1. Our Solar System: What does it tell us? 2. Fourier Analysis i. Finding periods in your data Fitting your data

Size: px
Start display at page:

Download "1. Our Solar System: What does it tell us? 2. Fourier Analysis i. Finding periods in your data Fitting your data"

Transcription

1 1. Our Solar System: What does it tell us? 2. Fourier Analysis i. Finding periods in your data ii. Fitting your data

2 Earth Distance: 1.0 AU ( cm) Period: 1 year Radius: 1 R E (6378 km) Mass: 1 M E ( gm) Density 5.50 gm/cm 3 (densest) Satellites: Moon (Sodium atmosphere) Structure: Iron/Nickel Core (~5000 km), rocky mantle Temperature: -85 to 58 C (mild Greenhouse effect) Magnetic Field: Modest Atmosphere: 77% Nitrogen, 21 % Oxygen, CO 2, water

3 Internal Structure of the Earth

4 Venus Distance: 0.72 AU Period: 0.61 years Radius: 0.94 R E Mass: 0.82 M E Density 5.4 gm/cm 3 Structure: Similar to Earth Iron Core (~3000 km), rocky mantle Magnetic Field: None (due to slow rotation) Atmosphere: Mostly Carbon Dioxide

5 Internal Structure of Venus 1. Silicate Mantle Nickel-Iron Core Crust: Venus is believed to have an internal structure similar to the Earth

6 Mars Distance: 1.5 AU Period: 1.87 years Radius: 0.53 R E Mass: 0.11 M E Density: 4.0 gm/cm 3 Satellites: Phobos and Deimos Structure: Dense Core (~1700 km), rocky mantle, thin crust Temperature: -87 to -5 C Magnetic Field: Weak and variable (some parts strong) Atmosphere: 95% CO 2, 3% Nitrogen, argon, traces of oxygen

7 Internal Structure of Mars

8 Mercury Distance: 0.38 AU Period: 0.23 years Radius: 0.38 R E Mass: M E Density 5.43 gm/cm 3 (second densest) Structure: Iron Core (~1900 km), silicate mantle (~500 km) Temperature: 90K 700 K Magnetic Field: 1% Earth

9 Internal Structure of Mercury 1. Crust: 100 km 2. Silicate Mantle (25%) 3. Nickel-Iron Core (75%)

10 Moon Radius: 0.27 R E Mass: M E Density: 3.34 gm/cm 3 Structure: Dense Core (~1700 km), rocky mantle, thin crust

11 Internal Structure of the Moon The moon has a very small core, but a large mantle ( 70%)

12 Comparison of Terrestrial Planets

13 Satellites R = 0.28 R Earth M = M Earth ρ = 3.55 gm cm 3 R = 0.25 R Earth M = 0.083M Earth ρ = 3.01 gm cm 3 Note: The mean density increases with increasing distance from Jupiter R = 0.41 R Earth M = 0.025M Earth ρ = 1.94 gm cm 3 R = 0.38 R Earth M = M Earth ρ = 1.86 gm cm 3

14 Internal Structure of Titan

15

16 ρ (gm/cm 3 ) Mercury Moon Mars Iron enriched Venus Earth No iron Earth-like 2 From Diana Valencia Radius (R Earth )

17 Jupiter Distance: 5.2 AU Period: 11.9 years Diameter: 11.2 R E (equatorial) Mass: 318 M E Density 1.24 gm/cm 3 Satellites: > 20 Structure: Rocky Core of M E, surrounded by liquid metallic hydrogen Temperature: -148 C Magnetic Field: Huge Atmosphere: 90% Hydrogen, 10% Helium

18 From Brian Woodahl

19 Saturn Distance: 9.54 AU Period: years Radius: 9.45 R E (equatorial) = 0.84 R J Mass: 95 M E (0.3 M J ) Density 0.62 gm/cm 3 (least dense) Satellites: > 20 Structure: Similar to Jupiter Temperature: -178 C Magnetic Field: Large Atmosphere: 75% Hydrogen, 25% Helium

20

21 Uranus Distance: 19.2 AU Period: 84 years Radius: 4.0 R E (equatorial) = 0.36 R J Mass: 14.5 M E (0.05 M J ) Density: 1.25 gm/cm 3 Satellites: > 20 Structure: Rocky Core, Similar to Jupiter but without metallic hydrogen Temperature: -216 C Magnetic Field: Large and decentered Atmosphere: 85% Hydrogen, 13% Helium, 2% Methane

22 Neptune Distance: AU Period: 164 years Radius: 3.88 R E (equatorial) = 0.35 R J Mass: 17 M E (0.05 M J ) Density: 1.6 gm/cm 3 (second densest of giant planets) Satellites: 7 Structure: Rocky Core, no metallic Hydrogen (like Uranus) Temperature: -214 C Magnetic Field: Large Atmosphere: Hydrogen and Helium

23 Uranus Neptune

24 Comparison of the Giant Planets Mean density (gm/cm 3 )

25 Neptune Uranus Jupiter Saturn Log

26 Pure H/He Saturn Jupiter CoRoT 9b H/He dominated planets Uranus Neptune Venus CoRoT 7b Earth 10% H/He Pure Iron Pure Rock Ice dominated planets Rock/Iron dominated planets

27 Reminder of what a transit curve looks like

28 II. Fourier Analysis: Searching for Periods in Your Data Discrete Fourier Transform: Any function can be fit as a sum of sine and cosines (basis or orthogonal functions) N 0 FT(ω) = X j (t) e iωt j=1 1 Power: P x (ω) = FT X (ω) 2 P x (ω) = 1 N 0 N 0 Recall e iωt = cos ωt + i sinωt X(t) is the time series N 0 = number of points 2 2 [( Σ X j cos ωt) j + ( Σ X j sin ωt )] j A DFT gives you as a function of frequency the amplitude (power = amplitude 2 ) of each sine function that is in the data

29 Every function can be represented by a sum of sine (cosine) functions. The FT gives you the amplitude of these sine (cosine) functions. P FT A o A o t 1/P ω A pure sine wave is a delta function in Fourier space

30 Fourier Transforms Two important features of Fourier transforms: 1) The spatial or time coordinate x maps into a frequency coordinate 1/x (= s or ν) Thus small changes in x map into large changes in s. A function that is narrow in x is wide in s The second feature comes later.

