INJECTION PRESSURE AS A MEANS TO GUIDE AIR UTILIZATION IN DIESEL ENGINE COMBUSTION

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "INJECTION PRESSURE AS A MEANS TO GUIDE AIR UTILIZATION IN DIESEL ENGINE COMBUSTION"

Transcription

1 INJECTION PRESSURE AS A MEANS TO GUIDE AIR UTILIZATION IN DIESEL ENGINE COMBUSTION H. Dembinski, Scania AB Sweden H.-E. Angstrom, KTH Stockholm, Sweden E. Winklhofer, AVL List GmbH, Austria London, March 10 and 11, 2015 Goteborg, November 26, th & 11th of March

2 MOTIVATION 10th & 11th of March

3 THE QUESTION How can higher injection pressure end up with lower engine out soot? injection pressure / soot t = 0.2 ms asoi 10th & 11th of March

4 THE QUESTION How can higher injection pressure end up with lower engine out soot? Can we understand the mechanisms? If so how to exploit them? Which kind of analysis would we require? 10th & 11th of March

5 CONTENT 1.Injection pressure spray at nozzle exit 2.Spray interaction with in-cylinder gas Momentum transfer Heat transfer 3.Ignition 4.Premixed and diffusion flames Soot formation Soot oxidation 5.Enhancing soot oxidation 6.How things come together pressure temperature flow 7.Summary 10th & 11th of March

6 1. Injection pressure - spray PRESSURE GEOMETRY - FUEL FLOW - SPRAY Fuel injection pressure injector internal flow Such flow is visualized in 2D model nozzle tests. E. Winklhofer et al.: Basic flow processes in high pressure fuel injection equipment, ICLASS th & 11th of March

7 1. Injection pressure - spray Internal flow is visualized in 2D model nozzle tests. Liquid into liquid injection (Diesel) PRESSURE GEOMETRY - FUEL FLOW - SPRAY liquid body 1 bar liquid needle 30 bar P in = 400 bar Shear layer cavitation boundary layer cavitation 1 bar needle Fuel flow is subject to cavitation in local shear and boundary layers. High cross flow velocity gradients force static pressure to drop below vapor pressure. Driving parameters are: Geometry Velocity gradients Pressure Vapor pressure of fuel boundary layer cavitation White: liquid phase (Diesel) Black: gas phase (cavitation bubbles) at Diesel vapor pressure << 1 bar 10th & 11th of March

8 1. Injection pressure - spray Internal flow is visualized in 2D model nozzle tests. Liquid into liquid injection (Diesel) PRESSURE GEOMETRY - FUEL FLOW - SPRAY Pressure field at inflow into nozzle hole Fuel pressure is discharged within fractions of a millimeter at the entrance to the nozzle hole. Geometry influence on local static pressure and hence on cavitation - is highest in areas of high pressure drop. A B Measurements were done as Diesel fluid was just below cavitation limit Sharp (A) and round (B) inlet 10th & 11th of March

9 800 µm 800 µm 1. Injection pressure - spray Liquid into air: 2D model nozzle to see internal flow together with spray. Average of 30 events P in = bar PRESSURE GEOMETRY - FUEL FLOW - SPRAY fuel cavitation A nozzle flow spray experiment: At high injection pressure we see Well developed cavitation down to nozzle hole exit Atomizing spray with highly stable spray cone angle spray Note the dimensions: 0,8 mm nozzle hole + 0,8mm free spray air laminar turbulent turbulent and cavitating Conclusion: high injection pressure stabilises spray cone angle near nozzle exit. 10th & 11th of March

10 spray dia. - mm 2. Spray interaction with in-cylinder gas Momentum transfer Heat transfer PRESSURE GEOMETRY - FUEL FLOW - SPRAY Fuel injection pressure exit velocity: V spray /V Bernoulli ~ 0.9 Spray observation in optical Diesel research engine: Spray diameter fluctuation measurement to document spray targeting and spray fluctuation in far field bar Z = 15 mm 0 1 ms 2 spray diameter fluctuation 10th & 11th of March

11 PRESSURE GEOMETRY - FUEL FLOW - SPRAY 2. Spray interaction with in-cylinder gas Momentum transfer Heat transfer Length - time and Diameter - time shadow traces of Diesel sprays in an optical engine Spray observation in optical Diesel research engine: Start of Injection End of Injection Strahlschatten Spray shadow 800 bar 20 mm ms 2 Spray tip propagation and spray core length ms bar 800 bar 1500 bar Z = 15 mm Spray targeting and spray diameter (spray angle) fluctuations. Spray diameter fluctuation measurement to document spray targeting and spray fluctuation in far field Conclusion: high injection pressure stabilises spray targeting. Spray diameter fluctuations appear at ever higher frequency 10th & 11th of March

12 2. Spray interaction with in-cylinder gas Momentum transfer Heat transfer PRESSURE GEOMETRY - FUEL FLOW - SPRAY Spray in hot compressed in-cylinder gas Heat transfer from gas into spray with resultant fast expansion of spray vapor plume and self ignition T = 930 K p = 53 bar Schlieren imaging in optical research engine, 500 rpm 10th & 11th of March

13 2. Spray interaction with in-cylinder gas Momentum transfer Heat transfer PRESSURE GEOMETRY - FUEL FLOW - SPRAY P rail = 300 bar P rail = 800 bar P rail = 1100 bar Spray in hot compressed in-cylinder gas Spray core Spray vapor cloud Heat transfer from gas into spray with resultant fast expansion of spray vapor plume and self ignition Injection pressure enhances fuel vapor transport Average spray contours at 0.40 ms after SOI. Nozzle: 1x mm Schlieren imaging in optical research engine 10th & 11th of March

14 3. Ignition PRESSURE GEOMETRY - FUEL FLOW SPRAY EVAPORATION - IGNITION µs 0 µs 50 µs 100 µs 150 µs Ignition and spray flame interaction in optical engine, 85 mm bore, p = 60 bar Combustion chamber is externally illuminated, high speed camera records of one cycle. Time sequence shows sprays before ignition, combustion of premixed fuel vapor in blue flame pockets, and start of diffusion combustion Full glass optical piston 10th & 11th of March

15 3. Ignition PRESSURE GEOMETRY - FUEL FLOW SPRAY EVAPORATION - IGNITION Ignition and spray flame interaction in optical heavy duty engine, 127 mm bore, p = 153 bar 80 mm piston window dia. A Piston bottom window Time sequence shows combustion of premixed fuel vapor in blue flame pockets, and start of diffusion combustion Note that blue premixed flame is only visible at ignition for up to 100 µs (0,6 deg CA at 1000 rpm) 10th & 11th of March

16 INJECTION PRESSURE COMBUSTION 4. Premixed and diffusion flames Soot formation Soot oxidation Diesel combustion movie 10th & 11th of March

