# 2.4 Multiplication of Integers. Recall that multiplication is defined as repeated addition from elementary school. For example, 5 6 = 6 5 = 30, since:

Save this PDF as:

Size: px
Start display at page:

Download "2.4 Multiplication of Integers. Recall that multiplication is defined as repeated addition from elementary school. For example, 5 6 = 6 5 = 30, since:"

## Transcription

1 2.4 Multiplication of Integers Recall that multiplication is defined as repeated addition from elementary school. For example, 5 6 = 6 5 = 30, since: 5 6= =30 6 5= =30 To develop a rule for multiplication of integers, we must determine what happens when one or both of the numbers is negative. We start with the product 4!6. Using the idea of repeated addition: 4 (!6)=(!6)+(!6)+(!6)+(!6)=! 24 For the product!6 4, we apply the commutative property of multiplication:!6 4 = 4 (!6) = (!6) + (!6) + (!6) + (!6) =!24 When multiplying two numbers of different signs (a positive number and a negative number), it appears that the product is negative. What about the product (!6) (!4)? The repeated addition idea will not work, since we cannot add 4 to itself 6 times, nor can we add 6 to itself 4 times. To determine the answer, consider the sequence of multiplications: (!6) 3 =!18 (!6) 2 =!12 (!6) 1 =!6 (!6) 0 = 0 87

2 The pattern on the left should be clear; the numbers being multiplied by 6 are decreasing by 1. On the right the numbers are increasing by 6. Continuing this pattern: (!6) 3 =!18 (!6) 2 =!12 (!6) 1 =!6 (!6) 0 = 0 (!6) (!1) = 6 (!6) (!2) = 12 (!6) (!3) = 18 (!6) (!4) = 24 Thus, it appears that multiplying two negative numbers results in a positive number. In summary, when multiplying two numbers, the sign is positive if the two numbers have the same sign, and negative if the two numbers have different signs. This is an easy rule to remember, and thus multiplication does not require the number line to determine the sign of the answer, as does addition. Example 1 Multiply the two numbers. (!5) ( 3) a. 7!6 b.!9 8 c.!15 d. 13 Solution a. Apply the rule for signs: 7(!6) =! 7 6 rule for signs =!42 multiply numbers b. Apply the rule for signs:!9(8) =! 9 8 rule for signs =!72 multiply numbers 88

3 c. Apply the rule for signs: (!15)(!5) = rule for signs = 75 multiply numbers d. Apply the rule for signs: (13)(13) = rule for signs = 39 multiply numbers The same properties for multiplication are true, as illustrated in the property box: Property Name Property Example Commutative property a b = b a 4 (!8) =!8 4 = (!2 5) (!7) Identity property a 1 = 1 a = a!15 1 = 1 (!15) =!15 Associative property a (b c) = (a b) c!2 5 (!7) Multiplication property of 0 a 0 = 0 a = 0!7 0 = 0 (!7) = 0 Zero factor property If a b = 0, a = 0 or b = 0 If! 4 x = 0, x = 0 When multiplying more than two numbers, we can use the rule of signs to pair up negative numbers, effectively canceling the negatives. For example, to compute(!4)(!1)(2)(!3)(!2), a quick survey of the numbers indicates there are four negative numbers being multiplied. Since each pair produces a positive product, the answer must be positive. Thus: (!4)(!1)(2)(!3)(!2) = + ( ) rule for signs = 48 multiply numbers 89

4 Example 2 Multiply the following numbers. a. (!5)(!3)(!2) b. (!4)(!3)(!2)(!1) c. (!6)(2)(!2)(!1) d. (!9)(!8)(!13)(0) Solution a. Pairing pairs of negative numbers indicates the product is negative: (!5)(!3)(!2) =! rule for signs =!30 multiply numbers b. Pairing pairs of negative numbers indicates the product is positive: (!4)(!3)(!2)(!1) = rule for signs = 24 multiply numbers c. Pairing pairs of negative numbers indicates the product is negative: (!6)(2)(!2)(!1) =! rule for signs =!24 multiply numbers d. Notice that one of the numbers being multiplied is 0. By the multiplication property of 0, we know this results in a 0 product. So (!9)(!8)(!13)(0) = 0. Recall that solutions to equations are numbers which, when substituted for the variable in the equation, produce a true statement. We can now determine solutions to equations which involve multiplication, as the following example illustrates. Note that we often write 3x to represent the product 3 x. Example 3 Determine whether or not the given integer value is a solution to the equation. a. 3x = 9 ; x = 3 b. 5x =!25 ; x =!5 c.!4y =!24 ; y =!6 d.!3a = 36 ; a =!12 90