31 A Pictoral Catalog of Fourier Transforms Time/Space Domain Fourier/Frequency Domain Time 0 Frequency (1/time) Period = 1/frequency Comb of Shah function (sampling function) x 1/x

32 Time/Space Domain Fourier/Frequency Domain Negative frequencies Positive frequencies Cosine is an even function: cos( x) = cos(x)

33 Time/Space Domain Fourier/Frequency Domain Sine is an odd function: sin( x) = sin(x)

34 Time/Space Domain Fourier/Frequency Domain e πx 2 e πs 2 w 1/w The Fourier Transform of a Gausssian is another Gaussian. If the Gaussian is wide (narrow) in the temporal/spatial domain, it is narrow(wide) in the Fourier/frequency domain. In the limit of an infinitely narrow Gaussian (δ-function) the Fourier transform is infinitely wide (constant)

35 Time/Space Domain Fourier/Frequency Domain All functions are interchangeable. If it is a sinc function in time, it is a slit function in frequency space Note: these are the diffraction patterns of a slit, triangular and circular apertures

36 Fourier Transforms : Convolution Convolution f(u)φ(x u)du = f * φ f(x): φ(x):

37 a 3 a 2 Fourier Transforms: Convolution φ(x-u) a 1 a 2 a 3 g(x) a 1 Convolution is a smoothing function

38 Fourier Transforms The second important features of Fourier transforms: 2) In Fourier space the convolution is just the product of the two transforms: Normal Space f*g f g Fourier Space F G F * G sinc sinc 2

39 Alias periods: Undersampled periods appearing as another period

40 Nyquist Frequency: The shortest detectable frequency in your data. If you sample your data at a rate of Δt, the shortest frequency you can detect with no aliases is 1/(2Δt) Example: if you collect photometric data at the rate of once per night (sampling rate 1 day) you will only be able to detect frequencies up to 0.5 c/d In ground based data from one site one always sees alias frequencies at ν + 1

41 What does a transit light curve look like in Fourier space? In time domain

42 A Fourier transform uses sine function. Can it find a periodic signal consisting of a transit shape (slit function)? P = 3.85 d ν = 0.26 c/d This is a sync function caused by the length of the data window

43 A short time string of a sine Sine times step function of length of your data window Wide sinc function δ-fnc * step A longer time string of the same sine Narrow sinc function

44 What happens when you carry out the Fourier transform of our Transit light curve to higher frequencies? The peak of the combs is modulated with a shape of another sinc function. Why?

45 In time space * = convolution = * X Transit shape Comb spacing of P Length of data string In frequency space = Sinc function of transit shape X Comb spacing of 1/P * Sinc of data window

46 But wait, the observed light curve is not a continuous function. One should multiply by a comb function of your sampling rate. Thus this observed transform should be convolved with another comb.

47 Frequencies repeat This pattern gets repeated in intervals of 200 c/d for this sampling. Frequencies on either side of the peak are ν and +ν Nyquist When you go to higher frequencies you see this. In this case the sampling rate is d, thus the the pattern is repeated on a comb every 200 c/d. Frequencies at the Nyquist frequency of 100 d. One generally does not compute the FT for frequencies beyond the Nyquist frequencies since these repeat and are aliases.

48 t = d 1/t The duration of the transit is related to the location of the first zero in the sinc function that modulates the entire Fourier transform

49 In principle one can use the Fourier transform of your light curve to get the transit period and transit duration. What limits you from doing this is the sampling window and noise.

50 The effects of noise in your data Little noise Signal level More noise A lot of noise Noise level

51 Transit period of 3.85 d (frequency = 0.26 c/d) 20 d? The Effects of Sampling This is the previous transit light curve with more realistic sampling typical of what you can achieve from the ground. 20 d Frequency (c/d) Time (d) Sampling creates aliases and spectral leakage which produces false peaks that make it difficult to chose the correct period that is in the data.

52 A very nice sine fit to data. P = 3.16 d That was generated with pure random noise and no signal After you have found a periodic signal in your data you must ask yourself What is the probability that noise would also produce this signal? This is commonly called the False Alarm Probability (FAP)

53 1. Is there a periodic signal in my data? yes no Stop 2. Is it due to Noise? A Flow Diagram for making exciting discoveries yes no Stop 3. What is its Nature? 4. Is this interesting? yes no 5. Publish results Find another star

54 Period Analysis with Lomb-Scargle Periodograms LS Periodograms are useful for assessing the statistical signficance of a signal P x (ω) = 1 2 [ Σ X j cos ω(t j τ) ] 2 j Σ X j cos2 ω(t j τ) j [ Σ X j sin ω(t j τ) ] 2 j Σ X j sin2 ω(t j τ) tan(2ωτ) = (Σsin 2ωt j )/ (Σcos 2ωt j ) j j In a normal Fourier Transform the Amplitude (or Power) of a frequency is just the amplitude of that sine wave that is present in the data. In a Scargle Periodogram the power is a measure of the statistical significance of that frequency (i.e. is the signal real?)

55 Fourier Transform Scargle Periodogram Amplitude (m/s) Note: Square this for a direct comparison to Scargle: power to power FT and Scargle have different Power units

56 Period Analysis with Lomb-Scargle Periodograms If P is the Scargle Power of a peak in the Scargle periodogram we have two cases to consider: 1. You are looking for an unknown period. In this case you must ask What is the FAP that random noise will produce a peak higher than the peak in your data periodogram over a certain frequency interval ν 1 < ν < ν 2. This is given by: False alarm probability 1 (1 e P ) N Ne P N = number of indepedent frequencies number of data points Horne & Baliunas (1986), Astrophysical Journal, 302, 757 found an empirical relationship between the number of independent frequencies, N i, and the number of data points, N 0 : N i = N N 0 2

57 Example: Suppose you have 40 measurements of a star that has periodic variations and you find a peak in the periodogram. The Scargle power, P, would have to have a value of 8.3 for the FAP to be 0.01 ( a 1% chance that it is noise).

