Lecture 21: The Inverse of a Matrix


 Carmel Hart
 1 years ago
 Views:
Transcription
1 Lecture 21: The Inverse of a Matrix Winfried Just, Ohio University October 16, 2015
2 Review: Our chemical reaction system Recall our chemical reaction system A + 2B 2C A + B D A + 2C 2D B + D 2C If we write reaction vectors as columns, then he stoichiometric matrix can be written as S =
3 Review: Background for Homework 51 The rank of the stoichiometric matrix is r(s) = 2. 3 For w 1 = 2 ( ) 2 we have r S w 1 = 2. 4 Thus the vector w 1 will already be a linear combination of 2 reaction vectors. Homework 51: Suppose we know that exactly two of the four reactions combined to give the net change vector w 1. (a) Can we infer which pair of reactions occurred? Can we at least eliminate some of the 6 possibilities? (b) Can we narrow down the possibilities (further) if we know that only the the forward reactions are energetically plausible?
4 Solution for Homework 51 Let v 1, v 2, v 3, v 4 denote the reaction vectors: v 1 = 2 2 v 2 = 0 2 v 3 = 1 0 v 4 = Now the problem boils down to considering each of the 6 pairs {i, j} of distinct numbers 1 i < j 4 and trying to express w 1 as a linear combination of v i and v j. That is, we will try to find rate constants k i, k j such that w 1 = k i v i + k j v j. (a) If such rate constants k i, k j can be found, then it is possible that reaction i and reaction j (and no other reaction) did occur. If not, we can rule out the pair {i, j} as a possibility. (b) If only forward reactions are energetically plausible, then we can rule out a pair {i, j} of reactions when for every linear combination as above at least one of the rate constants k i, k j is negative. Ohio University Since Winfried 1804 Just, Ohio University MATH3200, Lecture 21: The Department Inverse Matrix of Mathematics
5 Solution for Homework 51, the pair {i, j} = {1, 2} By solving the relevant systems of linear equations, in this example we can find unique pairs of rate constants k i, k j for each pair of reactions {i, j}. For i = 1, j = 2 we find that w 1 = v v 2 : w 1 = 2 2 = = v v Here k 1 = 1, k 2 = 2. Both rate constants are positive. We cannot rule out the pair {1, 2} even if only the forward reactions are energetically plausible. It is possible that only the following reactions occurred: A + 2B 2C A + 2C 2D
6 Solution for Homework 51, the pair {i, j} = {1, 3} For i = 1, j = 3 we find that w 1 = v v 3 : w 1 = 2 2 = = v v Here k 1 = 1, k 2 = 4. We cannot rule out the pair {1, 3} when reactions can proceed in either direction. It is then possible that only the following reactions occurred: A + 2B 2C A + B D But this is not an option if only the forward reactions are plausible. Now complete the exercise by considering the remaining pairs {1, 4}, {2, 3}, {2, 4}, {3, 4}.
7 The definition of the matrix inverse Let A be an n n square matrix. The inverse of A is an n n matrix A 1 such that A 1 A = I n. Theorem The inverse A 1, if it exists, is unique and satisfies AA 1 = I n. Note that the inverse of a matrix is the analogue of a reciprocal a 1 = 1 a of a number. Note that the reciprocal 1 a of a number exists if, and only if, a 0.
8 An example of an inverse matrix Let A = and let B = ? Let AB = = ??
9 An example of an inverse matrix Let A = and let B = AB = = ??
10 An example of an inverse matrix Let A = and let B = AB = = ?
11 An example of an inverse matrix Let A = and let B = AB = = = I When we switch the order of multiplication: ? BA = = ??
12 An example of an inverse matrix Let A = and let B = AB = = = I When we switch the order of multiplication: BA = = ??
13 An example of an inverse matrix Let A = and let B = AB = = = I When we switch the order of multiplication: BA = = ?
14 An example of an inverse matrix Let A = and let B = AB = = = I When we switch the order of multiplication: BA = = = I We can see that B = A 1 and A = B 1. We can also see that: Verifying whether a given pair of matrices are inverses of each other is easy. You just need to multiply them and check whether the product is an identity matrix I.
15 Examples of noninvertible matrices 1 0 c11 c Example 1: Let A = and consider C = c 21 c c11 c Then AC = 12 c11 c = = I 0 0 c 21 c No matrix C can be the inverse matrix A c11 c Example 2: Let A = and consider C = c 21 c c11 c AC = 12 c11 + 2c = 21 c c c 21 c 22 3c c 21 3c c No matrix C can be the inverse matrix B 1. A square matrix A without an inverse A 1 is called noninvertible or singular. If A 1 exists, then A is invertible or nonsingular. Neither of the singular matrices A, B of our examples was an (obviously singular) zero matrix Z. But note that neither of them had full rank. Ohio University Since Winfried 1804 Just, Ohio University MATH3200, Lecture 21: The Department Inverse Matrix of Mathematics
16 Linear equations for numbers and matrices Numbers: Consider a linear equation ax = b. If a = 1, then x = b is the unique solution. If a 0, then a 1 ax = 1x = a 1 b so that x = a 1 b = b a is the unique solution. If a = 0, then there may be infinitely many solutions or none. Matrices: Consider a linear equation A x = b, where A is square. If A = I, then I x = x = b is the unique solution. If A is invertible, then A 1 A x = I x = x = A 1 b so that x = A 1 b is the unique solution. If A is noninvertible, then the system is either underdetermined or inconsistent.
