Chapter 8 Copyright Henning Umland All Rights Reserved


 Wilfrid Singleton
 1 years ago
 Views:
Transcription
1 Chaper 8 Copyrigh Henning Umland All Righs Reserved Rise, Se, Twiligh General Visibiliy For he planning of observaions, i is useful o know he imes during which a cerain body is above he horizon as well as he imes of sunrise, sunse, and wiligh. A body can be always above he horizon, always below he horizon, or above he horizon during a par of he day, depending on he observer's laiude and he declinaion of he body. A body is circumpolar (always above he celesial horizon) if he zenih disance is smaller han 90 a he momen of lower meridian passage, i. e., when he body is on he lower branch of he local meridian (Fig 81a). This is he case under he following condiions: La Dec > 0 AND La + Dec > 90 A body is coninually below he celesial horizon if he zenih disance is greaer han 90 a he insan of upper meridian passage (Fig 81b). The corresponding rule is: La Dec < 0 AND La Dec > 90 A celesial body being on he same hemisphere as he observer is eiher someimes above he horizon or circumpolar. A body being on he opposie hemisphere is eiher someimes above he horizon or permanenly invisible, bu never circumpolar. The sun provides a good example of how he visibiliy of a body is affeced by laiude and declinaion. A he ime of he summer solsice (Dec ), he sun is circumpolar o an observer being norh of he arcic circle (La > ). A he same ime, he sun remains below he celesial horizon all day if he observer is souh of he anarcic circle (La < 66.5 ). A he imes of he equinoxes (Dec 0 ), he sun is circumpolar only a he poles. A he ime of he winer solsice (Dec 23.5 ), he sun is circumpolar souh of he anarcic circle and invisible norh of he arcic circle. If he observer is beween he arcic and he anarcic circle, he sun is visible during a par of he day all year round. Rise and Se The evens of rise and se can be used o deermine laiude, longiude, or ime. One should no expec very accurae resuls, however, since he amospheric refracion may be erraic if he body is on or near he horizon.
2 The geomeric rise or se of a body occurs when he cener of he body passes hrough he celesial horizon (H 0 ). Due o he influence of amospheric refracion, all bodies excep he moon appear above he visible and sensible horizon a his insan. The moon is no visible a he momen of her geomeric rise or se since he depressing effec of he horizonal parallax ( 1 ) is greaer han he elevaing effec of amospheric refracion. The approximae apparen aliudes (referring o he sensible horizon) a he momen of he asronomical rise or se are: Sun (lower limb): 15' Sars: 29' Planes: 29' HP When measuring hese aliudes wih reference o he sea horizon, we have o add he dip of horizon (chaper 2) o he above values. For example, he aliude of he lower limb of he rising or seing sun is approx. 20' if he heigh of eye is 8m. We begin wih he wellknown aliude formula (see chaper 4). sin H 0 sin La sin Dec + cos La cos Dec cos cos sin La sin Dec cos La cos Dec Solving he equaion for he meridian angle,, we ge : ( an La an Dec) The equaion has no soluion if he argumen of he inverse cosine is smaller han 1 or greaer han 1. In he firs case, he body is circumpolar, in he laer case, he body remains coninuously below he horizon. Oherwise, he funcion reurns values in he range from 0 hrough 180. Due o he ambiguiy of he funcion, he equaion has wo soluions, one for rise and one for se. For he calculaions below, we have o observe he following rules: If he body is rising (body easward from he observer), is reaed as a negaive quaniy. If he body is seing (body wesward from he observer), is reaed as a posiive quaniy. If we know our laiude and he ime of rise or se, we can calculae our longiude: Lon ± GHA GHA is he Greenwich hour angle of he body a he momen of rise or se. The sign of has o be observed carefully (see above). If he resuling longiude is smaller han 180, we add 360. Knowing our posiion, we can calculae he imes of sunrise and sunse: GMT Surise / se 12 ± [ ] Lon[ ] EoT