5 Solution a. Substitute x = 3 into the equation and determine whether the statement is true: 3 3 = 9 9 = 9 Since this last statement (9 = 9) is true, x = 3is a solution to the equation 3x = 9. b. Substitute x =!5 into the equation and determine whether the statement is true: 5 (!5) =!25!25 =!25 Since this last statement ( 25 = 25) is true, x =!5 is a solution to the equation 5x =!25. c. Substitute y =!6 into the equation and determine whether the statement is true:!4 (!6) =!24 24 =!24 Since this last statement (24 = 24) is false, y =!6 is not a solution to the equation!4y =!24. d. Substitute a =!12 into the equation and determine whether the statement is true:!3 (!12) = = 36 Since this last statement (36 = 36) is true, a =!12 is a solution to the equation!3a = 36. Previously we studied sequences of numbers which are arithmetic sequences. Recall that these are sequences of numbers in which each term results in adding a fixed number onto the previous term. A second type of sequence is called a geometric sequence. These are sequences of numbers in which each term results in multiplying the same number (called the common ratio) by the previous term. For example, the sequence 2, 4, 8, 16, is a geometric sequence, since: The next term of this sequence is16 2 = = = = 16 91

6 Example 4 Find the next term in each geometric sequence. a. 1, 3, 9, 27, b. 2, 6, 18, 54, c. 3, 6, 12, 24, d. 4, 8, 16, 32, Solution a. Note that 1 3 = 3, 3 3 = 9, and 9 3 = 27, so the common ratio is 3. The next term is 27 3 = 81. b. Note that 2 ( 3) = 6, 6 ( 3) = 18, and 18 ( 3) = 54, so the common ratio is 3. The next term is 54 ( 3) = 162. c. Note that 3 2 = 6, 6 2 = 12, and 12 2 = 24, so the common ratio is 2. The next term is 24 2 = 48. d. Note that 4 ( 2) = 8, 8 ( 2) = 16, and 16 ( 2) = 32, so the common ratio is 2. The next term is 32 ( 2) = 64. Now that we have completed both addition and multiplication, there is one new property of numbers which involves these two operations. Suppose you are given the expression 5( 3 + 4) to compute. From the last chapter, we know to add within the parentheses first, then perform the multiplication. Thus: Notice, however, a different approach: 5( 3 + 4) = 5 7 = 35 5( 3 + 4) = = This second approach utilizes a new property of numbers, called the distributive property: Distributive Property (addition form): a b + c = 35 Distributive Property (subtraction form): a b! c This property will be used extensively in algebra. = a b + a c = a b! a c 92

7 Example 5 Compute each expression two ways: directly by computing parentheses first, and by using the distributive property. a b.!4 3! 7 c.!6!2 + 6 d.!5!3! 4 Solution a. Computing the expression directly: = 6 14 = 84 Computing the expression using the distributive property: 6( 5 + 9) = = = 84 Note that the two values are the same. b. Computing the expression directly:!4( 3! 7) =!4[ 3 + (!7)] =!4(!4) = 16 Computing the expression using the distributive property:!4 3! 7 Note that the two values are the same. =!4 3! (!4) 7 =!12! (!28) =! = 16 c. Computing the expression directly:!6(!2 + 6) =!6(4) =!24 Computing the expression using the distributive property:!6(!2 + 6) =!6 (!2) + (!6) 6 = 12 + (!36) =!24 Note that the two values are the same. d. Computing the expression directly:!5(!3! 4) =!5[!3 + (!4)] =!5(!7) = 35 Computing the expression using the distributive property:!5!3! 4 Note that the two values are the same. =!5(!3)! (!5)(4) = 15! ( 20) = = 35 93

8 The distributive property provides us with another rationale of why the product of two negative numbers is a positive number. Consider the product!5 (!3). Since 4! 7 =!3, we can write this product as!5 (!3) =!5 ( 4! 7) =!5 4! (!5) 7 =!20! (!35) =! = 15 This is an alternative argument to that of establishing patterns which we did at the beginning of this section. Terminology multiplication of integers commutative property associative property identity property multiplication property of 0 zero factor property geometric sequence common ratio distributive property (addition and subtraction form) Multiply the two integers. Exercise Set !4 6 2.! (!5) (!7) 5.!5 (!6) 6.!9 (!12) 7. (!13) (!8) 8. (!11) (!6) 9. 0 (!45) 10.!53 (0) Give the property name which justifies each statement. 11.!42 8 = 8 (!42) 12.!13 7 = 7 (!13) 13.!16 0 = 0 (!16) = 0 14.!6!7 (!2) = (!6 (!7)) (!2) = (!8 5) (!3) 16.!24 0 = 0 (!24) = 0 = 45 (!8) ( 9! 40) = 13 9! !8 5 (!3) !