17 Solving a system with the help of A 1 : An example Consider the system A x = b of linear equations x 1 + 2x 2 = 5 3x 1 + 4x 2 = 1 The coefficient matrix and its inverse are A = A 1 = The unique solution can be obtained as x1 x = x 2 [ 2 1 ] = A b = =
18 More on systems with square coefficient matrices Let A be an n n square matrix. The following statements are equivalent, that is, express the same property of A: r(a) = n (that is, A has full rank). The column vectors of A form a linearly independent set. The row vectors of A form a linearly independent set. Every b in R n is a linear combination of the columns of A. T A maps R n onto R n. Every system A x = b is consistent. The system A x = 0 has exactly one solution. Every system A x = b has exactly one solution. The linear transformation T A is a onetoone map. A is invertible, that is, A 1 exists.
19 Inverse matrices and linear transformations Consider transformations (functions) T : R n R n. The identity transformation T I maps every vector to itself: T I ( x) = I x = x. It does nothing. The inverse of a transformation T : R n R n is a transformation T 1 : R n R n that undoes the action of T, that is, such that T 1 (T ( x)) = (T 1 T )( x) = x = (T T 1 )( x) = T (T 1 ( x)). If T, T 1 are linear transformations of the form T = T A, T 1 = T B for some n n matrices A, B, then we must have: T 1 T = T I = T B T A = T BA and T T 1 = T I = T A T B = T AB. Thus BA = I = AB, and we must have B = A 1 and A = B 1. The inverse matrix A 1 defines the inverse transformation T A 1 = T 1 A. It undoes the action of A on any vector (or matrix).
20 Inverses of rotations of R 2 Let T α : R 2 R 2 be a rotation by an angle α. It is of the form T α = T Rα, where cos α sin α R α = sin α cos α To undo this transformation, we need to rotate by an angle α, that is, Tα 1 = T α = T R α. cos α sin α cos( α) sin( α) R α R α = sin α cos α sin( α) cos( α) cos(α α) sin(α α) cos 0 sin = = = sin(α α) cos(α α) 0 cos We can see that R 1 α = R α. = I 2
21 Stretching and compressing along coordinate axes Consider the transformation T A : R 2 R 2, where 3 0 x 3x A = T A = y 0.5y This transformation corresponds to a threefold stretch in the horizontal (x) direction and a twofold compression in the vertical (y) direction. We can undo this transformation by a threefold compression in the xdirection and twofold stretch in the ydirection: [ ] = A 1 = [ 1 ] Note that the matrix A in this example is a diagonal matrix.
22 More coordinates: Inverses of diagonal matrices Consider a diagonal matrix of order n n: λ λ D = λ n If λ i 0 for all i = 1, 2,..., n, then 1 D 1 =. λ λ λ n If λ i = 0 for at least one i = 1, 2,..., n, then r(d) < n and D 1 does not exist.
23 Why does this work? By Homework 25, the product of any two n n diagonal matrices is: λ κ λ 1 κ λ κ = 0 λ 2 κ λ n κ n λ n κ n In particular: 1 λ λ λ n λ λ λ n λ 1 λ λ. = 0 2 λ = I n λ n λ n
24 An example: Elementary row operation (E2) Recall that performing elementary row operation (E 2): Multiply row i of A by λ 0 is the same as computing EA, where E = e ii = λ To undo this operation, we divide row i of A by λ, which is another instance of (E2). The inverse E 1 is given by replacing e ii = λ with e ii = 1 λ in E.
25 How about elementary row operation (E1)? Recall that performing elementary row operation (E 1): Exchange rows i and j of A amounts to computing EA, where E was described in Lecture 12. For the special case n = 5 and rows i = 2, j = 5, E looks like this: E = Homework 52: How would one undo elementary row operation (E1)? Form a conjecture about how E 1 is in general related to E for this operation and verify it for the special case shown above.
26 How about elementary row operation (E3)? Recall that performing elementary row operation (E 3): Add λ(row i) to row j of A amounts to computing EA, where E was constructed in Homework 28 for the special case n = 4, λ = and rows i = 3, j = 4: E = Homework 53: (a) How would one undo elementary row operation (E3)? (b) Form a conjecture about how E 1 is in general related to E for this operation. Hint: Look up the solution for Homework 28 first. (c) Verify your conjecture for the special case shown above.
27 So far so good... We have seen that It is easy to verify that a given pair of matrices are inverses of each other (multiply them and check whether the product is an identity matrix I). It can be relatively easy to find A 1 when A has an intuitive interpretation in terms of linear transformations of vectors or other matrices. But how do we find A 1 in general? Even for a seemingly simple matrix like A = this seems hard.