58 2. There is a known period (frequency) in your data. This is often the case in transit work where you have a known photometric period, but you are looking for the same period in your radial velocity data. You are now asking What is the probability that noise will produce a peak exactly at this frequency that has more power than the peak found in the data? In this case the number of independent frequencies is just one: N = 1. The FAP now becomes: False alarm probability = e P Example: Regardless of how many measurements you have the Scargle power should be greater than about 4.6 to have a FAP of 0.01 for a known period (frequency)

59 Fourier Amplitude Noisy data In a normal Fourier transform the Amplitude of a peak stays the same, but the noise level drops Less Noisy data

60 versus Lomb-Scargle Amplitude In a Scargle periodogram the noise level drops, but the power in the peak increases to reflect the higher significance of the detection. Two ways to increase the significance: 1) Take better data (less noise) or 2) Take more observations (more data). In this figure the red curve is the Scargle periodogram of transit data with the same noise level as the blue curve, but with more data measurements.

61 Assessing the False Alarm Probability: Random Data The best way to assess the FAP is through Monte Carlo simulations: Method 1: Create random noise with the same standard deviation, σ, as your data. Sample it in the same way as the data. Calculate the periodogram and see if there is a peak with power higher than in your data over a speficied frequency range. If you are fitting sine wave see if you have a lower χ 2 for the best fitting sine wave. Do this a large number of times ( ). The number of periodograms with power larger than in your data, or χ 2 for sine fitting that is lower gives you the FAP.

62 Assessing the False Alarm Probability: Bootstrap Method Method 2: Method 1 assumes that your noise distribution is Gaussian. What if it is not? Then randomly shuffle your actual data values keeping the times fixed. Calculate the periodogram and see if there is a peak with power higher than in your data over a specified frequency range. If you are fitting sine wave see if you have a lower χ 2 for the best fitting sine function. Shuffle your data a large number of times ( ). The number of periodograms in your shuffled data with power larger than in your data, or χ 2 for sine fitting that are lower gives you the FAP. This is my preferred method as it preserves the noise characteristics in your data. It is also a conservative estimate because if you have a true signal your shuffling is also including signal rather than noise (i.e. your noise is lower)

63 Least Squares Sine Fitting Fit a sine wave of the form: y(t) = A sin(ωt + φ) + Constant Where ω = 2π/P, φ = phase shift Best fit minimizes the χ 2 : χ 2 = Σ (d i g i ) 2 /N d i = data, g i = fit Sine fitting is more appropriate if you have few data points. Scargle estimates the noise from the rms scatter of the data regardless if a signal is present in your data. The peak in the periodogram will thus have a lower significance even if there is really a signal in the data. But beware, one can find lots of good sine fits to noise! Most algorithms (fortran and c language) can be found in Numerical Recipes Period04: multi-sine fitting with Fourier analysis. Tutorials available plus versions in Mac OS, Windows, and Linux

64 The first Tautenburg Planet: HD 13189

65 Least squares sine fitting: The best fit period (frequency) has the lowest χ 2 Amplitude (m/s) Discrete Fourier Transform: Gives the power of each frequency that is present in the data. Power is in (m/ s) 2 or (m/s) for amplitude Lomb-Scargle Periodogram: Gives the power of each frequency that is present in the data. Power is a measure of statistical signficance

66 Fourier Analysis: Removing unwanted signals Sines and Cosines form a basis. This means that every function can be modeled as a infinite series of sines and cosines. This is useful for fitting time series data and removing unwanted signals.

67 Example. For a function y = x over the interval x = 0,L you can calculate the Fourier coefficients and get that the amplitudes of the sine waves are B n = ( 1) n+1 (2kL/nπ)

68 Fitting a step functions with sines

69 See file corot2b.dat for light curve

70 See file corot7b.dat and corot7b.p04 P rot = 23 d 0.035% P Transit = 0.85 d = d

Name: João Fernando Alves da Silva Class: 7-4 Number: 10

Name: João Fernando Alves da Silva Class: 7-4 Number: 10 Name: João Fernando Alves da Silva Class: 7-4 Number: 10 What is the constitution of the Solar System? The Solar System is constituted not only by planets, which have satellites, but also by thousands

More information

astronomy 2008 1. A planet was viewed from Earth for several hours. The diagrams below represent the appearance of the planet at four different times.

astronomy 2008 1. A planet was viewed from Earth for several hours. The diagrams below represent the appearance of the planet at four different times. 1. A planet was viewed from Earth for several hours. The diagrams below represent the appearance of the planet at four different times. 5. If the distance between the Earth and the Sun were increased,

More information

2007 Pearson Education Inc., publishing as Pearson Addison-Wesley. The Jovian Planets

2007 Pearson Education Inc., publishing as Pearson Addison-Wesley. The Jovian Planets The Jovian Planets The Jovian planets are gas giants - much larger than Earth Sizes of Jovian Planets Planets get larger as they get more massive up to a point... Planets more massive than Jupiter are

More information

Class 2 Solar System Characteristics Formation Exosolar Planets

Class 2 Solar System Characteristics Formation Exosolar Planets Class 1 Introduction, Background History of Modern Astronomy The Night Sky, Eclipses and the Seasons Kepler's Laws Newtonian Gravity General Relativity Matter and Light Telescopes Class 2 Solar System

More information

Geol 116 The Planet Class 7-1 Feb 28, 2005. Exercise 1, Calculate the escape velocities of the nine planets in the solar system

Geol 116 The Planet Class 7-1 Feb 28, 2005. Exercise 1, Calculate the escape velocities of the nine planets in the solar system Exercises/Discussions Atmospheric Composition: Escape Velocities and Surface Temperature Objectives Escape velocity and the mass and size of a planetary body The effect of escape velocity and surface temperature

More information

Solar System Overview

Solar System Overview Solar System Overview Planets: Four inner planets, Terrestrial planets Four outer planets, Jovian planets Asteroids: Minor planets (planetesimals) Meteroids: Chucks of rocks (smaller than asteroids) (Mercury,

More information

UNIT V. Earth and Space. Earth and the Solar System

UNIT V. Earth and Space. Earth and the Solar System UNIT V Earth and Space Chapter 9 Earth and the Solar System EARTH AND OTHER PLANETS A solar system contains planets, moons, and other objects that orbit around a star or the star system. The solar system

More information

CHARACTERISTICS OF THE SOLAR SYSTEM

CHARACTERISTICS OF THE SOLAR SYSTEM reflect Our solar system is made up of thousands of objects, at the center of which is a star, the Sun. The objects beyond the Sun include 8 planets, at least 5 dwarf planets, and more than 170 moons.

More information

CHAPTER 6 THE TERRESTRIAL PLANETS

CHAPTER 6 THE TERRESTRIAL PLANETS CHAPTER 6 THE TERRESTRIAL PLANETS MULTIPLE CHOICE 1. Which of the following is NOT one of the four stages in the development of a terrestrial planet? 2. That Earth, evidence that Earth differentiated.