9 19.!68 1 = 1 (!68) =! If 7x = 0, then x = If!9y = 0, then y = !14 1 = 1 (!14) =!14 23.!17!8! 13 =!17 (!8)! (!17) 13 =!23 (!6) + (!23) (!8) 24.!23!6 + (!8) Multiply the following integers. 25. (!5)(3)(!4) 26. (!6)(2)(!3) 27. (!6)(!3)(!2) 28. (!5)(!3)(!4) 29. (8)(!2)(5) 30. (7)(3)(!4) 31. (!2)(!3)(4)(!5) 32. (!6)(!2)(5)(!3) 33. (!4)(!5)(!6)(!1) 34. (!2)(!8)(!5)(!4) Determine whether or not the given integer value is a solution to the equation x =!16 ; x =! x =!16 ; x = 4 37.!5y =!25 ; y =!5 38.!5y =!25 ; y = 5 39.!6a = 48 ; a =!8 40.!6a = 48 ; a = 8 41.!8x = 0 ; x = 8 42.!8x = 0 ; x = 0 43.!8 + x = 0 ; x = 8 44.!8 + x = 0 ; x = 0 Find the next term in each geometric sequence , 6, 12, 24, 46. 1, 2, 4, 8, 47. 2, 4, 8, 16, 48. 2, 6, 18, 54, 49. 5, 10, 20, 40, 50. 1, 3, 9, 27, 51. 4, 8, 16, 32, 52. 4, 12, 36, 108, 53. 1, 10, 100, 1000, 54. 1, 5, 25, 125, 55. 1, 4, 16, 64, 56. 1, 1, 1, 1, Compute each expression two ways: directly by computing parentheses first, and by using the distributive property ! ( ) 60. 6( 12! 5) 62. 7( 5! 12) 64.!9( ) 66.!9( 5! 13) ! ! !8 8! 14 95

10 68.!8(!9 + 3) 70.!7(!6! 12) 72.!25(!12! 24) 67.!12! !4!8! 5 71.!15!16! 20 Answer each question as true or false, where x and y represent integers. If it is false, give a specific example to show that it is false. If it is true, explain why. 73. If xy < 0, then x < 0 or y < If xy < 0, then x < 0 and y < If xy > 0, then x > 0 or y > If xy > 0, then x > 0 and y > If xy = 0, then x = 0 or y = If xy = 0, then x = 0 and y = If x = 0, then xy = If x = 0, then x + y = 0. Answer each question. 81. If the product of 12 and 4 is added to the product of 8 and 5, what is the result? 82. If the product of 8 and 12 is added to the product of 5 and 12, what is the result? 83. A new company has monthly losses of \$485 for the first two years. How much is their total loss in the first two years? 84. A new business has weekly losses of \$258 for the first year. How much is their total loss in the first year? 85. If the sum of 12 and 6 is multiplied by the sum of 8 and 4, what is the result? 86. If the sum of 18 and 7 is multiplied by the sum of 7 and 6, what is the result? 96

### 2.6 Exponents and Order of Operations

2.6 Exponents and Order of Operations We begin this section with exponents applied to negative numbers. The idea of applying an exponent to a negative number is identical to that of a positive number (repeated

### PURPOSE: To practice adding and subtracting integers with number lines and algebra tiles (charge method). SOL: 7.3 NUMBER LINES

Name: Date: Block: PURPOSE: To practice adding and subtracting integers with number lines and algebra tiles (charge method). SOL: 7.3 Examples: NUMBER LINES Use the below number lines to model the given

### Sometimes it is easier to leave a number written as an exponent. For example, it is much easier to write

4.0 Exponent Property Review First let s start with a review of what exponents are. Recall that 3 means taking four 3 s and multiplying them together. So we know that 3 3 3 3 381. You might also recall

### Some sequences have a fixed length and have a last term, while others go on forever.

Sequences and series Sequences A sequence is a list of numbers (actually, they don t have to be numbers). Here is a sequence: 1, 4, 9, 16 The order makes a difference, so 16, 9, 4, 1 is a different sequence.

### Properties of Real Numbers

16 Chapter P Prerequisites P.2 Properties of Real Numbers What you should learn: Identify and use the basic properties of real numbers Develop and use additional properties of real numbers Why you should

### Finding Rates and the Geometric Mean

Finding Rates and the Geometric Mean So far, most of the situations we ve covered have assumed a known interest rate. If you save a certain amount of money and it earns a fixed interest rate for a period

### Unit 3: Algebra. Date Topic Page (s) Algebra Terminology 2. Variables and Algebra Tiles 3 5. Like Terms 6 8. Adding/Subtracting Polynomials 9 12

Unit 3: Algebra Date Topic Page (s) Algebra Terminology Variables and Algebra Tiles 3 5 Like Terms 6 8 Adding/Subtracting Polynomials 9 1 Expanding Polynomials 13 15 Introduction to Equations 16 17 One

### SIMPLIFYING ALGEBRAIC FRACTIONS

Tallahassee Community College 5 SIMPLIFYING ALGEBRAIC FRACTIONS In arithmetic, you learned that a fraction is in simplest form if the Greatest Common Factor (GCF) of the numerator and the denominator is

### 26 Integers: Multiplication, Division, and Order

26 Integers: Multiplication, Division, and Order Integer multiplication and division are extensions of whole number multiplication and division. In multiplying and dividing integers, the one new issue

### Algebraic expressions are a combination of numbers and variables. Here are examples of some basic algebraic expressions.