28 An observation An n n matrix A can have an inverse only if r(a) = n. Then Gaussian elimination produces a matrix with all diagonal elements equal to 1. For n = 3 this looks as follows: a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33 Gaussian elimination 1?? 0 1? Now we can keep going and apply elementary row operation (E3) more times until we get I: 1?? 0 1? More applications of (E3) So what? How could this help?
29 A magic trick Let A be an n n matrix. Form an n 2n matrix C by dropping the internal brackets in [A, I n ] and replacing them with a vertical dividing line for visual clarity. For n = 3 we get: a 11 a 12 a a 21 a 22 a a 31 a 32 a Perform Gaussian elimination. If the first half of the resulting rowreduced matrix has a zero row, then r(a) < n and A is not invertible. Otherwise keep going and apply instances of (E3) until the first half turn into I n. For n = 3 the result will look like: b 11 b 12 b b 21 b 22 b b 31 b 32 b 33 Let s see what we get for the matrix B in the second half.
30 Trying out the magic trick Let A = Here we already know A 1 = Form a 2 4 matrix C and do Gaussian elimination on it: [ 1 2 C = ] subtract 3(row 1) from row divide row 2 by Apply (E3) one more time to turn the first half into I 2 : [ subtract 2(row 2) from row ] Magically, the matrix B in the right half is A 1!
31 Trying the magic trick on another matrix Let A = Here we don t know A Form a 3 6 matrix C and do Gaussian elimination on it. Start by subtracting row 1 from row 2: C = Next add row 2 to row 3:
32 Trying the magic trick on another matrix, continued Multiply row 1 by 2: Multiply row 2 by 2: The first half is now in rowreduced form. We still need to get rid of its offdiagonal nonzero elements.
33 Trying the magic trick on another matrix, completed Add row 3 to row 2: Subtract row 2 from row 1: Did the magic work? Homework 54: Check whether the matrix B on the right is A 1.
Math 313 Lecture #10 2.2: The Inverse of a Matrix
Math 1 Lecture #10 2.2: The Inverse of a Matrix Matrix algebra provides tools for creating many useful formulas just like real number algebra does. For example, a real number a is invertible if there is
More information2.1: MATRIX OPERATIONS
.: MATRIX OPERATIONS What are diagonal entries and the main diagonal of a matrix? What is a diagonal matrix? When are matrices equal? Scalar Multiplication 45 Matrix Addition Theorem (pg 0) Let A, B, and
More informationSolving Linear Systems, Continued and The Inverse of a Matrix
, Continued and The of a Matrix Calculus III Summer 2013, Session II Monday, July 15, 2013 Agenda 1. The rank of a matrix 2. The inverse of a square matrix Gaussian Gaussian solves a linear system by reducing
More informationMATRIX ALGEBRA AND SYSTEMS OF EQUATIONS
MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS Systems of Equations and Matrices Representation of a linear system The general system of m equations in n unknowns can be written a x + a 2 x 2 + + a n x n b a
More informationThe Inverse of a Matrix
The Inverse of a Matrix 7.4 Introduction In number arithmetic every number a ( 0) has a reciprocal b written as a or such that a ba = ab =. Some, but not all, square matrices have inverses. If a square
More informationMATRIX ALGEBRA AND SYSTEMS OF EQUATIONS. + + x 2. x n. a 11 a 12 a 1n b 1 a 21 a 22 a 2n b 2 a 31 a 32 a 3n b 3. a m1 a m2 a mn b m
MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS 1. SYSTEMS OF EQUATIONS AND MATRICES 1.1. Representation of a linear system. The general system of m equations in n unknowns can be written a 11 x 1 + a 12 x 2 +
More informationLinear Dependence Tests
Linear Dependence Tests The book omits a few key tests for checking the linear dependence of vectors. These short notes discuss these tests, as well as the reasoning behind them. Our first test checks
More informationB such that AB = I and BA = I. (We say B is an inverse of A.) Definition A square matrix A is invertible (or nonsingular) if matrix
Matrix inverses Recall... Definition A square matrix A is invertible (or nonsingular) if matrix B such that AB = and BA =. (We say B is an inverse of A.) Remark Not all square matrices are invertible.
More informationSolving Systems of Linear Equations; Row Reduction
Harvey Mudd College Math Tutorial: Solving Systems of Linear Equations; Row Reduction Systems of linear equations arise in all sorts of applications in many different fields of study The method reviewed
More informationLecture Notes 2: Matrices as Systems of Linear Equations
2: Matrices as Systems of Linear Equations 33A Linear Algebra, Puck Rombach Last updated: April 13, 2016 Systems of Linear Equations Systems of linear equations can represent many things You have probably
More informationLecture Notes: Matrix Inverse. 1 Inverse Definition
Lecture Notes: Matrix Inverse Yufei Tao Department of Computer Science and Engineering Chinese University of Hong Kong taoyf@cse.cuhk.edu.hk Inverse Definition We use I to represent identity matrices,
More informationLecture 6. Inverse of Matrix
Lecture 6 Inverse of Matrix Recall that any linear system can be written as a matrix equation In one dimension case, ie, A is 1 1, then can be easily solved as A x b Ax b x b A 1 A b A 1 b provided that
More informationMATH10212 Linear Algebra. Systems of Linear Equations. Definition. An ndimensional vector is a row or a column of n numbers (or letters): a 1.