17 HD DIESEL OSCE WITH PISTON BOTTOM WINDOW Fired operation for 15 cycles 10th & 11th of March

18 HD DIESEL OSCE WITH PISTON BOTTOM WINDOW Topic: 20 bar IMEP 1400 rpm Fired operation for 15 cycles 10th & 11th of March

19 total soot - KL*area 4. Premixed and diffusion flames Soot formation Soot oxidation INJECTION PRESSURE COMBUSTION AIR UTILIZATION 14 x metal engine 500 bar 1000 bar 1500 bar 2000 bar Metal engine soot measurement: Lower FSN at higher injection pressure total soot (KL*area) In optical engine 500 bar optical engine flame evaluation shows Faster soot oxidation at higher injection pressure Soot oxidation needs flame (soot) air mixing Data show that injection pressure has significant influence on air utilization = soot oxidation. Injection at 2 500bar 1000bar CAD KL is evaluated from high speed deg CA flame movies with 2-color method How can this happen? 10th & 11th of March

20 INJECTION PRESSURE COMBUSTION 4. Premixed and diffusion flames Soot formation Soot oxidation How can it be that injection pressure improves air utilization? 10th & 11th of March

21 4. Premixed and diffusion flames Soot formation Soot oxidation HOW CAN INJECTION PRESSURE IMPROVE AIR UTILIZATION? 2000 bar near end of injection 2000 bar 10 deg CA after end of injection 2000 bar At ongoing injection Backflow of flames into combustion chamber center following spray vapor - flame reflection on piston bowl wall After end of injection Speed up of swirl motion in center of piston bowl 0 m/s 55 m/s 21 10th & 11th of March

22 4. Premixed and diffusion flames Soot formation Soot oxidation HOW CAN INJECTION PRESSURE IMPROVE AIR UTILIZATION? 2000 bar near end of injection 10 deg CA after end of injection 200 bar 2000 bar 200 bar 2000 bar A comparison with very low injection pressure Spray momentum is too small for effective interaction with reflecting piston bowl wall Conclusion 1 Injection pressure drives the flame back into areas of un-used air 0 m/s 55 m/s 22 10th & 11th of March

23 INJECTION PRESSURE COMBUSTION 4. Premixed and diffusion flames Soot formation Soot oxidation How can it be that injection pressure improves air utilization? 1. It introduces flame transport into areas with un-used air 2. And further: flame transport enhances turbulent motion 10th & 11th of March

24 5. Enhancing soot oxidation FLAME MOTION AND TURBULENT KINETIC ENERGY Flame (soot) transport Turbulence: data on local turbulent kinetic energy At 8,5 EOI 12,5 16,5 21,5 deg CA Flow field 500 bar, FSN = 1, bar FSN = 0,5 Significant rise of local turbulence with high injection pressure 10th & 11th of March

25 1000 bar FSN = 0,5 500 bar, FSN = 1,2 5. Enhancing soot oxidation Flame (soot) transport KINETIC ENERGY RELAXATION AFTER END OF INJECTION KE~ u x u y. 2 Flow field KE~ u x u y. 2 Kinetic energy vs CAD CAD Local Turbulent Kinetic Energy Turbulence and fast decay of turbulence at end of injection 10th & 11th of March

26 5. Enhancing soot oxidation KINETIC ENERGY RELAXATION AFTER END OF INJECTION KE~ u x u y bar KE~ u x 2 2 Soot + u y. formation2 Soot oxidation Turbulence is driver for soot oxygen mixing Soot transport and results in enhanced soot oxidation Note: high turbulence for effective soot oxidation is only available right at the end of injection. 10th & 11th of March

27 Flame - summary 6. How things come together pressure temperature flow Metal engine soot measurement: Lower FSN at higher injection pressure optical engine flame evaluation shows Faster soot oxidation at higher injection pressure Soot oxidation needs flame (soot) air mixing Data show that injection pressure has singificant influence on air utilization = soot oxidation. How can this happen? 1. Transport soot to meet with air 2. Use turbulence for fast soot air mixing Examples have shown that and how both, transport and turbulence, are controlled by fuel injection and spray momentum reflection on piston bowl walls. Effective soot oxidation must happen close to the end of injection to benefit from high temperature oxidation rates. 10th & 11th of March

28 7. Summary INJECTION PRESSURE AS A MEANS TO GUIDE AIR UTILIZATION IN DIESEL ENGINE COMBUSTION Spray: Spray turbulence and atomizaton are driven by cavitation Cavitation is controlled by shear and boundary layer flow under influence of local spray hole geometry At usual temperatures ( 100 C) and injection pressures ( bar) normal behaviour of Diesel sprays: liquid spray core of droplets and ligaments, fuel vapor and diffusion flame Flame: Temperature and pilot injection control ignition, soot formation in diffusion flame, Soot oxidation: Injection pressure is most effective to control flame transport and turbulent mixing for fast oxidation Analysis: in optical Diesel engines with realistic temperature, pressure and geometry parameters 10th & 11th of March

29 INJECTION PRESSURE AS A MEANS TO GUIDE AIR UTILIZATION IN DIESEL ENGINE COMBUSTION Thank you 10th & 11th of March

30 6 MINUTES TO STOP THE ENGINE, CLEAN THE COMBUSTION CHAMBER AND START AGAIN Diesel engine movie 10th & 11th of March

31 HD DIESEL OSCE WITH PISTON BOTTOM WINDOW Fired operation for 15 cycles 10th & 11th of March

32 HD DIESEL OSCE WITH PISTON BOTTOM WINDOW Topic: 20 bar IMEP 1400 rpm Fired operation for 15 cycles 10th & 11th of March

33 THE RISK OF GLASS DAMAGE MOUNTING PRESSURE TEMPERATURE INERTIA FORCES LOCAL CONTACT UNKNOWN 10th & 11th of March

34 1. Injection pressure - spray Internal flow is visualized in 2D model nozzle tests. Liquid into liquid injection (Diesel) PRESSURE GEOMETRY - FUEL FLOW - SPRAY liquid body 1 bar liquid P in = 400 bar needle Fuel flow is subject to cavitation in local shear and boundary layers. High cross flow velocity gradients force static pressure to drop below vapor pressure. Driving parameters are: Geometry Velocity gradients Pressure Vapor pressure of fuel White: liquid phase (Diesel) Black: gas phase (cavitation bubbles) at Diesel vapor pressure << 1 bar 10th & 11th of March

35 1. Injection pressure - spray Internal flow is visualized in 2D model nozzle tests. Liquid into liquid injection (Diesel) PRESSURE GEOMETRY - FUEL FLOW - SPRAY liquid body 1 bar liquid needle 30 bar P in = 400 bar Shear layer cavitation Fuel flow is subject to cavitation in local shear and boundary layers. High cross flow velocity gradients force static pressure to drop below vapor pressure. Driving parameters are: Geometry Velocity gradients Pressure Vapor pressure of fuel boundary layer cavitation White: liquid phase (Diesel) Black: gas phase (cavitation bubbles) at Diesel vapor pressure << 1 bar 10th & 11th of March

