways, where , B =. 2 1 3 5 A =

Section 2.1 Exercise 6: We have to compute the product AB in two ways, where 4 2 A = 3 0 1 3, B =. 2 1 3 5 Solution 1. Let b 1 = (1, 2) and b 2 = (3, 1) be the columns of B. Then Ab 1 = (0, 3, 13) and

### Lecture Notes 1: Matrix Algebra Part B: Determinants and Inverses

University of Warwick, EC9A0 Maths for Economists Peter J. Hammond 1 of 57 Lecture Notes 1: Matrix Algebra Part B: Determinants and Inverses Peter J. Hammond email: p.j.hammond@warwick.ac.uk Autumn 2012,

### by the matrix A results in a vector which is a reflection of the given

Eigenvalues & Eigenvectors Example Suppose Then So, geometrically, multiplying a vector in by the matrix A results in a vector which is a reflection of the given vector about the y-axis We observe that

### Solving Linear Diophantine Matrix Equations Using the Smith Normal Form (More or Less)

Solving Linear Diophantine Matrix Equations Using the Smith Normal Form (More or Less) Raymond N. Greenwell 1 and Stanley Kertzner 2 1 Department of Mathematics, Hofstra University, Hempstead, NY 11549

### 1. True/False: Circle the correct answer. No justifications are needed in this exercise. (1 point each)

Math 33 AH : Solution to the Final Exam Honors Linear Algebra and Applications 1. True/False: Circle the correct answer. No justifications are needed in this exercise. (1 point each) (1) If A is an invertible

### Orthogonal Projections

Orthogonal Projections and Reflections (with exercises) by D. Klain Version.. Corrections and comments are welcome! Orthogonal Projections Let X,..., X k be a family of linearly independent (column) vectors

### 6. Vectors. 1 2009-2016 Scott Surgent (surgent@asu.edu)

6. Vectors For purposes of applications in calculus and physics, a vector has both a direction and a magnitude (length), and is usually represented as an arrow. The start of the arrow is the vector s foot,

### LS.6 Solution Matrices

LS.6 Solution Matrices In the literature, solutions to linear systems often are expressed using square matrices rather than vectors. You need to get used to the terminology. As before, we state the definitions

### Systems of Linear Equations

Systems of Linear Equations Beifang Chen Systems of linear equations Linear systems A linear equation in variables x, x,, x n is an equation of the form a x + a x + + a n x n = b, where a, a,, a n and

### Linearly Independent Sets and Linearly Dependent Sets

These notes closely follow the presentation of the material given in David C. Lay s textbook Linear Algebra and its Applications (3rd edition). These notes are intended primarily for in-class presentation

### Lecture 14: Section 3.3

Lecture 14: Section 3.3 Shuanglin Shao October 23, 2013 Definition. Two nonzero vectors u and v in R n are said to be orthogonal (or perpendicular) if u v = 0. We will also agree that the zero vector in

### Sec 4.1 Vector Spaces and Subspaces

Sec 4. Vector Spaces and Subspaces Motivation Let S be the set of all solutions to the differential equation y + y =. Let T be the set of all 2 3 matrices with real entries. These two sets share many common

### 6. Cholesky factorization

6. Cholesky factorization EE103 (Fall 2011-12) triangular matrices forward and backward substitution the Cholesky factorization solving Ax = b with A positive definite inverse of a positive definite matrix

### 15.062 Data Mining: Algorithms and Applications Matrix Math Review

.6 Data Mining: Algorithms and Applications Matrix Math Review The purpose of this document is to give a brief review of selected linear algebra concepts that will be useful for the course and to develop

### Math 312 Homework 1 Solutions

Math 31 Homework 1 Solutions Last modified: July 15, 01 This homework is due on Thursday, July 1th, 01 at 1:10pm Please turn it in during class, or in my mailbox in the main math office (next to 4W1) Please

### Math 215 HW #6 Solutions

Math 5 HW #6 Solutions Problem 34 Show that x y is orthogonal to x + y if and only if x = y Proof First, suppose x y is orthogonal to x + y Then since x, y = y, x In other words, = x y, x + y = (x y) T

### 5. Orthogonal matrices

L Vandenberghe EE133A (Spring 2016) 5 Orthogonal matrices matrices with orthonormal columns orthogonal matrices tall matrices with orthonormal columns complex matrices with orthonormal columns 5-1 Orthonormal

### 160 CHAPTER 4. VECTOR SPACES

160 CHAPTER 4. VECTOR SPACES 4. Rank and Nullity In this section, we look at relationships between the row space, column space, null space of a matrix and its transpose. We will derive fundamental results

This assignment will help you to prepare for Algebra 1 by reviewing some of the things you learned in Middle School. If you cannot remember how to complete a specific problem, there is an example at the