MATH10212 Linear Algebra Textbook: D. Poole, Linear Algebra: A Modern Introduction. Thompson, 2006. ISBN 0534405967. Systems of Linear Equations Definition. An ndimensional vector is a row or a column
More informationUsing row reduction to calculate the inverse and the determinant of a square matrix
Using row reduction to calculate the inverse and the determinant of a square matrix Notes for MATH 0290 Honors by Prof. Anna Vainchtein 1 Inverse of a square matrix An n n square matrix A is called invertible
More information4. Matrix inverses. left and right inverse. linear independence. nonsingular matrices. matrices with linearly independent columns
L. Vandenberghe EE133A (Spring 2016) 4. Matrix inverses left and right inverse linear independence nonsingular matrices matrices with linearly independent columns matrices with linearly independent rows
More informationIntroduction to Matrix Algebra I
Appendix A Introduction to Matrix Algebra I Today we will begin the course with a discussion of matrix algebra. Why are we studying this? We will use matrix algebra to derive the linear regression model
More informationDiagonal, Symmetric and Triangular Matrices
Contents 1 Diagonal, Symmetric Triangular Matrices 2 Diagonal Matrices 2.1 Products, Powers Inverses of Diagonal Matrices 2.1.1 Theorem (Powers of Matrices) 2.2 Multiplying Matrices on the Left Right by
More information1 Introduction to Matrices
1 Introduction to Matrices In this section, important definitions and results from matrix algebra that are useful in regression analysis are introduced. While all statements below regarding the columns
More informationSECTION 8.3: THE INVERSE OF A SQUARE MATRIX
(Section 8.3: The Inverse of a Square Matrix) 8.47 SECTION 8.3: THE INVERSE OF A SQUARE MATRIX PART A: (REVIEW) THE INVERSE OF A REAL NUMBER If a is a nonzero real number, then aa 1 = a 1 a = 1. a 1, or
More information( ) which must be a vector
MATH 37 Linear Transformations from Rn to Rm Dr. Neal, WKU Let T : R n R m be a function which maps vectors from R n to R m. Then T is called a linear transformation if the following two properties are
More informationDETERMINANTS. b 2. x 2
DETERMINANTS 1 Systems of two equations in two unknowns A system of two equations in two unknowns has the form a 11 x 1 + a 12 x 2 = b 1 a 21 x 1 + a 22 x 2 = b 2 This can be written more concisely in
More information7.4. The Inverse of a Matrix. Introduction. Prerequisites. Learning Style. Learning Outcomes
The Inverse of a Matrix 7.4 Introduction In number arithmetic every number a 0 has a reciprocal b written as a or such that a ba = ab =. Similarly a square matrix A may have an inverse B = A where AB =
More informationMathQuest: Linear Algebra. 1. Which of the following matrices does not have an inverse?
MathQuest: Linear Algebra Matrix Inverses 1. Which of the following matrices does not have an inverse? 1 2 (a) 3 4 2 2 (b) 4 4 1 (c) 3 4 (d) 2 (e) More than one of the above do not have inverses. (f) All
More informationBasic Terminology for Systems of Equations in a Nutshell. E. L. Lady. 3x 1 7x 2 +4x 3 =0 5x 1 +8x 2 12x 3 =0.
Basic Terminology for Systems of Equations in a Nutshell E L Lady A system of linear equations is something like the following: x 7x +4x =0 5x +8x x = Note that the number of equations is not required
More informationSolution. Area(OABC) = Area(OAB) + Area(OBC) = 1 2 det( [ 5 2 1 2. Question 2. Let A = (a) Calculate the nullspace of the matrix A.
Solutions to Math 30 Takehome prelim Question. Find the area of the quadrilateral OABC on the figure below, coordinates given in brackets. [See pp. 60 63 of the book.] y C(, 4) B(, ) A(5, ) O x Area(OABC)
More informationLecture 2 Matrix Operations
Lecture 2 Matrix Operations transpose, sum & difference, scalar multiplication matrix multiplication, matrixvector product matrix inverse 2 1 Matrix transpose transpose of m n matrix A, denoted A T or
More informationAbstract: We describe the beautiful LU factorization of a square matrix (or how to write Gaussian elimination in terms of matrix multiplication).