CFD Simulation of HSDI Engine Combustion Using VECTIS

CFD Simulation of HSDI Engine Combustion Using VECTIS CFD Simulation of HSDI Engine Combustion Using VECTIS G. Li, S.M. Sapsford Ricardo Consulting Engineer s Ltd., Shoreham-by-Sea, UK ABSTRACT As part of the VECTIS code validation programme, CFD simulations

More information

Diesel injection, ignition, and fuel air mixing

Diesel injection, ignition, and fuel air mixing Diesel injection, ignition, and fuel air mixing 1. Fuel spray phenomena. Spontaneous ignition 3. Effects of fuel jet and charge motion on mixingcontrolled combustion 4. Fuel injection hardware 5. Challenges

More information

Fully Coupled Automated Meshing with Adaptive Mesh Refinement Technology: CONVERGE CFD. New Trends in CFD II

Fully Coupled Automated Meshing with Adaptive Mesh Refinement Technology: CONVERGE CFD. New Trends in CFD II Flame Front for a Spark Ignited Engine Using Adaptive Mesh Refinement (AMR) to Resolve Turbulent Flame Thickness New Trends in CFD II Fully Coupled Automated Meshing with Adaptive Mesh Refinement Technology:

More information

CONVERGE Features, Capabilities and Applications

CONVERGE Features, Capabilities and Applications CONVERGE Features, Capabilities and Applications CONVERGE CONVERGE The industry leading CFD code for complex geometries with moving boundaries. Start using CONVERGE and never make a CFD mesh again. CONVERGE

More information

Spark Ignition Engine Combustion

Spark Ignition Engine Combustion Spark Ignition Engine Combustion MAK 652E Lean Combustion in Stratified Charge Engines Prof.Dr. Cem Soruşbay Istanbul Technical University - Automotive Laboratories Contents Introduction Lean combustion

More information

INTERNAL COMBUSTION (IC) ENGINES

INTERNAL COMBUSTION (IC) ENGINES INTERNAL COMBUSTION (IC) ENGINES An IC engine is one in which the heat transfer to the working fluid occurs within the engine itself, usually by the combustion of fuel with the oxygen of air. In external

More information

Optimization of Operating Parameters for a 2-stroke DI Engine with KIVA 3V and a Genetic Algorithm Search Technique

Optimization of Operating Parameters for a 2-stroke DI Engine with KIVA 3V and a Genetic Algorithm Search Technique Optimization of Operating Parameters for a 2-stroke DI Engine with KIVA 3V and a Genetic Algorithm Search Technique Mark N. Subramaniam and Rolf D. Reitz Engine Research Center, University of Wisconsin-Madison

More information

EXPERIMENTAL VALIDATION AND COMBUSTION CHAMBER GEOMETRY OPTIMIZATION OF DIESEL ENGINE BY USING DIESEL RK

EXPERIMENTAL VALIDATION AND COMBUSTION CHAMBER GEOMETRY OPTIMIZATION OF DIESEL ENGINE BY USING DIESEL RK INTERNATIONAL JOURNAL OF MECHANICAL ENGINEERING AND TECHNOLOGY (IJMET) International Journal of Mechanical Engineering and Technology (IJMET), ISSN 0976 6340(Print), ISSN 0976 6340 (Print) ISSN 0976 6359

More information

Fully Automatic In-cylinder Workflow Using HEEDS / es-ice / STAR-CD

Fully Automatic In-cylinder Workflow Using HEEDS / es-ice / STAR-CD Fully Automatic In-cylinder Workflow Using HEEDS / es-ice / STAR-CD Simon Fischer Senior ICE Application Support Engineer CD-adapco Nuremberg Office Gerald Schmidt Director/Powertrain - CD-adapco New York

More information

Fundamentals. Existing models of microscale mixing in turbulent combustion do not. address the issue dealing with the role of multicomponent diffusion

Fundamentals. Existing models of microscale mixing in turbulent combustion do not. address the issue dealing with the role of multicomponent diffusion Fundamentals ROLE OF MULTICOMPONENT DIFFUSION IN PREMIXED AND NONPREMIXED LAMINAR FLAMES S. M. Frolov and V. Ya. Basevich N. N. Semenov Institute of Chemical Physics Russian Academy of Sciences Moscow,

More information

Internal Combustion Engines

Internal Combustion Engines Lecture-18 Prepared under QIP-CD Cell Project Internal Combustion Engines Ujjwal K Saha, Ph.D. Department of Mechanical Engineering Indian Institute of Technology Guwahati 1 Combustion in CI Engine Combustion

More information

Engine Efficiency and Power Density: Distinguishing Limits from Limitations

Engine Efficiency and Power Density: Distinguishing Limits from Limitations Engine Efficiency and Power Density: Distinguishing Limits from Limitations Chris F. Edwards Advanced Energy Systems Laboratory Department of Mechanical Engineering Stanford University Exergy to Engines

More information

RESEARCH PROJECTS. For more information about our research projects please contact us at: info@naisengineering.com

RESEARCH PROJECTS. For more information about our research projects please contact us at: info@naisengineering.com RESEARCH PROJECTS For more information about our research projects please contact us at: info@naisengineering.com Or visit our web site at: www.naisengineering.com 2 Setup of 1D Model for the Simulation

More information

A/C refrigerant system, overview

A/C refrigerant system, overview Page 1 of 19 87-18 A/C refrigerant system, overview A/C refrigerant system, identification Typical A/C refrigerant system with expansion valve and receiver drier 1 - Evaporator 2 - Expansion valve 3 -

More information

Combustion Analysis of Inverted M Type Piston CI Engine by Using CFD

Combustion Analysis of Inverted M Type Piston CI Engine by Using CFD Combustion Analysis of Inverted M Type Piston CI Engine by Using CFD Dr. Hiregoudar Yerrennagoudaru 1, Manjunatha K 2, Chandragowda M 3, Ravi Kumar K J 4 1 Professor and PG Co-ordinator (Thermal Power

More information

ME 6404 THERMAL ENGINEERING. Part-B (16Marks questions)

ME 6404 THERMAL ENGINEERING. Part-B (16Marks questions) ME 6404 THERMAL ENGINEERING Part-B (16Marks questions) 1. Drive and expression for the air standard efficiency of Otto cycle in terms of volume ratio. (16) 2. Drive an expression for the air standard efficiency

More information

HYBRID ROCKET TECHNOLOGY IN THE FRAME OF THE ITALIAN HYPROB PROGRAM

HYBRID ROCKET TECHNOLOGY IN THE FRAME OF THE ITALIAN HYPROB PROGRAM 8 th European Symposium on Aerothermodynamics for space vehicles HYBRID ROCKET TECHNOLOGY IN THE FRAME OF THE ITALIAN HYPROB PROGRAM M. Di Clemente, R. Votta, G. Ranuzzi, F. Ferrigno March 4, 2015 Outline