Page 1 of 13 Review of Linear Expressions and Equations Skills involving linear equations can be divided into the following groups: Simplifying algebraic expressions. Linear expressions. Solving linear

### Click on the links below to jump directly to the relevant section

Click on the links below to jump directly to the relevant section What is algebra? Operations with algebraic terms Mathematical properties of real numbers Order of operations What is Algebra? Algebra is

### 3.1. RATIONAL EXPRESSIONS

3.1. RATIONAL EXPRESSIONS RATIONAL NUMBERS In previous courses you have learned how to operate (do addition, subtraction, multiplication, and division) on rational numbers (fractions). Rational numbers

### Factoring Trinomials of the Form x 2 bx c

4.2 Factoring Trinomials of the Form x 2 bx c 4.2 OBJECTIVES 1. Factor a trinomial of the form x 2 bx c 2. Factor a trinomial containing a common factor NOTE The process used to factor here is frequently

### Accentuate the Negative: Homework Examples from ACE

Accentuate the Negative: Homework Examples from ACE Investigation 1: Extending the Number System, ACE #6, 7, 12-15, 47, 49-52 Investigation 2: Adding and Subtracting Rational Numbers, ACE 18-22, 38(a),

### TYPES OF NUMBERS. Example 2. Example 1. Problems. Answers

TYPES OF NUMBERS When two or more integers are multiplied together, each number is a factor of the product. Nonnegative integers that have exactly two factors, namely, one and itself, are called prime

### 5.4 Solving Percent Problems Using the Percent Equation

5. Solving Percent Problems Using the Percent Equation In this section we will develop and use a more algebraic equation approach to solving percent equations. Recall the percent proportion from the last

### Math 115 Spring 2011 Written Homework 5 Solutions

. Evaluate each series. a) 4 7 0... 55 Math 5 Spring 0 Written Homework 5 Solutions Solution: We note that the associated sequence, 4, 7, 0,..., 55 appears to be an arithmetic sequence. If the sequence

### Rational Exponents. Squaring both sides of the equation yields. and to be consistent, we must have

8.6 Rational Exponents 8.6 OBJECTIVES 1. Define rational exponents 2. Simplify expressions containing rational exponents 3. Use a calculator to estimate the value of an expression containing rational exponents

### Supplemental Worksheet Problems To Accompany: The Pre-Algebra Tutor: Volume 1 Section 5 Subtracting Integers

Supplemental Worksheet Problems To Accompany: The Pre-Algebra Tutor: Volume 1 Please watch Section 5 of this DVD before working these problems. The DVD is located at: http://www.mathtutordvd.com/products/item66.cfm

### Indiana State Core Curriculum Standards updated 2009 Algebra I

Indiana State Core Curriculum Standards updated 2009 Algebra I Strand Description Boardworks High School Algebra presentations Operations With Real Numbers Linear Equations and A1.1 Students simplify and

Factoring the trinomial ax 2 + bx + c when a = 1 A trinomial in the form x 2 + bx + c can be factored to equal (x + m)(x + n) when the product of m x n equals c and the sum of m + n equals b. (Note: the

### 0.8 Rational Expressions and Equations

96 Prerequisites 0.8 Rational Expressions and Equations We now turn our attention to rational expressions - that is, algebraic fractions - and equations which contain them. The reader is encouraged to

### (2 4 + 9)+( 7 4) + 4 + 2

5.2 Polynomial Operations At times we ll need to perform operations with polynomials. At this level we ll just be adding, subtracting, or multiplying polynomials. Dividing polynomials will happen in future

### Solving Rational Equations

Lesson M Lesson : Student Outcomes Students solve rational equations, monitoring for the creation of extraneous solutions. Lesson Notes In the preceding lessons, students learned to add, subtract, multiply,

### Definition 8.1 Two inequalities are equivalent if they have the same solution set. Add or Subtract the same value on both sides of the inequality.