MAT 2 (Badger, Spring 202) LU Factorization Selected Notes September 2, 202 Abstract: We describe the beautiful LU factorization of a square matrix (or how to write Gaussian elimination in terms of matrix
More informationThe Inverse of a Square Matrix
These notes closely follow the presentation of the material given in David C Lay s textbook Linear Algebra and its Applications (3rd edition) These notes are intended primarily for inclass presentation
More informationWe seek a factorization of a square matrix A into the product of two matrices which yields an
LU Decompositions We seek a factorization of a square matrix A into the product of two matrices which yields an efficient method for solving the system where A is the coefficient matrix, x is our variable
More informationMAT188H1S Lec0101 Burbulla
Winter 206 Linear Transformations A linear transformation T : R m R n is a function that takes vectors in R m to vectors in R n such that and T (u + v) T (u) + T (v) T (k v) k T (v), for all vectors u
More informationMAT 200, Midterm Exam Solution. a. (5 points) Compute the determinant of the matrix A =
MAT 200, Midterm Exam Solution. (0 points total) a. (5 points) Compute the determinant of the matrix 2 2 0 A = 0 3 0 3 0 Answer: det A = 3. The most efficient way is to develop the determinant along the
More informationDecember 4, 2013 MATH 171 BASIC LINEAR ALGEBRA B. KITCHENS
December 4, 2013 MATH 171 BASIC LINEAR ALGEBRA B KITCHENS The equation 1 Lines in twodimensional space (1) 2x y = 3 describes a line in twodimensional space The coefficients of x and y in the equation
More informationCofactor Expansion: Cramer s Rule
Cofactor Expansion: Cramer s Rule MATH 322, Linear Algebra I J. Robert Buchanan Department of Mathematics Spring 2015 Introduction Today we will focus on developing: an efficient method for calculating
More information[1] Diagonal factorization
8.03 LA.6: Diagonalization and Orthogonal Matrices [ Diagonal factorization [2 Solving systems of first order differential equations [3 Symmetric and Orthonormal Matrices [ Diagonal factorization Recall:
More information1 Review of Least Squares Solutions to Overdetermined Systems
cs4: introduction to numerical analysis /9/0 Lecture 7: Rectangular Systems and Numerical Integration Instructor: Professor Amos Ron Scribes: Mark Cowlishaw, Nathanael Fillmore Review of Least Squares
More informationSolutions to Linear Algebra Practice Problems 1. form (because the leading 1 in the third row is not to the right of the
Solutions to Linear Algebra Practice Problems. Determine which of the following augmented matrices are in row echelon from, row reduced echelon form or neither. Also determine which variables are free
More informationHelpsheet. Giblin Eunson Library MATRIX ALGEBRA. library.unimelb.edu.au/libraries/bee. Use this sheet to help you:
Helpsheet Giblin Eunson Library ATRIX ALGEBRA Use this sheet to help you: Understand the basic concepts and definitions of matrix algebra Express a set of linear equations in matrix notation Evaluate determinants
More informationSYSTEMS OF EQUATIONS AND MATRICES WITH THE TI89. by Joseph Collison
SYSTEMS OF EQUATIONS AND MATRICES WITH THE TI89 by Joseph Collison Copyright 2000 by Joseph Collison All rights reserved Reproduction or translation of any part of this work beyond that permitted by Sections
More informationChapter 6. Orthogonality
6.3 Orthogonal Matrices 1 Chapter 6. Orthogonality 6.3 Orthogonal Matrices Definition 6.4. An n n matrix A is orthogonal if A T A = I. Note. We will see that the columns of an orthogonal matrix must be
More informationMath 240: Linear Systems and Rank of a Matrix
Math 240: Linear Systems and Rank of a Matrix Ryan Blair University of Pennsylvania Thursday January 20, 2011 Ryan Blair (U Penn) Math 240: Linear Systems and Rank of a Matrix Thursday January 20, 2011
More informationWe know a formula for and some properties of the determinant. Now we see how the determinant can be used.
Cramer s rule, inverse matrix, and volume We know a formula for and some properties of the determinant. Now we see how the determinant can be used. Formula for A We know: a b d b =. c d ad bc c a Can we
More informationNotes on Determinant
ENGG2012B Advanced Engineering Mathematics Notes on Determinant Lecturer: Kenneth Shum Lecture 918/02/2013 The determinant of a system of linear equations determines whether the solution is unique, without
More informationMATH2210 Notebook 1 Fall Semester 2016/2017. 1 MATH2210 Notebook 1 3. 1.1 Solving Systems of Linear Equations... 3
MATH0 Notebook Fall Semester 06/07 prepared by Professor Jenny Baglivo c Copyright 009 07 by Jenny A. Baglivo. All Rights Reserved. Contents MATH0 Notebook 3. Solving Systems of Linear Equations........................
More informationMethods for Finding Bases
Methods for Finding Bases Bases for the subspaces of a matrix Rowreduction methods can be used to find bases. Let us now look at an example illustrating how to obtain bases for the row space, null space,
More informationMATH 304 Linear Algebra Lecture 18: Rank and nullity of a matrix.