More information

DIESEL ENGINE IN-CYLINDER CALCULATIONS WITH OPENFOAM

DIESEL ENGINE IN-CYLINDER CALCULATIONS WITH OPENFOAM DIESEL ENGINE IN-CYLINDER CALCULATIONS WITH OPENFOAM 1 Ervin Adorean *, 1 Gheorghe-Alexandru Radu 1 Transilvania University of Brasov, Romania KEYWORDS - diesel, engine, CFD, simulation, OpenFOAM ABSTRACT

More information

NOZZLE MOMENTUM EFFICIENCY DEFINITION, MEASUREMENT AND IMPORTANCE FOR DIESEL COMBUSTION

NOZZLE MOMENTUM EFFICIENCY DEFINITION, MEASUREMENT AND IMPORTANCE FOR DIESEL COMBUSTION Paper ID ILASS8-6- Paper ID ILASS8-A33 ILASS 28 Sep. 8-, 28, Como Lake, Italy NOZZLE MOMENTUM EFFICIENCY DEFINITION, MEASUREMENT AND IMPORTANCE FOR DIESEL COMBUSTION Godfrey Greeves*, Gavin Dober*, Simon

More information

Operating conditions. Engine 3 1,756 3,986 2.27 797 1,808 2.27 7,757 6,757 4,000 1,125 980 5.8 3,572 3,215 1,566

Operating conditions. Engine 3 1,756 3,986 2.27 797 1,808 2.27 7,757 6,757 4,000 1,125 980 5.8 3,572 3,215 1,566 JOURNAL 658 OEFELEIN OEFELEIN AND YANG: INSTABILITIES IN F-l ENGINES 659 Table 2 F-l engine operating conditions and performance specifications Mass flow rate, kg/s, Ibm/s Fuel Oxidizer Mixture ratio Pressure,

More information

Introductory Study of Variable Valve Actuation for Pneumatic Hybridization

Introductory Study of Variable Valve Actuation for Pneumatic Hybridization 2007-01-0288 Introductory Study of Variable Valve Actuation for Pneumatic Hybridization Copyright 2007 SAE International Sasa Trajkovic, Per Tunestål and Bengt Johansson Division of Combustion Engines,

More information

Automatic Back-Flushing Filter AutoFilt RF9.

Automatic Back-Flushing Filter AutoFilt RF9. Automatic Back-Flushing Filter AutoFilt RF9. AutoFilt RF9 Clearing the Way. The Challenge: In response to the Tier III standard which will come into effect in 2016, the International Maritime Organization

More information

CFD Analysis of a MILD Low-Nox Burner for the Oil and Gas industry

CFD Analysis of a MILD Low-Nox Burner for the Oil and Gas industry CFD Analysis of a MILD Low-Nox Burner for the Oil and Gas industry Alessandro Atzori Supervised by: Vincent Moreau Framework: Industria 2015 Bill on competitiveness and industrial policy, approved on 22

More information

Radial-axial Radial mixing is based on the premise that the fluids to be mixed enter the mixer in the correct proportions simultaneously

Radial-axial Radial mixing is based on the premise that the fluids to be mixed enter the mixer in the correct proportions simultaneously Brochure E-0501 1 Introduction. Static mixers are used for a wide range of applications including mixing, heat exchange and dispersion, due to numerous unique innovations our products are especially suitable

More information

4.What is the appropriate dimensionless parameter to use in comparing flow types? YOUR ANSWER: The Reynolds Number, Re.

4.What is the appropriate dimensionless parameter to use in comparing flow types? YOUR ANSWER: The Reynolds Number, Re. CHAPTER 08 1. What is most likely to be the main driving force in pipe flow? A. Gravity B. A pressure gradient C. Vacuum 2.What is a general description of the flow rate in laminar flow? A. Small B. Large

More information

Engineering, Bharathiyar College of Engineering and Technology, Karaikal, Pondicherry 609 609, India

Engineering, Bharathiyar College of Engineering and Technology, Karaikal, Pondicherry 609 609, India 74 The Open Fuels & Energy Science Journal, 2008, 1, 74-78 Open Access Some Comparative Performance and Emission Studies on DI Diesel Engine Fumigated with Methanol and Methyl Ethyl Ketone Using Microprocessor

More information

Injector Nozzle Hole Parameters and their Influence on Real DI Diesel Performance

Injector Nozzle Hole Parameters and their Influence on Real DI Diesel Performance Injector Nozzle Hole Parameters and their Influence on Real DI Diesel Performance MIKAEL LINDSTRÖM Licentiate thesis TRITA MMK 2009:01 Department of Machine Design ISSN 1400-1179 Royal Institute of Technology

More information

EXPERIMENT NO. 3. Aim: To study the construction and working of 4- stroke petrol / diesel engine.

EXPERIMENT NO. 3. Aim: To study the construction and working of 4- stroke petrol / diesel engine. EXPERIMENT NO. 3 Aim: To study the construction and working of 4- stroke petrol / diesel engine. Theory: A machine or device which derives heat from the combustion of fuel and converts part of this energy

More information

Chapter. Flares and Stacks. Flares (FLR)... 16-3. Stacks (STK)... 16-9. G2 ICARUS Corporation, 1998.

Chapter. Flares and Stacks. Flares (FLR)... 16-3. Stacks (STK)... 16-9. G2 ICARUS Corporation, 1998. Chapter 16 Flares and Stacks Flares (FLR)... 16-3 Stacks (STK)... 16-9 G2 ICARUS Corporation, 1998. 16-2 ICARUS Reference ICARUS Corporation, 1998. G2 Chapter 16: Flares and Stacks 16-3 Flares (FLR) A

More information

A model of heat transfer in metal foaming

A model of heat transfer in metal foaming A model of heat transfer in metal foaming B. Chinè 1,2, V. Mussi 2, M. Monno 3, A Rossi 2 1 Instituto Tecnológico de Costa Rica, Costa Rica; 2 Laboratorio MUSP, Macchine Utensili e Sistemi di Produzione,

More information

Diesel Fuel Systems. Injection Nozzles

Diesel Fuel Systems. Injection Nozzles Diesel Fuel Systems Injection Nozzles Unit Terms Injection nozzle Nozzle, nozzle holder, valve, spring assembly Nozzle assembly Valve, body, and spray valve Orifice Small hole Pintle Valve which the end

More information

CFD Modeling of a Turbo-charged Common-rail Diesel Engine

CFD Modeling of a Turbo-charged Common-rail Diesel Engine JSAE 20139103 / SAE 2013-32-9103 CFD Modeling of a Turbo-charged Common-rail Diesel Engine Guan-Jhong Wang, Chia-Jui Chiang, Yu-Hsuan Su National Taiwan University of Science and Technology, Taiwan Yong-Yuan

More information

Internal Combustion Optical Sensor (ICOS)

Internal Combustion Optical Sensor (ICOS) Internal Combustion Optical Sensor (ICOS) Optical Engine Indication The ICOS System In-Cylinder Optical Indication 4air/fuel ratio 4exhaust gas concentration and EGR 4gas temperature 4analysis of highly

More information

Computational Fluid Dynamics (CFD) and Multiphase Flow Modelling. Associate Professor Britt M. Halvorsen (Dr. Ing) Amaranath S.