8 Inequalities Concepts: Equivalent Inequalities Linear and Nonlinear Inequalities Absolute Value Inequalities (Sections 4.6 and 1.1) 8.1 Equivalent Inequalities Definition 8.1 Two inequalities are equivalent

### MATH 60 NOTEBOOK CERTIFICATIONS

MATH 60 NOTEBOOK CERTIFICATIONS Chapter #1: Integers and Real Numbers 1.1a 1.1b 1.2 1.3 1.4 1.8 Chapter #2: Algebraic Expressions, Linear Equations, and Applications 2.1a 2.1b 2.1c 2.2 2.3a 2.3b 2.4 2.5

### Basic Math Refresher A tutorial and assessment of basic math skills for students in PUBP704.

Basic Math Refresher A tutorial and assessment of basic math skills for students in PUBP704. The purpose of this Basic Math Refresher is to review basic math concepts so that students enrolled in PUBP704:

### Rules of Signs for Decimals

CHAPTER 6 C Rules of Signs for Decimals c GOAL Apply the rules of signs for calculating with decimals. You will need number lines a calculator with a sign change key Learn about the Math Positive and negative

### Solutions of Linear Equations in One Variable

2. Solutions of Linear Equations in One Variable 2. OBJECTIVES. Identify a linear equation 2. Combine like terms to solve an equation We begin this chapter by considering one of the most important tools

### Sample Problems. Practice Problems

Lecture Notes Quadratic Word Problems page 1 Sample Problems 1. The sum of two numbers is 31, their di erence is 41. Find these numbers.. The product of two numbers is 640. Their di erence is 1. Find these

### Test 4 Sample Problem Solutions, 27.58 = 27 47 100, 7 5, 1 6. 5 = 14 10 = 1.4. Moving the decimal two spots to the left gives

Test 4 Sample Problem Solutions Convert from a decimal to a fraction: 0.023, 27.58, 0.777... For the first two we have 0.023 = 23 58, 27.58 = 27 1000 100. For the last, if we set x = 0.777..., then 10x

### Repetition and Loops. Additional Python constructs that allow us to effect the (1) order and (2) number of times that program statements are executed.

New Topic Repetition and Loops Additional Python constructs that allow us to effect the (1) order and (2) number of times that program statements are executed. These constructs are the 1. while loop and

### Negative Integer Exponents

7.7 Negative Integer Exponents 7.7 OBJECTIVES. Define the zero exponent 2. Use the definition of a negative exponent to simplify an expression 3. Use the properties of exponents to simplify expressions

### 3.3 Addition and Subtraction of Rational Numbers

3.3 Addition and Subtraction of Rational Numbers In this section we consider addition and subtraction of both fractions and decimals. We start with addition and subtraction of fractions with the same denominator.

This assignment will help you to prepare for Algebra 1 by reviewing some of the things you learned in Middle School. If you cannot remember how to complete a specific problem, there is an example at the

### Fractions and Linear Equations

Fractions and Linear Equations Fraction Operations While you can perform operations on fractions using the calculator, for this worksheet you must perform the operations by hand. You must show all steps

### Click on the links below to jump directly to the relevant section

Click on the links below to jump directly to the relevant section Basic review Writing fractions in simplest form Comparing fractions Converting between Improper fractions and whole/mixed numbers Operations

### Compound Interest. Invest 500 that earns 10% interest each year for 3 years, where each interest payment is reinvested at the same rate:

Compound Interest Invest 500 that earns 10% interest each year for 3 years, where each interest payment is reinvested at the same rate: Table 1 Development of Nominal Payments and the Terminal Value, S.

### Math Workshop October 2010 Fractions and Repeating Decimals

Math Workshop October 2010 Fractions and Repeating Decimals This evening we will investigate the patterns that arise when converting fractions to decimals. As an example of what we will be looking at,

### This is a square root. The number under the radical is 9. (An asterisk * means multiply.)

Page of Review of Radical Expressions and Equations Skills involving radicals can be divided into the following groups: Evaluate square roots or higher order roots. Simplify radical expressions. Rationalize

### 5 Systems of Equations

Systems of Equations Concepts: Solutions to Systems of Equations-Graphically and Algebraically Solving Systems - Substitution Method Solving Systems - Elimination Method Using -Dimensional Graphs to Approximate

### The Point-Slope Form

7. The Point-Slope Form 7. OBJECTIVES 1. Given a point and a slope, find the graph of a line. Given a point and the slope, find the equation of a line. Given two points, find the equation of a line y Slope

### 4.4 Equations of the Form ax + b = cx + d

4.4 Equations of the Form ax + b = cx + d We continue our study of equations in which the variable appears on both sides of the equation. Suppose we are given the equation: 3x + 4 = 5x! 6 Our first step

### Sums & Series. a i. i=1

Sums & Series Suppose a,a,... is a sequence. Sometimes we ll want to sum the first k numbers (also known as terms) that appear in a sequence. A shorter way to write a + a + a 3 + + a k is as There are

### Name Date Block. Algebra 1 Laws of Exponents/Polynomials Test STUDY GUIDE

Name Date Block Know how to Algebra 1 Laws of Eponents/Polynomials Test STUDY GUIDE Evaluate epressions with eponents using the laws of eponents: o a m a n = a m+n : Add eponents when multiplying powers

### 1.4. Arithmetic of Algebraic Fractions. Introduction. Prerequisites. Learning Outcomes

Arithmetic of Algebraic Fractions 1.4 Introduction Just as one whole number divided by another is called a numerical fraction, so one algebraic expression divided by another is known as an algebraic fraction.