MATH 304 Linear Algebra Lecture 18: Rank and nullity of a matrix. Nullspace Let A = (a ij ) be an m n matrix. Definition. The nullspace of the matrix A, denoted N(A), is the set of all ndimensional column
More information1 Eigenvalues and Eigenvectors
Math 20 Chapter 5 Eigenvalues and Eigenvectors Eigenvalues and Eigenvectors. Definition: A scalar λ is called an eigenvalue of the n n matrix A is there is a nontrivial solution x of Ax = λx. Such an x
More informationELEMENTS OF VECTOR ALGEBRA
ELEMENTS OF VECTOR ALGEBRA A.1. VECTORS AND SCALAR QUANTITIES We have now proposed sets of basic dimensions and secondary dimensions to describe certain aspects of nature, but more than just dimensions
More informationMatrix Algebra and Applications
Matrix Algebra and Applications Dudley Cooke Trinity College Dublin Dudley Cooke (Trinity College Dublin) Matrix Algebra and Applications 1 / 49 EC2040 Topic 2  Matrices and Matrix Algebra Reading 1 Chapters
More informationLINEAR ALGEBRA. September 23, 2010
LINEAR ALGEBRA September 3, 00 Contents 0. LUdecomposition.................................... 0. Inverses and Transposes................................. 0.3 Column Spaces and NullSpaces.............................
More informationT ( a i x i ) = a i T (x i ).
Chapter 2 Defn 1. (p. 65) Let V and W be vector spaces (over F ). We call a function T : V W a linear transformation form V to W if, for all x, y V and c F, we have (a) T (x + y) = T (x) + T (y) and (b)
More informationSolving Systems of Linear Equations
LECTURE 5 Solving Systems of Linear Equations Recall that we introduced the notion of matrices as a way of standardizing the expression of systems of linear equations In today s lecture I shall show how
More information1 0 5 3 3 A = 0 0 0 1 3 0 0 0 0 0 0 0 0 0 0
Solutions: Assignment 4.. Find the redundant column vectors of the given matrix A by inspection. Then find a basis of the image of A and a basis of the kernel of A. 5 A The second and third columns are
More informationLinear Algebra Notes for Marsden and Tromba Vector Calculus
Linear Algebra Notes for Marsden and Tromba Vector Calculus ndimensional Euclidean Space and Matrices Definition of n space As was learned in Math b, a point in Euclidean three space can be thought of
More informationMatrix Norms. Tom Lyche. September 28, Centre of Mathematics for Applications, Department of Informatics, University of Oslo
Matrix Norms Tom Lyche Centre of Mathematics for Applications, Department of Informatics, University of Oslo September 28, 2009 Matrix Norms We consider matrix norms on (C m,n, C). All results holds for
More informationLinear Equations ! 25 30 35$ & " 350 150% & " 11,750 12,750 13,750% MATHEMATICS LEARNING SERVICE Centre for Learning and Professional Development
MathsTrack (NOTE Feb 2013: This is the old version of MathsTrack. New books will be created during 2013 and 2014) Topic 4 Module 9 Introduction Systems of to Matrices Linear Equations Income = Tickets!
More informationSolutions to Linear Algebra Practice Problems
Solutions to Linear Algebra Practice Problems. Find all solutions to the following systems of linear equations. (a) x x + x 5 x x x + x + x 5 (b) x + x + x x + x + x x + x + 8x Answer: (a) We create the
More informationPresentation 3: Eigenvalues and Eigenvectors of a Matrix
Colleen Kirksey, Beth Van Schoyck, Dennis Bowers MATH 280: Problem Solving November 18, 2011 Presentation 3: Eigenvalues and Eigenvectors of a Matrix Order of Presentation: 1. Definitions of Eigenvalues
More informationL12. Special Matrix Operations: Permutations, Transpose, Inverse, Augmentation 12 Aug 2014
L12. Special Matrix Operations: Permutations, Transpose, Inverse, Augmentation 12 Aug 2014 Unfortunately, no one can be told what the Matrix is. You have to see it for yourself.  Morpheus Primary concepts:
More informationMATH10212 Linear Algebra B Homework 7
MATH22 Linear Algebra B Homework 7 Students are strongly advised to acquire a copy of the Textbook: D C Lay, Linear Algebra and its Applications Pearson, 26 (or other editions) Normally, homework assignments
More informationSolving Systems of Linear Equations. Substitution
Solving Systems of Linear Equations There are two basic methods we will use to solve systems of linear equations: Substitution Elimination We will describe each for a system of two equations in two unknowns,
More informationSimilarity and Diagonalization. Similar Matrices
MATH022 Linear Algebra Brief lecture notes 48 Similarity and Diagonalization Similar Matrices Let A and B be n n matrices. We say that A is similar to B if there is an invertible n n matrix P such that
More informationMatrices, Determinants and Linear Systems
September 21, 2014 Matrices A matrix A m n is an array of numbers in rows and columns a 11 a 12 a 1n r 1 a 21 a 22 a 2n r 2....... a m1 a m2 a mn r m c 1 c 2 c n We say that the dimension of A is m n (we
More informationThe basic unit in matrix algebra is a matrix, generally expressed as: a 11 a 12. a 13 A = a 21 a 22 a 23
(copyright by Scott M Lynch, February 2003) Brief Matrix Algebra Review (Soc 504) Matrix algebra is a form of mathematics that allows compact notation for, and mathematical manipulation of, highdimensional
More informationChapter 17. Orthogonal Matrices and Symmetries of Space
Chapter 17. Orthogonal Matrices and Symmetries of Space Take a random matrix, say 1 3 A = 4 5 6, 7 8 9 and compare the lengths of e 1 and Ae 1. The vector e 1 has length 1, while Ae 1 = (1, 4, 7) has length
More information1 Sets and Set Notation.