More information

WELCOME to Aurorae In the Solar System. J.E. Klemaszewski

WELCOME to Aurorae In the Solar System. J.E. Klemaszewski WELCOME to Aurorae In the Solar System Aurorae in the Solar System Sponsoring Projects Galileo Europa Mission Jupiter System Data Analysis Program ACRIMSAT Supporting Projects Ulysses Project Outer Planets

More information

Study Guide due Friday, 1/29

Study Guide due Friday, 1/29 NAME: Astronomy Study Guide asteroid chromosphere comet corona ellipse Galilean moons VOCABULARY WORDS TO KNOW geocentric system meteor gravity meteorite greenhouse effect meteoroid heliocentric system

More information

Related Standards and Background Information

Related Standards and Background Information Related Standards and Background Information Earth Patterns, Cycles and Changes This strand focuses on student understanding of patterns in nature, natural cycles, and changes that occur both quickly and

More information

The atmospheres of different planets

The atmospheres of different planets The atmospheres of different planets Thomas Baron October 13, 2006 1 Contents 1 Introduction 3 2 The atmosphere of the Earth 3 2.1 Description and Composition.................... 3 2.2 Discussion...............................

More information

Solar System Fact Sheet

Solar System Fact Sheet Solar System Fact Sheet (Source: http://solarsystem.nasa.gov; http://solarviews.com) The Solar System Categories Mercury Venus Earth Mars Jupiter Saturn Uranus Neptune Rocky or Gas Rocky Rocky Rocky Rocky

More information

THE SOLAR SYSTEM - EXERCISES 1

THE SOLAR SYSTEM - EXERCISES 1 THE SOLAR SYSTEM - EXERCISES 1 THE SUN AND THE SOLAR SYSTEM Name the planets in their order from the sun. 1 2 3 4 5 6 7 8 The asteroid belt is between and Which planet has the most moons? About how many?

More information

The continuous and discrete Fourier transforms

The continuous and discrete Fourier transforms FYSA21 Mathematical Tools in Science The continuous and discrete Fourier transforms Lennart Lindegren Lund Observatory (Department of Astronomy, Lund University) 1 The continuous Fourier transform 1.1

More information

Asteroids. Earth. Asteroids. Earth Distance from sun: 149,600,000 kilometers (92,960,000 miles) Diameter: 12,756 kilometers (7,926 miles) dotted line

Asteroids. Earth. Asteroids. Earth Distance from sun: 149,600,000 kilometers (92,960,000 miles) Diameter: 12,756 kilometers (7,926 miles) dotted line Image taken by NASA Asteroids About 6,000 asteroids have been discovered; several hundred more are found each year. There are likely hundreds of thousands more that are too small to be seen from Earth.

More information

SIGNAL PROCESSING & SIMULATION NEWSLETTER

SIGNAL PROCESSING & SIMULATION NEWSLETTER 1 of 10 1/25/2008 3:38 AM SIGNAL PROCESSING & SIMULATION NEWSLETTER Note: This is not a particularly interesting topic for anyone other than those who ar e involved in simulation. So if you have difficulty

More information

EDMONDS COMMUNITY COLLEGE ASTRONOMY 100 Winter Quarter 2007 Sample Test # 1

EDMONDS COMMUNITY COLLEGE ASTRONOMY 100 Winter Quarter 2007 Sample Test # 1 Instructor: L. M. Khandro EDMONDS COMMUNITY COLLEGE ASTRONOMY 100 Winter Quarter 2007 Sample Test # 1 1. An arc second is a measure of a. time interval between oscillations of a standard clock b. time

More information

Astronomy Notes for Educators

Astronomy Notes for Educators Our Solar System Astronomy Notes for Educators Our Solar System 5-1 5-2 Specific Outcomes: Learning Outcome 1: Knowledge / Content and it place in the Milky Way Different types of bodies make up the Solar

More information

Perspective and Scale Size in Our Solar System

Perspective and Scale Size in Our Solar System Perspective and Scale Size in Our Solar System Notes Clue Session in Mary Gates RM 242 Mon 6:30 8:00 Read Lang Chpt. 1 Moodle Assignment due Thursdays at 6pm (first one due 1/17) Written Assignments due

More information

The Inner Solar System by Leslie Cargile

The Inner Solar System by Leslie Cargile The Inner Solar System The inner solar system is the name of the terrestrial planets and asteroid belt. Terrestrial is just a fancy way of saying rocky. Like the Earth, terrestrial planets have a core

More information

7. Our Solar System. Planetary Orbits to Scale. The Eight Planetary Orbits

7. Our Solar System. Planetary Orbits to Scale. The Eight Planetary Orbits 7. Our Solar System Terrestrial & Jovian planets Seven large satellites [moons] Chemical composition of the planets Asteroids & comets The Terrestrial & Jovian Planets Four small terrestrial planets Like

More information

Scaling the Solar System

Scaling the Solar System Scaling the Solar System Materials 3lbs of play-dough (minimum quantity required for this activity) Student Sheet (Planet Boxes) Pens Rulers Plastic Knife Optional: Scale 1) Compare: Earth - Moon 1. Have

More information

Chapter 6 Formation of Planetary Systems Our Solar System and Beyond

Chapter 6 Formation of Planetary Systems Our Solar System and Beyond Chapter 6 Formation of Planetary Systems Our Solar System and Beyond The solar system exhibits clear patterns of composition and motion. Sun Over 99.9% of solar system s mass Made mostly of H/He gas (plasma)

More information

PTYS/ASTR 206 Section 2 Spring 2007 Homework #2 (Page 1/5) NAME: KEY

PTYS/ASTR 206 Section 2 Spring 2007 Homework #2 (Page 1/5) NAME: KEY PTYS/ASTR 206 Section 2 Spring 2007 Homework #2 (Page 1/5) NAME: KEY Due Date: start of class 2/6/2007 5 pts extra credit if turned in before 9:00AM (early!) (To get the extra credit, the assignment must

More information

Chapter 7 Our Planetary System. What does the solar system look like? Thought Question How does the Earth-Sun distance compare with the Sun s radius

Chapter 7 Our Planetary System. What does the solar system look like? Thought Question How does the Earth-Sun distance compare with the Sun s radius Chapter 7 Our Planetary System 7.1 Studying the Solar System Our goals for learning:! What does the solar system look like?! What can we learn by comparing the planets to one another?! What are the major

More information

Correlation and Convolution Class Notes for CMSC 426, Fall 2005 David Jacobs

Correlation and Convolution Class Notes for CMSC 426, Fall 2005 David Jacobs Correlation and Convolution Class otes for CMSC 46, Fall 5 David Jacobs Introduction Correlation and Convolution are basic operations that we will perform to extract information from images. They are in

More information

Background Information Students will learn about the Solar System while practicing communication skills.