### Part 1 Expressions, Equations, and Inequalities: Simplifying and Solving

Section 7 Algebraic Manipulations and Solving Part 1 Expressions, Equations, and Inequalities: Simplifying and Solving Before launching into the mathematics, let s take a moment to talk about the words

### MULTIPLICATION AND DIVISION OF REAL NUMBERS In this section we will complete the study of the four basic operations with real numbers.

1.4 Multiplication and (1-25) 25 In this section Multiplication of Real Numbers Division by Zero helpful hint The product of two numbers with like signs is positive, but the product of three numbers with

### Algebra I Teacher Notes Expressions, Equations, and Formulas Review

Big Ideas Write and evaluate algebraic expressions Use expressions to write equations and inequalities Solve equations Represent functions as verbal rules, equations, tables and graphs Review these concepts

### Chapter 9. Systems of Linear Equations

Chapter 9. Systems of Linear Equations 9.1. Solve Systems of Linear Equations by Graphing KYOTE Standards: CR 21; CA 13 In this section we discuss how to solve systems of two linear equations in two variables

### Solving Systems of Linear Equations Using Matrices

Solving Systems of Linear Equations Using Matrices What is a Matrix? A matrix is a compact grid or array of numbers. It can be created from a system of equations and used to solve the system of equations.

### Appendix F: Mathematical Induction

Appendix F: Mathematical Induction Introduction In this appendix, you will study a form of mathematical proof called mathematical induction. To see the logical need for mathematical induction, take another

### MATH 65 NOTEBOOK CERTIFICATIONS

MATH 65 NOTEBOOK CERTIFICATIONS Review Material from Math 60 2.5 4.3 4.4a Chapter #8: Systems of Linear Equations 8.1 8.2 8.3 Chapter #5: Exponents and Polynomials 5.1 5.2a 5.2b 5.3 5.4 5.5 5.6a 5.7a 1

### Arithmetic Operations. The real numbers have the following properties: In particular, putting a 1 in the Distributive Law, we get

Review of Algebra REVIEW OF ALGEBRA Review of Algebra Here we review the basic rules and procedures of algebra that you need to know in order to be successful in calculus. Arithmetic Operations The real

9.3 Solving Quadratic Equations by Using the Quadratic Formula 9.3 OBJECTIVES 1. Solve a quadratic equation by using the quadratic formula 2. Determine the nature of the solutions of a quadratic equation

### Algebra Tiles Activity 1: Adding Integers

Algebra Tiles Activity 1: Adding Integers NY Standards: 7/8.PS.6,7; 7/8.CN.1; 7/8.R.1; 7.N.13 We are going to use positive (yellow) and negative (red) tiles to discover the rules for adding and subtracting

### COLLEGE ALGEBRA 10 TH EDITION LIAL HORNSBY SCHNEIDER 1.1-1

10 TH EDITION COLLEGE ALGEBRA LIAL HORNSBY SCHNEIDER 1.1-1 1.1 Linear Equations Basic Terminology of Equations Solving Linear Equations Identities 1.1-2 Equations An equation is a statement that two expressions

### IB Maths SL Sequence and Series Practice Problems Mr. W Name

IB Maths SL Sequence and Series Practice Problems Mr. W Name Remember to show all necessary reasoning! Separate paper is probably best. 3b 3d is optional! 1. In an arithmetic sequence, u 1 = and u 3 =

### 8 Divisibility and prime numbers

8 Divisibility and prime numbers 8.1 Divisibility In this short section we extend the concept of a multiple from the natural numbers to the integers. We also summarize several other terms that express

### Solve addition and subtraction word problems, and add and subtract within 10, e.g., by using objects or drawings to represent the problem.