Computational Fluid Dynamics (CFD) and Multiphase Flow Modelling. Associate Professor Britt M. Halvorsen (Dr. Ing) Amaranath S. Computational Fluid Dynamics (CFD) and Multiphase Flow Modelling Associate Professor Britt M. Halvorsen (Dr. Ing) Amaranath S. Kumara (PhD Student), PO. Box 203, N-3901, N Porsgrunn, Norway What is CFD?

More information

CFD MODELLING OF TOP SUBMERGED LANCE GAS INJECTION

CFD MODELLING OF TOP SUBMERGED LANCE GAS INJECTION CFD MODELLING OF TOP SUBMERGED LANCE GAS INJECTION Nazmul Huda PhD Student Faculty of Engineering and Industrial Science Swinburne University of Technology Melbourne, Australia Supervised by Dr. Jamal

More information

Effects of Direct Water Injection on DI Diesel Engine Combustion

Effects of Direct Water Injection on DI Diesel Engine Combustion -1-938 Effects of Direct Water Injection on DI Diesel Engine Combustion F. Bedford and C. Rutland Engine Research Center, UW Madison Copyright Society of Automotive Engineers, Inc. P. Dittrich, A. Raab

More information

Chapter 19 - Common Rail High Pressure Fuel Injection Systems

Chapter 19 - Common Rail High Pressure Fuel Injection Systems Chapter 19 - Common Rail High Pressure Fuel Injection Systems Diesel Engine Technology For Automotive Technicians Understanding & Servicing Contemporary Clean Diesel Technology What is Common Rail? Common

More information

Hydrogen Addition For Improved Lean Burn Capability of Slow and Fast Burning Natural Gas Combustion Chambers

Hydrogen Addition For Improved Lean Burn Capability of Slow and Fast Burning Natural Gas Combustion Chambers -- Hydrogen Addition For Improved Lean Burn Capability of Slow and Fast Burning Natural Gas Combustion Chambers Per Tunestål, Magnus Christensen, Patrik Einewall, Tobias Andersson, Bengt Johansson Lund

More information

A Practical Guide to Free Energy Devices

A Practical Guide to Free Energy Devices A Practical Guide to Free Energy Devices Part PatC1: Last updated: 22nd October 2005 Author: Patrick J. Kelly Please note that this is a re-worded excerpt from this patent. If the content interests you,

More information

CIP Cleaning in place

CIP Cleaning in place CIP Cleaning in place The circulation of non foaming cleaners without dismantling the equipment. An automatic and systematic cleaning of the inner surfaces of tanks, heat exchangers, pumps, valves and

More information

Engine Heat Transfer. Engine Heat Transfer

Engine Heat Transfer. Engine Heat Transfer Engine Heat Transfer 1. Impact of heat transfer on engine operation 2. Heat transfer environment 3. Energy flow in an engine 4. Engine heat transfer Fundamentals Spark-ignition engine heat transfer Diesel

More information

CFD Analysis of Supersonic Exhaust Diffuser System for Higher Altitude Simulation

CFD Analysis of Supersonic Exhaust Diffuser System for Higher Altitude Simulation Page1 CFD Analysis of Supersonic Exhaust Diffuser System for Higher Altitude Simulation ABSTRACT Alan Vincent E V P G Scholar, Nehru Institute of Engineering and Technology, Coimbatore Tamil Nadu A high

More information

Exhaust emissions of a single cylinder diesel. engine with addition of ethanol

Exhaust emissions of a single cylinder diesel. engine with addition of ethanol www.ijaser.com 2014 by the authors Licensee IJASER- Under Creative Commons License 3.0 editorial@ijaser.com Research article ISSN 2277 9442 Exhaust emissions of a single cylinder diesel engine with addition

More information

Advanced combustion modelling with ANSYS FLUENT and Tabkin

Advanced combustion modelling with ANSYS FLUENT and Tabkin Advanced combustion modelling with ANSYS FLUENT and Tabkin F.A. Tap and P. Schapotschnikow ANSYS Belgium Conference 2011 ferry.tap@dacolt.com Dacolt is a trading name of Dacolt International BV, registered

More information

UNIVERSITY ESSAY QUESTIONS:

UNIVERSITY ESSAY QUESTIONS: UNIT I 1. What is a thermodynamic cycle? 2. What is meant by air standard cycle? 3. Name the various gas power cycles". 4. What are the assumptions made for air standard cycle analysis 5. Mention the various

More information

Part IV. Conclusions

Part IV. Conclusions Part IV Conclusions 189 Chapter 9 Conclusions and Future Work CFD studies of premixed laminar and turbulent combustion dynamics have been conducted. These studies were aimed at explaining physical phenomena

More information

The Candle Flame: Measuring the Temperature of a Flame According to the Three Zones Model (Teacher s Guide)

The Candle Flame: Measuring the Temperature of a Flame According to the Three Zones Model (Teacher s Guide) The Candle Flame: Measuring the Temperature of a Flame According to the Three Zones Model (Teacher s Guide) OVERVIEW Students will study the relationship between the chromatic structure of a candle flame

More information

COMBUSTION PROCESS IN CI ENGINES

COMBUSTION PROCESS IN CI ENGINES COMBUSTION PROCESS IN CI ENGINES In SI engine, uniform A: : F mixture is supplied, but in CI engine A: : F mixture is not homogeneous and fuel remains in liquid particles, therefore quantity of air supplied

More information

Fluid Mechanics Prof. T. I. Eldho Department of Civil Engineering Indian Institute of Technology, Bombay. Lecture No. # 36 Pipe Flow Systems

Fluid Mechanics Prof. T. I. Eldho Department of Civil Engineering Indian Institute of Technology, Bombay. Lecture No. # 36 Pipe Flow Systems Fluid Mechanics Prof. T. I. Eldho Department of Civil Engineering Indian Institute of Technology, Bombay Lecture No. # 36 Pipe Flow Systems Welcome back to the video course on Fluid Mechanics. In today

More information

Experiment 3 Pipe Friction

Experiment 3 Pipe Friction EML 316L Experiment 3 Pipe Friction Laboratory Manual Mechanical and Materials Engineering Department College of Engineering FLORIDA INTERNATIONAL UNIVERSITY Nomenclature Symbol Description Unit A cross-sectional

More information

Online Changing States of Matter Lab Solids What is a Solid? 1. How are solids different then a gas or a liquid?