Background Information Students will learn about the Solar System while practicing communication skills. Teacher Information Background Information Students will learn about the Solar System while practicing communication skills. Materials clipboard for each student pencils copies of map and Available Destinations

More information

Solar System Fundamentals. What is a Planet? Planetary orbits Planetary temperatures Planetary Atmospheres Origin of the Solar System

Solar System Fundamentals. What is a Planet? Planetary orbits Planetary temperatures Planetary Atmospheres Origin of the Solar System Solar System Fundamentals What is a Planet? Planetary orbits Planetary temperatures Planetary Atmospheres Origin of the Solar System Properties of Planets What is a planet? Defined finally in August 2006!

More information

Miras, Mass-Loss, and the Ultimate Fate of the Earth L. A. Willson & G. H. Bowen, Iowa State University. Fire and Ice:

Miras, Mass-Loss, and the Ultimate Fate of the Earth L. A. Willson & G. H. Bowen, Iowa State University. Fire and Ice: Miras, Mass-Loss, and the Ultimate Fate of the Earth L. A. Willson & G. H. Bowen, Iowa State University Fire and Ice: Some say the world will end in fire, Some say in ice. From what I've tasted of desire

More information

Discover the planets of our solar system. In 90 minutes through the universe. On a hiking path between Ehrenfriedensdorf and Drebach

Discover the planets of our solar system. In 90 minutes through the universe. On a hiking path between Ehrenfriedensdorf and Drebach Discover the planets of our solar system In 90 minutes through the universe On a hiking path between Ehrenfriedensdorf and Drebach Solar System - Sonnensystem The Solar System consists of the Sun and the

More information

The Solar System. Olivia Paquette

The Solar System. Olivia Paquette The Solar System Olivia Paquette Table of Contents The Sun 1 Mercury 2,3 Venus 4,5 Earth 6,7 Mars 8,9 Jupiter 10,11 Saturn 12 Uranus 13 Neptune Pluto 14 15 Glossary. 16 The Sun Although it may seem like

More information

Lecture 12: The Solar System Briefly

Lecture 12: The Solar System Briefly Lecture 12: The Solar System Briefly Formation of the Moonhttp://www.youtube.com/watch?v=WpOKztEiMqo&feature =related Formation of our Solar System Conservation of Angular Momentum Why are the larger,

More information

Atomic Structure: Chapter Problems

Atomic Structure: Chapter Problems Atomic Structure: Chapter Problems Bohr Model Class Work 1. Describe the nuclear model of the atom. 2. Explain the problems with the nuclear model of the atom. 3. According to Niels Bohr, what does n stand

More information

Chapter 7 Our Planetary System. Agenda. Intro Astronomy. Intro Astronomy. What does the solar system look like? A. General Basics

Chapter 7 Our Planetary System. Agenda. Intro Astronomy. Intro Astronomy. What does the solar system look like? A. General Basics Chapter 7 Our Planetary System Agenda Pass back & discuss Test 2 Where we are (at) Ch. 7 Our Planetary System Finish Einstein s Big Idea Earth, as viewed by the Voyager spacecraft A. General Basics Intro

More information

AP Environmental Science Graph Prep

AP Environmental Science Graph Prep AP Environmental Science Graph Prep Practice Interpreting Data: The following questions are to help you practice reading information shown on a graph. Answer each question on the separate answer sheet.

More information

The Earth, Sun, and Moon

The Earth, Sun, and Moon reflect The Sun and Moon are Earth s constant companions. We bask in the Sun s heat and light. It provides Earth s energy, and life could not exist without it. We rely on the Moon to light dark nights.

More information

Use the following information to deduce that the gravitational field strength at the surface of the Earth is approximately 10 N kg 1.

Use the following information to deduce that the gravitational field strength at the surface of the Earth is approximately 10 N kg 1. IB PHYSICS: Gravitational Forces Review 1. This question is about gravitation and ocean tides. (b) State Newton s law of universal gravitation. Use the following information to deduce that the gravitational

More information

Our Planetary System. Earth, as viewed by the Voyager spacecraft. 2014 Pearson Education, Inc.

Our Planetary System. Earth, as viewed by the Voyager spacecraft. 2014 Pearson Education, Inc. Our Planetary System Earth, as viewed by the Voyager spacecraft 7.1 Studying the Solar System Our goals for learning: What does the solar system look like? What can we learn by comparing the planets to

More information

NASA Explorer Schools Pre-Algebra Unit Lesson 2 Student Workbook. Solar System Math. Comparing Mass, Gravity, Composition, & Density

NASA Explorer Schools Pre-Algebra Unit Lesson 2 Student Workbook. Solar System Math. Comparing Mass, Gravity, Composition, & Density National Aeronautics and Space Administration NASA Explorer Schools Pre-Algebra Unit Lesson 2 Student Workbook Solar System Math Comparing Mass, Gravity, Composition, & Density What interval of values

More information

Assignment 5. Multiple Choice Identify the letter of the choice that best completes the statement or answers the question.