Solve addition and subtraction word problems, and add and subtract within 10, e.g., by using objects or drawings to represent the problem. Solve word problems that call for addition of three whole numbers

### Introduction to Diophantine Equations

Introduction to Diophantine Equations Tom Davis tomrdavis@earthlink.net http://www.geometer.org/mathcircles September, 2006 Abstract In this article we will only touch on a few tiny parts of the field

### 6 Proportion: Fractions, Direct and Inverse Variation, and Percent

6 Proportion: Fractions, Direct and Inverse Variation, and Percent 6.1 Fractions Every rational number can be written as a fraction, that is a quotient of two integers, where the divisor of course cannot

### Module 2: Working with Fractions and Mixed Numbers. 2.1 Review of Fractions. 1. Understand Fractions on a Number Line

Module : Working with Fractions and Mixed Numbers.1 Review of Fractions 1. Understand Fractions on a Number Line Fractions are used to represent quantities between the whole numbers on a number line. A

### Addition and Multiplication of Polynomials

LESSON 0 addition and multiplication of polynomials LESSON 0 Addition and Multiplication of Polynomials Base 0 and Base - Recall the factors of each of the pieces in base 0. The unit block (green) is x.

### Calculate Highest Common Factors(HCFs) & Least Common Multiples(LCMs) NA1

Calculate Highest Common Factors(HCFs) & Least Common Multiples(LCMs) NA1 What are the multiples of 5? The multiples are in the five times table What are the factors of 90? Each of these is a pair of factors.

### Multiplying and Dividing Signed Numbers. Finding the Product of Two Signed Numbers. (a) (3)( 4) ( 4) ( 4) ( 4) 12 (b) (4)( 5) ( 5) ( 5) ( 5) ( 5) 20

SECTION.4 Multiplying and Dividing Signed Numbers.4 OBJECTIVES 1. Multiply signed numbers 2. Use the commutative property of multiplication 3. Use the associative property of multiplication 4. Divide signed

### 3.4 Multiplication and Division of Rational Numbers

3.4 Multiplication and Division of Rational Numbers We now turn our attention to multiplication and division with both fractions and decimals. Consider the multiplication problem: 8 12 2 One approach is

### Student Outcomes. Lesson Notes. Classwork. Discussion (10 minutes)

NYS COMMON CORE MATHEMATICS CURRICULUM Lesson 5 8 Student Outcomes Students know the definition of a number raised to a negative exponent. Students simplify and write equivalent expressions that contain

### Answer Key for California State Standards: Algebra I

Algebra I: Symbolic reasoning and calculations with symbols are central in algebra. Through the study of algebra, a student develops an understanding of the symbolic language of mathematics and the sciences.

### Chapter 11 Number Theory

Chapter 11 Number Theory Number theory is one of the oldest branches of mathematics. For many years people who studied number theory delighted in its pure nature because there were few practical applications

### Using the Properties in Computation. a) 347 35 65 b) 3 435 c) 6 28 4 28

(1-) Chapter 1 Real Numbers and Their Properties In this section 1.8 USING THE PROPERTIES TO SIMPLIFY EXPRESSIONS The properties of the real numbers can be helpful when we are doing computations. In this

### MATH2210 Notebook 1 Fall Semester 2016/2017. 1 MATH2210 Notebook 1 3. 1.1 Solving Systems of Linear Equations... 3

MATH0 Notebook Fall Semester 06/07 prepared by Professor Jenny Baglivo c Copyright 009 07 by Jenny A. Baglivo. All Rights Reserved. Contents MATH0 Notebook 3. Solving Systems of Linear Equations........................

### 9.2 Summation Notation

9. Summation Notation 66 9. Summation Notation In the previous section, we introduced sequences and now we shall present notation and theorems concerning the sum of terms of a sequence. We begin with a

### Using Algebra Tiles for Adding/Subtracting Integers and to Solve 2-step Equations Grade 7 By Rich Butera

Using Algebra Tiles for Adding/Subtracting Integers and to Solve 2-step Equations Grade 7 By Rich Butera 1 Overall Unit Objective I am currently student teaching Seventh grade at Springville Griffith Middle

### Algebra 1 Topic 8: Solving linear equations and inequalities Student Activity Sheet 1; use with Overview

Algebra 1 Topic 8: Student Activity Sheet 1; use with Overview 1. A car rental company charges \$29.95 plus 16 cents per mile for each mile driven. The cost in dollars of renting a car, r, is a function

### Lesson Plan. N.RN.3: Use properties of rational and irrational numbers.

N.RN.3: Use properties of rational irrational numbers. N.RN.3: Use Properties of Rational Irrational Numbers Use properties of rational irrational numbers. 3. Explain why the sum or product of two rational

### 1.5 Greatest Common Factor and Least Common Multiple

1.5 Greatest Common Factor and Least Common Multiple This chapter will conclude with two topics which will be used when working with fractions. Recall that factors of a number are numbers that divide into

### Algebra I. In this technological age, mathematics is more important than ever. When students

In this technological age, mathematics is more important than ever. When students leave school, they are more and more likely to use mathematics in their work and everyday lives operating computer equipment,

### Equations and Inequalities

Rational Equations Overview of Objectives, students should be able to: 1. Solve rational equations with variables in the denominators.. Recognize identities, conditional equations, and inconsistent equations.