Online Changing States of Matter Lab Solids What is a Solid? 1. How are solids different then a gas or a liquid? Name: Period: Online Changing States of Matter Lab Solids What is a Solid? 1. How are solids different then a gas or a liquid? 2. What are the atoms doing in a solid? 3. What are the characteristics of

More information

AUTOMATIC FIRE EXTINGUISHING SYSTEM for TUNNEL PROTECTION with SPREAD REMOTE CONTROLLED MONITORS

AUTOMATIC FIRE EXTINGUISHING SYSTEM for TUNNEL PROTECTION with SPREAD REMOTE CONTROLLED MONITORS AUTOMATIC FIRE EXTINGUISHING SYSTEM for TUNNEL PROTECTION with SPREAD REMOTE CONTROLLED MONITORS 19-03-2013 rev.5 P_gal_2a_EN page 1 The Automatic Extinguishing System for Tunnels with Remote Controlled

More information

The soot and scale problems

The soot and scale problems Dr. Albrecht Kaupp Page 1 The soot and scale problems Issue Soot and scale do not only increase energy consumption but are as well a major cause of tube failure. Learning Objectives Understanding the implications

More information

A drop forms when liquid is forced out of a small tube. The shape of the drop is determined by a balance of pressure, gravity, and surface tension

A drop forms when liquid is forced out of a small tube. The shape of the drop is determined by a balance of pressure, gravity, and surface tension A drop forms when liquid is forced out of a small tube. The shape of the drop is determined by a balance of pressure, gravity, and surface tension forces. 2 Objectives Have a working knowledge of the basic

More information

Ejector Refrigeration System

Ejector Refrigeration System Ejector Refrigeration System Design Team Matthew Birnie, Morgan Galaznik, Scott Jensen, Scott Marchione, Darren Murphy Design Advisor Prof. Gregory Kowalski Abstract An ejector refrigeration system utilizing

More information

DIESEL EFFECT PROBLEM SOLVING DURING INJECTION MOULDING

DIESEL EFFECT PROBLEM SOLVING DURING INJECTION MOULDING RESEARCH PAPERS FACULTY OF MATERIALS SCIENCE AND TECHNOLOGY IN TRNAVA SLOVAK UNIVERSITY OF TECHNOLOGY IN BRATISLAVA 2014 Volume 22, Special Number DIESEL EFFECT PROBLEM SOLVING DURING INJECTION MOULDING

More information

Spray Nozzles. Spray Control. Spray Fabrication. Spray Analysis. A Guide to Optimizing In-Tank Agitation and Mixing Using Eductors

Spray Nozzles. Spray Control. Spray Fabrication. Spray Analysis. A Guide to Optimizing In-Tank Agitation and Mixing Using Eductors s Control Analysis Fabrication A Guide to Optimizing In-Tank Agitation and Mixing Using Eductors Eductors Ensure Thorough Mixing to Improve Product Quality and Reduce Maintenance Time Tank mixing eductors

More information

The Behaviour Of Vertical Jet Fires Under Sonic And Subsonic Regimes

The Behaviour Of Vertical Jet Fires Under Sonic And Subsonic Regimes The Behaviour Of Vertical Jet Fires Under Sonic And Subsonic Regimes Palacios A. and Casal J. Centre for Technological Risk Studies (CERTEC), Department of Chemical Engineering, Universitat Politècnica

More information

GEOMETRIC, THERMODYNAMIC AND CFD ANALYSES OF A REAL SCROLL EXPANDER FOR MICRO ORC APPLICATIONS

GEOMETRIC, THERMODYNAMIC AND CFD ANALYSES OF A REAL SCROLL EXPANDER FOR MICRO ORC APPLICATIONS 2 nd International Seminar on ORC Power Systems October 7 th & 8 th, 213 De Doelen, Rotterdam, NL GEOMETRIC, THERMODYNAMIC AND CFD ANALYSES OF A REAL SCROLL EXPANDER FOR MICRO ORC APPLICATIONS M. Morini,

More information

Improvement of Cooling Efficiency of Plasma Spray Gun Nozzle

Improvement of Cooling Efficiency of Plasma Spray Gun Nozzle International Journal of New Technology and Research (IJNTR) ISSN:2454-4116, Volume-2, Issue-5, May 2016 Pages 52-55 Improvement of Cooling Efficiency of Plasma Spray Gun Nozzle Raghunandan M S Abstract

More information

Effect of GTL Diesel Fuels on Emissions and Engine Performance

Effect of GTL Diesel Fuels on Emissions and Engine Performance Rudolf R. Maly Research and Technology, Stuttgart Effect of GTL Diesel Fuels on Emissions and Engine Performance 10th Diesel Engine Emissions Reduction Conference August 29 - September 2, 2004 Coronado,

More information

Injector Nozzle Elements. Genuine MaK Parts

Injector Nozzle Elements. Genuine MaK Parts Injector Nozzle Elements Genuine MaK Parts More Profit Greater reliability and longevity maximizes your uptime and reduces Total Cost of Operation. Lower Operating Cost With longer life and longer Time

More information

CFD Analysis of a butterfly valve in a compressible fluid

CFD Analysis of a butterfly valve in a compressible fluid CFD Analysis of a butterfly valve in a compressible fluid 1 G.TAMIZHARASI, 2 S.KATHIRESAN 1 Assistant Professor,Professor,Departmentment of Electronics and Instrumentation,Bharath university, chennai.

More information

I C ENGINES & COMPRESSORS

I C ENGINES & COMPRESSORS I C ENGINES & COMPRESSORS QUESTION BANK UNIT I Actual Cycles and their Analysis: Introduction, Comparison of Air Standard and Actual Cycles, Time Loss Factor, Heat Loss Factor, Volumetric Efficiency. Loss

More information

Chapter 1 Malfunction and Troubleshooting for Diesel Engine

Chapter 1 Malfunction and Troubleshooting for Diesel Engine Chapter 1 Malfunction and Troubleshooting for Diesel Engine 1. Causes and Troubleshooting for the Engine Not Being Started It is cold Machine oil is viscous Failure of fuel system Water mixed in the fuel

More information

UNIVERSITY OF MODENA & REGGIO EMILIA

UNIVERSITY OF MODENA & REGGIO EMILIA Luca Montorsi Personal information CURRICULUM VITAE Address Office: via Amendola 2, Pad. Morselli - Telephone Office: +39 0522 523 502 Fax Office: +39 0522 522 609 E-mail Nationality Italian Date of birth

More information

Heat transfer in Rotating Fluidized Beds in a Static Geometry: A CFD study

Heat transfer in Rotating Fluidized Beds in a Static Geometry: A CFD study Heat transfer in Rotating Fluidized Beds in a Static Geometry: A CFD study Nicolas Staudt, Juray De Wilde* * Université catholique de Louvain MAPR / IMAP Réaumur, Place Sainte Barbe 2 1348 Louvain-la-Neuve