Assignment 5. Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. Assignment 5 Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. 1. What is the single most important reason that astronomers have learned more

More information

TO GO TO ANY OF THE PAGES LISTED BELOW, CLICK ON ITS TITLE

TO GO TO ANY OF THE PAGES LISTED BELOW, CLICK ON ITS TITLE TO GO TO ANY OF THE PAGES LISTED BELOW, CLICK ON ITS TITLE CHAPTER 17 The Solar System 1 17-1 What is the solar system? 2 17-2 What do we know about orbits? 3 Comparing Planetary Revolutions Enrichment

More information

1.1 A Modern View of the Universe" Our goals for learning: What is our place in the universe?"

1.1 A Modern View of the Universe Our goals for learning: What is our place in the universe? Chapter 1 Our Place in the Universe 1.1 A Modern View of the Universe What is our place in the universe? What is our place in the universe? How did we come to be? How can we know what the universe was

More information

Copyright 2006, Astronomical Society of the Pacific

Copyright 2006, Astronomical Society of the Pacific 2 1 3 4 Diameter: 590 miles (950 km) Distance to Sun: 257 million miles (414 million km) Orbits: # 18 Composition: Outer layer probably ice and frozen ammonia, no Diameter: 750 miles (1200 km) Distance

More information

Name Date THE OUTER PLANETS

Name Date THE OUTER PLANETS THE OUTER PLANETS The outer planets are the planets that are the farthest from the sun. There are four outer planets. Their names are Jupiter, Saturn, Uranus, and Neptune. Jupiter, Saturn, Uranus, and

More information

Section 1 The Earth System

Section 1 The Earth System Section 1 The Earth System Key Concept Earth is a complex system made up of many smaller systems through which matter and energy are continuously cycled. What You Will Learn Energy and matter flow through

More information

A SOLAR SYSTEM COLORING BOOK

A SOLAR SYSTEM COLORING BOOK A SOLAR SYSTEM COLORING BOOK Brought to you by: THE SUN Size: The Sun is wider than 100 Earths. 1 Temperature: 27,000,000 F in the center, 10,000 F at the surface. So that s REALLY hot anywhere on the

More information

How To Understand The Nyquist Sampling Theorem

How To Understand The Nyquist Sampling Theorem Nyquist Sampling Theorem By: Arnold Evia Table of Contents What is the Nyquist Sampling Theorem? Bandwidth Sampling Impulse Response Train Fourier Transform of Impulse Response Train Sampling in the Fourier

More information

Planets and Dwarf Planets by Shauna Hutton

Planets and Dwarf Planets by Shauna Hutton Name: Wow! Technology has improved so well in the last several years that we keep finding more and more objects in our solar system! Because of this, scientists have had to come up with new categories

More information

Grade 6 Standard 3 Unit Test A Astronomy. 1. The four inner planets are rocky and small. Which description best fits the next four outer planets?

Grade 6 Standard 3 Unit Test A Astronomy. 1. The four inner planets are rocky and small. Which description best fits the next four outer planets? Grade 6 Standard 3 Unit Test A Astronomy Multiple Choice 1. The four inner planets are rocky and small. Which description best fits the next four outer planets? A. They are also rocky and small. B. They

More information

Mission To Mars! A dialogue activity for upper KS2

Mission To Mars! A dialogue activity for upper KS2 Mission To Mars! A dialogue activity for upper KS2 Teacher s Sheet Mission to Mars: Dialogue activity for upper KS2 Part One: As a class or in groups. pupils read the Fact or Fiction cards. On each card

More information

Astronomy 110 Homework #04 Assigned: 02/06/2007 Due: 02/13/2007. Name:

Astronomy 110 Homework #04 Assigned: 02/06/2007 Due: 02/13/2007. Name: Astronomy 110 Homework #04 Assigned: 02/06/2007 Due: 02/13/2007 Name: Directions: Listed below are twenty (20) multiple-choice questions based on the material covered by the lectures this past week. Choose

More information

Journey to other celestial objects. learning outcomes

Journey to other celestial objects. learning outcomes The eight planets Journey to other celestial objects C 44 time 80 minutes. learning outcomes To: know which planets have moons know which planets have rings know the colours of the different planets know

More information

A Solar System Coloring Book

A Solar System Coloring Book A Solar System Coloring Book Courtesy of the Windows to the Universe Project http://www.windows2universe.org The Sun Size: The Sun is wider than 100 Earths. Temperature: ~27,000,000 F in the center, ~10,000

More information

The orbit of Halley s Comet

The orbit of Halley s Comet The orbit of Halley s Comet Given this information Orbital period = 76 yrs Aphelion distance = 35.3 AU Observed comet in 1682 and predicted return 1758 Questions: How close does HC approach the Sun? What

More information

Aliasing, Image Sampling and Reconstruction

Aliasing, Image Sampling and Reconstruction Aliasing, Image Sampling and Reconstruction Recall: a pixel is a point It is NOT a box, disc or teeny wee light It has no dimension It occupies no area It can have a coordinate More than a point, it is

More information

KINDERGARTEN 1 WEEK LESSON PLANS AND ACTIVITIES

KINDERGARTEN 1 WEEK LESSON PLANS AND ACTIVITIES KINDERGARTEN 1 WEEK LESSON PLANS AND ACTIVITIES UNIVERSE CYCLE OVERVIEW OF KINDERGARTEN UNIVERSE WEEK 1. PRE: Discovering misconceptions of the Universe. LAB: Comparing size and distances in space. POST:

More information

Introduction to Complex Fourier Series

Introduction to Complex Fourier Series Introduction to Complex Fourier Series Nathan Pflueger 1 December 2014 Fourier series come in two flavors. What we have studied so far are called real Fourier series: these decompose a given periodic function

More information

Solar Nebula Theory. Basic properties of the Solar System that need to be explained:

Solar Nebula Theory. Basic properties of the Solar System that need to be explained: Solar Nebula Theory Basic properties of the Solar System that need to be explained: 1. All planets orbit the Sun in the same direction as the Sun s rotation 2. All planetary orbits are confined to the

More information

A. 81 2 = 6561 times greater. B. 81 times greater. C. equally strong. D. 1/81 as great. E. (1/81) 2 = 1/6561 as great.

A. 81 2 = 6561 times greater. B. 81 times greater. C. equally strong. D. 1/81 as great. E. (1/81) 2 = 1/6561 as great. Q12.1 The mass of the Moon is 1/81 of the mass of the Earth. Compared to the gravitational force that the Earth exerts on the Moon, the gravitational force that the Moon exerts on the Earth is A. 81 2

More information

Name Class Date. true

Name Class Date. true Exercises 131 The Falling Apple (page 233) 1 Describe the legend of Newton s discovery that gravity extends throughout the universe According to legend, Newton saw an apple fall from a tree and realized

More information

Lesson 6: Earth and the Moon

Lesson 6: Earth and the Moon Lesson 6: Earth and the Moon Reading Assignment Chapter 7.1: Overall Structure of Planet Earth Chapter 7.3: Earth s Interior More Precisely 7-2: Radioactive Dating Chapter 7.5: Earth s Magnetosphere Chapter