LINEAR ALGEBRA MATH 27.6 SPRING 23 (COHEN) LECTURE NOTES Sets and Set Notation. Definition (Naive Definition of a Set). A set is any collection of objects, called the elements of that set. We will most
More information8 Square matrices continued: Determinants
8 Square matrices continued: Determinants 8. Introduction Determinants give us important information about square matrices, and, as we ll soon see, are essential for the computation of eigenvalues. You
More information4. MATRICES Matrices
4. MATRICES 170 4. Matrices 4.1. Definitions. Definition 4.1.1. A matrix is a rectangular array of numbers. A matrix with m rows and n columns is said to have dimension m n and may be represented as follows:
More informationMATH 551  APPLIED MATRIX THEORY
MATH 55  APPLIED MATRIX THEORY FINAL TEST: SAMPLE with SOLUTIONS (25 points NAME: PROBLEM (3 points A web of 5 pages is described by a directed graph whose matrix is given by A Do the following ( points
More informationLecture notes on linear algebra
Lecture notes on linear algebra David Lerner Department of Mathematics University of Kansas These are notes of a course given in Fall, 2007 and 2008 to the Honors sections of our elementary linear algebra
More informationQuestion 2: How do you solve a matrix equation using the matrix inverse?
Question : How do you solve a matrix equation using the matrix inverse? In the previous question, we wrote systems of equations as a matrix equation AX B. In this format, the matrix A contains the coefficients
More information13 MATH FACTS 101. 2 a = 1. 7. The elements of a vector have a graphical interpretation, which is particularly easy to see in two or three dimensions.
3 MATH FACTS 0 3 MATH FACTS 3. Vectors 3.. Definition We use the overhead arrow to denote a column vector, i.e., a linear segment with a direction. For example, in threespace, we write a vector in terms
More informationLinear Algebra Notes
Linear Algebra Notes Chapter 19 KERNEL AND IMAGE OF A MATRIX Take an n m matrix a 11 a 12 a 1m a 21 a 22 a 2m a n1 a n2 a nm and think of it as a function A : R m R n The kernel of A is defined as Note
More informationSimilar matrices and Jordan form
Similar matrices and Jordan form We ve nearly covered the entire heart of linear algebra once we ve finished singular value decompositions we ll have seen all the most central topics. A T A is positive
More informationAu = = = 3u. Aw = = = 2w. so the action of A on u and w is very easy to picture: it simply amounts to a stretching by 3 and 2, respectively.
Chapter 7 Eigenvalues and Eigenvectors In this last chapter of our exploration of Linear Algebra we will revisit eigenvalues and eigenvectors of matrices, concepts that were already introduced in Geometry
More informationChapter 19. General Matrices. An n m matrix is an array. a 11 a 12 a 1m a 21 a 22 a 2m A = a n1 a n2 a nm. The matrix A has n row vectors
Chapter 9. General Matrices An n m matrix is an array a a a m a a a m... = [a ij]. a n a n a nm The matrix A has n row vectors and m column vectors row i (A) = [a i, a i,..., a im ] R m a j a j a nj col
More informationVector algebra Christian Miller CS Fall 2011
Vector algebra Christian Miller CS 354  Fall 2011 Vector algebra A system commonly used to describe space Vectors, linear operators, tensors, etc. Used to build classical physics and the vast majority
More information5.3 The Cross Product in R 3
53 The Cross Product in R 3 Definition 531 Let u = [u 1, u 2, u 3 ] and v = [v 1, v 2, v 3 ] Then the vector given by [u 2 v 3 u 3 v 2, u 3 v 1 u 1 v 3, u 1 v 2 u 2 v 1 ] is called the cross product (or
More informationEC9A0: Presessional Advanced Mathematics Course
University of Warwick, EC9A0: Presessional Advanced Mathematics Course Peter J. Hammond & Pablo F. Beker 1 of 55 EC9A0: Presessional Advanced Mathematics Course Slides 1: Matrix Algebra Peter J. Hammond
More informationLecture L3  Vectors, Matrices and Coordinate Transformations
S. Widnall 16.07 Dynamics Fall 2009 Lecture notes based on J. Peraire Version 2.0 Lecture L3  Vectors, Matrices and Coordinate Transformations By using vectors and defining appropriate operations between
More informationSection 2.1. Section 2.2. Exercise 6: We have to compute the product AB in two ways, where , B =. 2 1 3 5 A =
Section 2.1 Exercise 6: We have to compute the product AB in two ways, where 4 2 A = 3 0 1 3, B =. 2 1 3 5 Solution 1. Let b 1 = (1, 2) and b 2 = (3, 1) be the columns of B. Then Ab 1 = (0, 3, 13) and
More informationLecture Notes 1: Matrix Algebra Part B: Determinants and Inverses
University of Warwick, EC9A0 Maths for Economists Peter J. Hammond 1 of 57 Lecture Notes 1: Matrix Algebra Part B: Determinants and Inverses Peter J. Hammond email: p.j.hammond@warwick.ac.uk Autumn 2012,
More informationby the matrix A results in a vector which is a reflection of the given