More information

CE 6303 MECHANICS OF FLUIDS L T P C QUESTION BANK PART - A

CE 6303 MECHANICS OF FLUIDS L T P C QUESTION BANK PART - A CE 6303 MECHANICS OF FLUIDS L T P C QUESTION BANK 3 0 0 3 UNIT I FLUID PROPERTIES AND FLUID STATICS PART - A 1. Define fluid and fluid mechanics. 2. Define real and ideal fluids. 3. Define mass density

More information

Examples for Heat Exchanger Design

Examples for Heat Exchanger Design for Heat Exchanger Design Lauterbach Verfahrenstechnik GmbH 1 / 2011 Contents Calculation 1 1. Water- Water Heat Exchanger 1 Basics...1 Task...1 1. Start the WTS program...1 2. Selection of basic data...1

More information

COMPUTATIONAL FLOW MODEL OF WESTFALL'S 4000 OPEN CHANNEL MIXER 411527-1R1. By Kimbal A. Hall, PE. Submitted to: WESTFALL MANUFACTURING COMPANY

COMPUTATIONAL FLOW MODEL OF WESTFALL'S 4000 OPEN CHANNEL MIXER 411527-1R1. By Kimbal A. Hall, PE. Submitted to: WESTFALL MANUFACTURING COMPANY COMPUTATIONAL FLOW MODEL OF WESTFALL'S 4000 OPEN CHANNEL MIXER 411527-1R1 By Kimbal A. Hall, PE Submitted to: WESTFALL MANUFACTURING COMPANY FEBRUARY 2012 ALDEN RESEARCH LABORATORY, INC. 30 Shrewsbury

More information

OASIS SERVICE & TROUBLESHOOTING MANUAL (WITH DM10 OR DM12)

OASIS SERVICE & TROUBLESHOOTING MANUAL (WITH DM10 OR DM12) OASIS SERVICE & TROUBLESHOOTING MANUAL (WITH DM10 OR DM12) Revision 1.0 Page 1 of 50 THE INFORMATION CONTAINED IN THIS DOCUMENT IS THE SOLE PROPERTY OF INTERNATIONAL THERMAL RESEARCH, LTD. ANY REPRODUCTION

More information

C H A P T E R 5. Principles of Engine Operation, Two- and Four-Stroke Engines

C H A P T E R 5. Principles of Engine Operation, Two- and Four-Stroke Engines C H A P T E R 5 Principles of Engine Operation, Two- and Four-Stroke Engines Learning Objectives Explain simple engine operation. Explain why gasoline is atomized in the small engine. Describe four-stroke

More information

Dispersion and Fine Milling in the Laboratory DISPERMAT TORUSMILL

Dispersion and Fine Milling in the Laboratory DISPERMAT TORUSMILL Dispersion and Fine Milling in the Laboratory DISPERMAT TORUSMILL VMA-GETZMANN GMBH Verfahrenstechnik Dispersion and Fine Milling Dispersing with a Laboratory DISPERMAT Dispersion with the "Doughnut-Effect"

More information

Cummins ISX Regeneration Process

Cummins ISX Regeneration Process Cummins ISX Regeneration Process 1 Introduction Cummins ISX EGR : Exhaust Gas Recirculation DPF : Diesel Particulate Filter VGT :Variable Geometry Turbocharger SCR : Selective Catalyst Reduction 24V CONTROLS!

More information

Redefining Spray Technology

Redefining Spray Technology Redefining Spray Technology Macrospray Single-Point Nozzles Macrospray Spider Nozzles Macrospray nozzle technology Improved performance, lower cost Macrospray nozzle technology from Parker Hannifin s Gas

More information

Contents. Microfluidics - Jens Ducrée Physics: Fluid Dynamics 1

Contents. Microfluidics - Jens Ducrée Physics: Fluid Dynamics 1 Contents 1. Introduction 2. Fluids 3. Physics of Microfluidic Systems 4. Microfabrication Technologies 5. Flow Control 6. Micropumps 7. Sensors 8. Ink-Jet Technology 9. Liquid Handling 10.Microarrays 11.Microreactors

More information

Turbulence Modeling in CFD Simulation of Intake Manifold for a 4 Cylinder Engine

Turbulence Modeling in CFD Simulation of Intake Manifold for a 4 Cylinder Engine HEFAT2012 9 th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics 16 18 July 2012 Malta Turbulence Modeling in CFD Simulation of Intake Manifold for a 4 Cylinder Engine Dr MK

More information

THE PSEUDO SINGLE ROW RADIATOR DESIGN

THE PSEUDO SINGLE ROW RADIATOR DESIGN International Journal of Mechanical Engineering and Technology (IJMET) Volume 7, Issue 1, Jan-Feb 2016, pp. 146-153, Article ID: IJMET_07_01_015 Available online at http://www.iaeme.com/ijmet/issues.asp?jtype=ijmet&vtype=7&itype=1

More information

Best Practice Hydrogen compression

Best Practice Hydrogen compression Best Practice Hydrogen compression H Safety, explosion protection, systems engineering What you need to know Hydrogen is a colourless, odourless and flavourless gas and therefore cannot be detected with

More information

Practice Problems on Boundary Layers. Answer(s): D = 107 N D = 152 N. C. Wassgren, Purdue University Page 1 of 17 Last Updated: 2010 Nov 22

Practice Problems on Boundary Layers. Answer(s): D = 107 N D = 152 N. C. Wassgren, Purdue University Page 1 of 17 Last Updated: 2010 Nov 22 BL_01 A thin flat plate 55 by 110 cm is immersed in a 6 m/s stream of SAE 10 oil at 20 C. Compute the total skin friction drag if the stream is parallel to (a) the long side and (b) the short side. D =

More information

OIL SEPARATORS. 112

OIL SEPARATORS. 112 OIL SEPARATORS 111 OIL SEPARATORS APPLICATIONS The oil separators, shown in this chapter, are classified Pressure vessels in the sense of the Pressure Equipment Directive 97/23/EC, Article 1, Section 2.1.1

More information

Facts About. Industrial gases for better injection molding. This article appeared in the trade journal Kunststoffe plast europe, issue 12/2004.