More information

The University of Texas at Austin. Gravity and Orbits

The University of Texas at Austin. Gravity and Orbits UTeach Outreach The University of Texas at Austin Gravity and Orbits Time of Lesson: 60-75 minutes Content Standards Addressed in Lesson: TEKS6.11B understand that gravity is the force that governs the

More information

Puzzling features of data from asteroseismology space missions

Puzzling features of data from asteroseismology space missions Puzzling features of data from asteroseismology space missions Javier Pascual Granado Rafael Garrido Haba XI CoRoT Week La Laguna, Tenerife, Spain 19-22 March 2013 Motivation Old problems like the search

More information

The Hidden Lives of Galaxies. Jim Lochner, USRA & NASA/GSFC

The Hidden Lives of Galaxies. Jim Lochner, USRA & NASA/GSFC The Hidden Lives of Galaxies Jim Lochner, USRA & NASA/GSFC What is a Galaxy? Solar System Distance from Earth to Sun = 93,000,000 miles = 8 light-minutes Size of Solar System = 5.5 light-hours What is

More information

FEGYVERNEKI SÁNDOR, PROBABILITY THEORY AND MATHEmATICAL

FEGYVERNEKI SÁNDOR, PROBABILITY THEORY AND MATHEmATICAL FEGYVERNEKI SÁNDOR, PROBABILITY THEORY AND MATHEmATICAL STATIsTICs 4 IV. RANDOm VECTORs 1. JOINTLY DIsTRIBUTED RANDOm VARIABLEs If are two rom variables defined on the same sample space we define the joint

More information

Name Class Period. F = G m 1 m 2 d 2. G =6.67 x 10-11 Nm 2 /kg 2

Name Class Period. F = G m 1 m 2 d 2. G =6.67 x 10-11 Nm 2 /kg 2 Gravitational Forces 13.1 Newton s Law of Universal Gravity Newton discovered that gravity is universal. Everything pulls on everything else in the universe in a way that involves only mass and distance.

More information

Atmospheric Layers. Ionosphere. Exosphere. Thermosphere. Mesosphere. Stratosphere. Troposphere. mi (km) above sea level 250 (400) 50 (80) 30 (50)

Atmospheric Layers. Ionosphere. Exosphere. Thermosphere. Mesosphere. Stratosphere. Troposphere. mi (km) above sea level 250 (400) 50 (80) 30 (50) mi (km) above sea level Atmospheric Layers Exosphere 250 (400) Thermosphere Ionosphere 50 (80) Mesosphere Ozone Layer 30 (50) 7 (12) Stratosphere Troposphere Atmospheric Layers Earth s atmosphere is held

More information

Earth in the Solar System

Earth in the Solar System Copyright 2011 Study Island - All rights reserved. Directions: Challenge yourself! Print out the quiz or get a pen/pencil and paper and record your answers to the questions below. Check your answers with

More information

SGL 101 MATERIALS OF THE EARTH Lecture 1 C.M.NYAMAI LECTURE 1. 1.0 ORIGIN, STRUCTURE AND COMPOSITION OF THE EARTH

SGL 101 MATERIALS OF THE EARTH Lecture 1 C.M.NYAMAI LECTURE 1. 1.0 ORIGIN, STRUCTURE AND COMPOSITION OF THE EARTH LECTURE 1. 1.0 ORIGIN, STRUCTURE AND COMPOSITION OF THE EARTH 1.1 INTRODUCTION. Welcome to Lecture 1 of this unit. To start with, stop and look around you wherever you are. Take a look at all the things

More information

Lecture 19: Planet Formation I. Clues from the Solar System

Lecture 19: Planet Formation I. Clues from the Solar System Lecture 19: Planet Formation I. Clues from the Solar System 1 Outline The Solar System:! Terrestrial planets! Jovian planets! Asteroid belt, Kuiper belt, Oort cloud Condensation and growth of solid bodies

More information

LER 2891. Ages. Grades. Solar System. A fun game of thinking & linking!

LER 2891. Ages. Grades. Solar System. A fun game of thinking & linking! Solar System Ages 7+ LER 2891 Grades 2+ Card Game A fun game of thinking & linking! Contents 45 Picture cards 45 Word cards 8 New Link cards 2 Super Link cards Setup Shuffle the two decks together to mix

More information

The scale of the Universe, and an inventory

The scale of the Universe, and an inventory The scale of the Universe, and an inventory Space is big. You just won t believe how vastly, hugely, mind-bogglingly big it is. I mean, you may think it s a long way down the road to the chemist s, but

More information

1 A Solar System Is Born

1 A Solar System Is Born CHAPTER 3 1 A Solar System Is Born SECTION Formation of the Solar System BEFORE YOU READ After you read this section, you should be able to answer these questions: What is a nebula? How did our solar system

More information

STUDY GUIDE: Earth Sun Moon

STUDY GUIDE: Earth Sun Moon The Universe is thought to consist of trillions of galaxies. Our galaxy, the Milky Way, has billions of stars. One of those stars is our Sun. Our solar system consists of the Sun at the center, and all

More information

USING MS EXCEL FOR DATA ANALYSIS AND SIMULATION

USING MS EXCEL FOR DATA ANALYSIS AND SIMULATION USING MS EXCEL FOR DATA ANALYSIS AND SIMULATION Ian Cooper School of Physics The University of Sydney i.cooper@physics.usyd.edu.au Introduction The numerical calculations performed by scientists and engineers

More information

ANSWER KEY. Chapter 22. 8. phase 9. spring 10. lunar 11. solar 12. gravity

ANSWER KEY. Chapter 22. 8. phase 9. spring 10. lunar 11. solar 12. gravity Chapter 22 Section 22-1 Review and Reinforce (p. 11) 1. winter 2. At point A the sun would be directly overhead, at point B it would be on the horizon, and at point C it would not be visible because it

More information

AS COMPETITION PAPER 2008

AS COMPETITION PAPER 2008 AS COMPETITION PAPER 28 Name School Town & County Total Mark/5 Time Allowed: One hour Attempt as many questions as you can. Write your answers on this question paper. Marks allocated for each question

More information

The Main Point. Lecture #34: Solar System Origin II. Chemical Condensation ( Lewis ) Model. How did the solar system form? Reading: Chapter 8.