Eigenvalues & Eigenvectors Example Suppose Then So, geometrically, multiplying a vector in by the matrix A results in a vector which is a reflection of the given vector about the yaxis We observe that
More informationSolving Linear Diophantine Matrix Equations Using the Smith Normal Form (More or Less)
Solving Linear Diophantine Matrix Equations Using the Smith Normal Form (More or Less) Raymond N. Greenwell 1 and Stanley Kertzner 2 1 Department of Mathematics, Hofstra University, Hempstead, NY 11549
More information1. True/False: Circle the correct answer. No justifications are needed in this exercise. (1 point each)
Math 33 AH : Solution to the Final Exam Honors Linear Algebra and Applications 1. True/False: Circle the correct answer. No justifications are needed in this exercise. (1 point each) (1) If A is an invertible
More informationOrthogonal Projections
Orthogonal Projections and Reflections (with exercises) by D. Klain Version.. Corrections and comments are welcome! Orthogonal Projections Let X,..., X k be a family of linearly independent (column) vectors
More information6. Vectors. 1 20092016 Scott Surgent (surgent@asu.edu)
6. Vectors For purposes of applications in calculus and physics, a vector has both a direction and a magnitude (length), and is usually represented as an arrow. The start of the arrow is the vector s foot,
More informationLS.6 Solution Matrices
LS.6 Solution Matrices In the literature, solutions to linear systems often are expressed using square matrices rather than vectors. You need to get used to the terminology. As before, we state the definitions
More informationSystems of Linear Equations
Systems of Linear Equations Beifang Chen Systems of linear equations Linear systems A linear equation in variables x, x,, x n is an equation of the form a x + a x + + a n x n = b, where a, a,, a n and
More informationLinearly Independent Sets and Linearly Dependent Sets
These notes closely follow the presentation of the material given in David C. Lay s textbook Linear Algebra and its Applications (3rd edition). These notes are intended primarily for inclass presentation
More informationLecture 14: Section 3.3
Lecture 14: Section 3.3 Shuanglin Shao October 23, 2013 Definition. Two nonzero vectors u and v in R n are said to be orthogonal (or perpendicular) if u v = 0. We will also agree that the zero vector in
More informationSec 4.1 Vector Spaces and Subspaces
Sec 4. Vector Spaces and Subspaces Motivation Let S be the set of all solutions to the differential equation y + y =. Let T be the set of all 2 3 matrices with real entries. These two sets share many common
More information6. Cholesky factorization
6. Cholesky factorization EE103 (Fall 201112) triangular matrices forward and backward substitution the Cholesky factorization solving Ax = b with A positive definite inverse of a positive definite matrix
More information15.062 Data Mining: Algorithms and Applications Matrix Math Review
.6 Data Mining: Algorithms and Applications Matrix Math Review The purpose of this document is to give a brief review of selected linear algebra concepts that will be useful for the course and to develop
More informationMath 312 Homework 1 Solutions
Math 31 Homework 1 Solutions Last modified: July 15, 01 This homework is due on Thursday, July 1th, 01 at 1:10pm Please turn it in during class, or in my mailbox in the main math office (next to 4W1) Please
More informationMath 215 HW #6 Solutions
Math 5 HW #6 Solutions Problem 34 Show that x y is orthogonal to x + y if and only if x = y Proof First, suppose x y is orthogonal to x + y Then since x, y = y, x In other words, = x y, x + y = (x y) T
More information5. Orthogonal matrices
L Vandenberghe EE133A (Spring 2016) 5 Orthogonal matrices matrices with orthonormal columns orthogonal matrices tall matrices with orthonormal columns complex matrices with orthonormal columns 51 Orthonormal
More information160 CHAPTER 4. VECTOR SPACES
160 CHAPTER 4. VECTOR SPACES 4. Rank and Nullity In this section, we look at relationships between the row space, column space, null space of a matrix and its transpose. We will derive fundamental results
More informationThis assignment will help you to prepare for Algebra 1 by reviewing some of the things you learned in Middle School. If you cannot remember how to complete a specific problem, there is an example at the
More informationSolutions to Math 51 First Exam January 29, 2015
Solutions to Math 5 First Exam January 29, 25. ( points) (a) Complete the following sentence: A set of vectors {v,..., v k } is defined to be linearly dependent if (2 points) there exist c,... c k R, not
More informationLinear Codes. In the V[n,q] setting, the terms word and vector are interchangeable.
Linear Codes Linear Codes In the V[n,q] setting, an important class of codes are the linear codes, these codes are the ones whose code words form a subvector space of V[n,q]. If the subspace of V[n,q]
More information