Facts About. Industrial gases for better injection molding. This article appeared in the trade journal Kunststoffe plast europe, issue 12/2004. Facts About. Industrial gases for better injection molding. This article appeared in the trade journal Kunststoffe plast europe, issue 12/2004. 2 Industrial gases for better injection molding Gas injection

More information

Combustion process in high-speed diesel engines

Combustion process in high-speed diesel engines Combustion process in high-speed diesel engines Conventional combustion characteristics New combustion concept characteristics Benefits and drawbacks Carlo Beatrice Istituto Motori CNR The Requirements

More information

An Experimental Analysis - Combustion Control Strategy for HCCI Engine

An Experimental Analysis - Combustion Control Strategy for HCCI Engine An Experimental Analysis - Combustion Control Strategy for HCCI Engine BY Prof. Sanjay Harip ME (Mech), FMSAE, AMIE, AMSIAM, AMIE Government Polytechnic, Ahmednagar, M.S, INDIA Directorate of Technical

More information

Diesel Fuel Additive Heavy Duty Applications. December 2011

Diesel Fuel Additive Heavy Duty Applications. December 2011 Diesel Fuel Additive Heavy Duty Applications December 2011 Diesel Fuel Additives Long term performance Long term benefits have been measured in both light duty and heavy duty vehicles with respect to;

More information

COLOR DIAGRAMS. Table of Contents

COLOR DIAGRAMS. Table of Contents Table of Contents COLOR DIAGRAMS COLOR DIAGRAMS. Litre OptiMax 000 Model Year Analog Wiring Diagram........................ Page -. Litre OptiMax 000 Model Year Digital Wiring Diagram........................

More information

COMBUSTION SYSTEMS - EXAMPLE Cap. 9 AIAA AIRCRAFT ENGINE DESIGN www.amazon.com

COMBUSTION SYSTEMS - EXAMPLE Cap. 9 AIAA AIRCRAFT ENGINE DESIGN www.amazon.com CORSO DI LAUREA MAGISTRALE IN Ingegneria Aerospaziale PROPULSION AND COMBUSTION COMBUSTION SYSTEMS - EXAMPLE Cap. 9 AIAA AIRCRAFT ENGINE DESIGN www.amazon.com LA DISPENSA E DISPONIBILE SU www.ingindustriale.unisalento.it

More information

. Address the following issues in your solution:

. Address the following issues in your solution: CM 3110 COMSOL INSTRUCTIONS Faith Morrison and Maria Tafur Department of Chemical Engineering Michigan Technological University, Houghton, MI USA 22 November 2012 Zhichao Wang edits 21 November 2013 revised

More information

ME 239: Rocket Propulsion. Over- and Under-expanded Nozzles and Nozzle Configurations. J. M. Meyers, PhD

ME 239: Rocket Propulsion. Over- and Under-expanded Nozzles and Nozzle Configurations. J. M. Meyers, PhD ME 239: Rocket Propulsion Over- and Under-expanded Nozzles and Nozzle Configurations J. M. Meyers, PhD 1 Over- and Underexpanded Nozzles Underexpanded Nozzle Discharges fluid at an exit pressure greater

More information

Gas Turbine Combustor Technology Contributing to Environmental Conservation

Gas Turbine Combustor Technology Contributing to Environmental Conservation 6 Gas Turbine Combustor Technology Contributing to Environmental Conservation KATSUNORI TANAKA KOICHI NISHIDA WATARU AKIZUKI In order to combat global warming, the reduction of greenhouse-gas emissions

More information

Set up and solve a transient problem using the pressure-based solver and VOF model.

Set up and solve a transient problem using the pressure-based solver and VOF model. Tutorial 18. Using the VOF Model This tutorial was run using ANSYS FLUENT 12.1. The results have been updated to reflect the change in the default setting of node-based smoothing for the surface tension

More information

Principles of Engine Operation

Principles of Engine Operation Internal Combustion Engines ME 422 Yeditepe Üniversitesi Principles of Engine Operation Prof.Dr. Cem Soruşbay Information Prof.Dr. Cem Soruşbay İstanbul Teknik Üniversitesi Makina Fakültesi Otomotiv Laboratuvarı

More information

FAN PROTECTION AGAINST STALLING PHENOMENON

FAN PROTECTION AGAINST STALLING PHENOMENON FAN PROTECTION AGAINST STALLING PHENOMENON Roberto Arias Álvarez 1 Javier Fernández López 2 2 1 ZITRON Technical Director roberto@zitron.com ZITRON Technical Pre Sales Management jfernandez@zitron.com

More information

EXPERIMENT 3: DETERMINATION OF AN EMPIRICAL FORMULA

EXPERIMENT 3: DETERMINATION OF AN EMPIRICAL FORMULA EXPERIMENT 3: DETERMINATION OF AN EMPIRICAL FORMULA PURPOSE To find the empirical formula of a product based on experimental data. To determine the percentage of water of hydration in an unknown salt.

More information

Delphi E3 Diesel Electronic Unit Injector

Delphi E3 Diesel Electronic Unit Injector Delphi E3 Diesel Electronic Unit Injector The Delphi E3 Diesel Electronic Unit Injector (EUI), was introduced for the 2002 EGR equipped diesel engines onhighway heavy duty applications. A version of this

More information

CFD SIMULATION OF SDHW STORAGE TANK WITH AND WITHOUT HEATER

CFD SIMULATION OF SDHW STORAGE TANK WITH AND WITHOUT HEATER International Journal of Advancements in Research & Technology, Volume 1, Issue2, July-2012 1 CFD SIMULATION OF SDHW STORAGE TANK WITH AND WITHOUT HEATER ABSTRACT (1) Mr. Mainak Bhaumik M.E. (Thermal Engg.)

More information

Control Device Requirements Charts For Oil and Gas Handling and Production Facilities

Control Device Requirements Charts For Oil and Gas Handling and Production Facilities Device Charts For Oil and Gas Handling and Production Facilities Purpose/Scope: The purpose of this document is to provide standardized guidance for use by the regulated community and air permit reviewers,

More information

TwinMesh Grid Generator and CFD Simulation with ANSYS CFX

TwinMesh Grid Generator and CFD Simulation with ANSYS CFX TwinMesh Grid Generator and CFD Simulation with ANSYS CFX 2nd Short Course on CFD in Rotary Positive Displacement Machines London, 5th 6th September 2015 Dr. Andreas Spille-Kohoff Jan Hesse Rainer Andres

More information

CENTRIFUGAL PUMP OVERVIEW Presented by Matt Prosoli Of Pumps Plus Inc.

CENTRIFUGAL PUMP OVERVIEW Presented by Matt Prosoli Of Pumps Plus Inc. CENTRIFUGAL PUMP OVERVIEW Presented by Matt Prosoli Of Pumps Plus Inc. 1 Centrifugal Pump- Definition Centrifugal Pump can be defined as a mechanical device used to transfer liquid of various types. As

More information

VALIDATION, MODELING, AND SCALE-UP OF CHEMICAL LOOPING COMBUSTION WITH OXYGEN UNCOUPLING

VALIDATION, MODELING, AND SCALE-UP OF CHEMICAL LOOPING COMBUSTION WITH OXYGEN UNCOUPLING VALIDATION, MODELING, AND SCALE-UP OF CHEMICAL LOOPING COMBUSTION WITH OXYGEN UNCOUPLING A research program funded by the University of Wyoming School of Energy Resources Executive Summary Principal Investigator:

More information