### T. H. Rogers School Summer Math Assignment

T. H. Rogers School Summer Math Assignment Mastery of all these skills is extremely important in order to develop a solid math foundation. I believe each year builds upon the previous year s skills in

### Simplifying Algebraic Fractions

5. Simplifying Algebraic Fractions 5. OBJECTIVES. Find the GCF for two monomials and simplify a fraction 2. Find the GCF for two polynomials and simplify a fraction Much of our work with algebraic fractions

### A Second Course in Mathematics Concepts for Elementary Teachers: Theory, Problems, and Solutions

A Second Course in Mathematics Concepts for Elementary Teachers: Theory, Problems, and Solutions Marcel B. Finan Arkansas Tech University c All Rights Reserved First Draft February 8, 2006 1 Contents 25

### Solving Systems of Linear Equations. Substitution

Solving Systems of Linear Equations There are two basic methods we will use to solve systems of linear equations: Substitution Elimination We will describe each for a system of two equations in two unknowns,

### Section 4.1 Rules of Exponents

Section 4.1 Rules of Exponents THE MEANING OF THE EXPONENT The exponent is an abbreviation for repeated multiplication. The repeated number is called a factor. x n means n factors of x. The exponent tells

### The Properties of Signed Numbers Section 1.2 The Commutative Properties If a and b are any numbers,

1 Summary DEFINITION/PROCEDURE EXAMPLE REFERENCE From Arithmetic to Algebra Section 1.1 Addition x y means the sum of x and y or x plus y. Some other words The sum of x and 5 is x 5. indicating addition

### 1.4 Compound Inequalities

Section 1.4 Compound Inequalities 53 1.4 Compound Inequalities This section discusses a technique that is used to solve compound inequalities, which is a phrase that usually refers to a pair of inequalities

### IV. ALGEBRAIC CONCEPTS

IV. ALGEBRAIC CONCEPTS Algebra is the language of mathematics. Much of the observable world can be characterized as having patterned regularity where a change in one quantity results in changes in other

### #1-12: Write the first 4 terms of the sequence. (Assume n begins with 1.)

Section 9.1: Sequences #1-12: Write the first 4 terms of the sequence. (Assume n begins with 1.) 1) a n = 3n a 1 = 3*1 = 3 a 2 = 3*2 = 6 a 3 = 3*3 = 9 a 4 = 3*4 = 12 3) a n = 3n 5 Answer: 3,6,9,12 a 1

### Integer Operations. Overview. Grade 7 Mathematics, Quarter 1, Unit 1.1. Number of Instructional Days: 15 (1 day = 45 minutes) Essential Questions

Grade 7 Mathematics, Quarter 1, Unit 1.1 Integer Operations Overview Number of Instructional Days: 15 (1 day = 45 minutes) Content to Be Learned Describe situations in which opposites combine to make zero.

### To Evaluate an Algebraic Expression

1.5 Evaluating Algebraic Expressions 1.5 OBJECTIVES 1. Evaluate algebraic expressions given any signed number value for the variables 2. Use a calculator to evaluate algebraic expressions 3. Find the sum

### Equations, Inequalities, Solving. and Problem AN APPLICATION

Equations, Inequalities, and Problem Solving. Solving Equations. Using the Principles Together AN APPLICATION To cater a party, Curtis Barbeque charges a \$0 setup fee plus \$ per person. The cost of Hotel

### 3.1 Solving Systems Using Tables and Graphs

Algebra 2 Chapter 3 3.1 Solve Systems Using Tables & Graphs 3.1 Solving Systems Using Tables and Graphs A solution to a system of linear equations is an that makes all of the equations. To solve a system

### Section 1.1 Real Numbers

. Natural numbers (N):. Integer numbers (Z): Section. Real Numbers Types of Real Numbers,, 3, 4,,... 0, ±, ±, ±3, ±4, ±,... REMARK: Any natural number is an integer number, but not any integer number is

### Chapter 7 - Roots, Radicals, and Complex Numbers

Math 233 - Spring 2009 Chapter 7 - Roots, Radicals, and Complex Numbers 7.1 Roots and Radicals 7.1.1 Notation and Terminology In the expression x the is called the radical sign. The expression under the

### Curriculum Alignment Project

Curriculum Alignment Project Math Unit Date: Unit Details Title: Solving Linear Equations Level: Developmental Algebra Team Members: Michael Guy Mathematics, Queensborough Community College, CUNY Jonathan

### 2x + y = 3. Since the second equation is precisely the same as the first equation, it is enough to find x and y satisfying the system

1. Systems of linear equations We are interested in the solutions to systems of linear equations. A linear equation is of the form 3x 5y + 2z + w = 3. The key thing is that we don t multiply the variables