The Main Point. Lecture #34: Solar System Origin II. Chemical Condensation ( Lewis ) Model. How did the solar system form? Reading: Chapter 8. Lecture #34: Solar System Origin II How did the solar system form? Chemical Condensation ("Lewis") Model. Formation of the Terrestrial Planets. Formation of the Giant Planets. Planetary Evolution. Reading:

More information

Gravitation and Newton s Synthesis

Gravitation and Newton s Synthesis Gravitation and Newton s Synthesis Vocabulary law of unviversal Kepler s laws of planetary perturbations casual laws gravitation motion casuality field graviational field inertial mass gravitational mass

More information

Practice TEST 2. Explain your reasoning

Practice TEST 2. Explain your reasoning Practice TEST 2 1. Imagine taking an elevator ride from the1 st floor to the 10 th floor of a building. While moving between the 1 st and 2 nd floors the elevator speeds up, but then moves at a constant

More information

18.2 Comparing Atoms. Atomic number. Chapter 18

18.2 Comparing Atoms. Atomic number. Chapter 18 As you know, some substances are made up of only one kind of atom and these substances are called elements. You already know something about a number of elements you ve heard of hydrogen, helium, silver,

More information

The Layout of the Solar System

The Layout of the Solar System The Layout of the Solar System Planets fall into two main categories Terrestrial (i.e. Earth-like) Jovian (i.e. Jupiter-like or gaseous) [~5000 kg/m 3 ] [~1300 kg/m 3 ] What is density? Average density

More information

Lecture 10 Formation of the Solar System January 6c, 2014

Lecture 10 Formation of the Solar System January 6c, 2014 1 Lecture 10 Formation of the Solar System January 6c, 2014 2 Orbits of the Planets 3 Clues for the Formation of the SS All planets orbit in roughly the same plane about the Sun. All planets orbit in the

More information

Introduction and Origin of the Earth

Introduction and Origin of the Earth Page 1 of 5 EENS 1110 Tulane University Physical Geology Prof. Stephen A. Nelson Introduction and Origin of the Earth This page last updated on 30-Jul-2015 Geology, What is it? Geology is the study of

More information

circular motion & gravitation physics 111N

circular motion & gravitation physics 111N circular motion & gravitation physics 111N uniform circular motion an object moving around a circle at a constant rate must have an acceleration always perpendicular to the velocity (else the speed would

More information

8.1 Radio Emission from Solar System objects

8.1 Radio Emission from Solar System objects 8.1 Radio Emission from Solar System objects 8.1.1 Moon and Terrestrial planets At visible wavelengths all the emission seen from these objects is due to light reflected from the sun. However at radio

More information

Solar System. 1. The diagram below represents a simple geocentric model. Which object is represented by the letter X?

Solar System. 1. The diagram below represents a simple geocentric model. Which object is represented by the letter X? Solar System 1. The diagram below represents a simple geocentric model. Which object is represented by the letter X? A) Earth B) Sun C) Moon D) Polaris 2. Which object orbits Earth in both the Earth-centered

More information

ANALYZER BASICS WHAT IS AN FFT SPECTRUM ANALYZER? 2-1

ANALYZER BASICS WHAT IS AN FFT SPECTRUM ANALYZER? 2-1 WHAT IS AN FFT SPECTRUM ANALYZER? ANALYZER BASICS The SR760 FFT Spectrum Analyzer takes a time varying input signal, like you would see on an oscilloscope trace, and computes its frequency spectrum. Fourier's

More information

Our Solar System, Our Galaxy, then the Universe

Our Solar System, Our Galaxy, then the Universe Our Solar System, Our Galaxy, then the Universe Al Globus, April 2012 Orbital Space Settlements When thinking about space settlement, most people think in terms of cities on the Moon or Mars. However,

More information

NOTES: GEORGIA HIGH SCHOOL SCIENCE TEST THE SOLAR SYSTEM

NOTES: GEORGIA HIGH SCHOOL SCIENCE TEST THE SOLAR SYSTEM NOTES: GEORGIA HIGH SCHOOL SCIENCE TEST THE SOLAR SYSTEM 1.What is a Solar system? A solar system consists of: * one central star, the Sun and * nine planets: Mercury, Venus, Earth, Mars, Jupiter, Saturn,

More information

Once in a Blue Moon (Number Systems and Number Theory)

Once in a Blue Moon (Number Systems and Number Theory) The Middle School Math Project Once in a Blue Moon (Number Systems and Number Theory) Objective Students will use number theory skills to investigate when certain planets are aligned. Overview of the Lesson

More information

Earth Is Not the Center of the Universe

Earth Is Not the Center of the Universe Earth Is Not the Center of the Universe Source: Utah State Office of Education Introduction Have you ever looked up at the night sky and wondered about all the pinpoint lights? People through the ages

More information

L9: Cepstral analysis

L9: Cepstral analysis L9: Cepstral analysis The cepstrum Homomorphic filtering The cepstrum and voicing/pitch detection Linear prediction cepstral coefficients Mel frequency cepstral coefficients This lecture is based on [Taylor,

More information

Probing for Information

Probing for Information Name Class Date Inquiry Lab Probing for Information Using Scientific Methods Information about planets in our solar system has been collected by observation from Earth and from probes, or scientific instruments,

More information

The most interesting moons in our solar system

The most interesting moons in our solar system The most interesting moons in our solar system Gert Homm 16th October 2006 1 Contents 1 Introduction 3 2 Basic terms 3 3 Terran moon 3 3.1 LUNA......................................... 3 4 Some moons of

More information

Solar System science with the IRAM interferometer. Recent Solar System science with the IRAM Plateau de Bure interferometer

Solar System science with the IRAM interferometer. Recent Solar System science with the IRAM Plateau de Bure interferometer Recent Solar System science with the IRAM Plateau de Bure interferometer J. Boissier (Institut de radioastronomie millimétrique) Contact: boissier@iram.fr Outline Planet moons Io Titan Planets Mars Comets

More information

Objective: Use calculator to comprehend transformations.

Objective: Use calculator to comprehend transformations. math111 (Bradford) Worksheet #1 Due Date: Objective: Use calculator to comprehend transformations. Here is a warm up for exploring manipulations of functions. specific formula for a function, say, Given

More information

GRAVITY CONCEPTS. Gravity is the universal force of attraction between all matter

GRAVITY CONCEPTS. Gravity is the universal force of attraction between all matter IT S UNIVERSAL GRAVITY CONCEPTS Gravity is the universal force of attraction between all matter Weight is a measure of the gravitational force pulling objects toward Earth Objects seem weightless when

More information