3 The imes of sunrise and sunse obained wih he above formula are no quie accurae since Dec and EoT are variable. Since we do no know he exac ime of rise or se a he beginning, we have o use esimaed values for Dec and EoT iniially. The ime of rise or se can be improved by ieraion (repeaing he calculaions wih Dec and EoT a he calculaed ime of rise or se). Furher, he imes hus calculaed are influenced by he irregulariies of amospheric refracion near he horizon. Therefore, a ime error of ±2 minues is no unusual. Accordingly, we can calculae our longiude from he ime of sunrise or sunse if we know our laiude: Lon [ ] ± + 15 ( 12 GMT EoT ) Sunrise / se Again, his is no a very precise mehod, and an error of several arcminues in longiude is no unlikely. Knowing our longiude, we are able o deermine our approximae laiude from he ime of sunrise or sunse: [ ] Lon[ ] 15 ( 12 GMT EoT ) Sunrise / se La cos arcan an Dec In navigaion, rise and se are defined as he momens when he upper limb of a body is on he visible horizon. These evens can be observed wihou a sexan. Now, we have o ake ino accoun he effecs of refracion, horizonal parallax, dip, and semidiameer. These quaniies deermine he aliude (Ho) of a body wih respec o he celesial horizon a he insan of he visible rise or se. sin Ho sin La sin Dec cos La cos Dec Ho HP SD R H Dip According o he Nauical Almanac, he refracion for a body being on he sensible horizon, R H, is approximaely (!) 34'. When observing he upper limb of he sun, we ge: Ho 0.15' 16' 34' Dip 50' Dip Ho is negaive. If we refer o he upper limb of he sun and he sensible horizon (Dip0), he meridian angle a he ime of sunrise or sunse is: sin La sin Dec cos La cos Dec Azimuh and Ampliude The azimuh angle of a rising or seing body is calculaed wih he azimuh formula (see chaper 4): Az sin Dec sin H sin La cos H cos La
4 Wih H0, we ge: Az sin Dec cos La Az is +90 (rise) and 90 (se) if he declinaion of he body is zero, regardless of he observer's laiude. Accordingly, he sun rises in he eas and ses in he wes a he imes of he equinoxes (geomeric rise and se). Wih H cener 50' (upper limb of he sun on he sensible horizon), we have: Az sin Dec sin La cos La The rue azimuh of he rising or seing body is: Az N Az 360 Az if if < 0 > 0 The azimuh of a body a he momen of rise or se can be used o find he magneic declinaion a he observer's posiion (compare wih chaper 13). The horizonal angular disance of he rising/seing body from he eas/wes poin on he horizon is called ampliude and can be calculaed from he azimuh. An ampliude of E45 N, for insance, means ha he body rises 45 norh of he eas poin on he horizon. Twiligh A sea, wiligh is imporan for he observaion of sars and planes since i is he only ime when hese bodies and he horizon are visible. By definiion, here are hree kinds of wiligh. The aliude, H, refers o he cener of he sun and he celesial horizon and marks he beginning (morning) and he end (evening) of he respecive wiligh. Civil wiligh: H 6 Nauical wiligh: H 12 Asronomical wiligh: H 18 In general, an aliude of he sun beween 3 and 9 is recommended for asronomical observaions a sea (bes visibiliy of brigher sars and sea horizon). However, excepions o his rule are possible, depending on he acual weaher condiions. The meridian angle for he sun a 6 aliude (cener) is: sin La sin Dec cos La cos Dec Using his formula, we can find he approximae ime for our observaions (in analogy o sunrise and sunse).
5 As menioned above, he simulaneous observaion of sars and he horizon is possible during a limied ime inerval only. To calculae he lengh of his inerval, T, we use he aliude formula and differeniae sin H wih respec o he meridian angle, : d ( sin H ) d cos La cos Dec sin d ( sin H ) cos La cos Dec sin d Subsiuing cosh.dh for d(sinh) and solving for d, we ge he change in he meridian angle, d, as a funcion of a change in aliude, dh: d cos H cos La cos Dec sin d H Wih H 6 and dh 6 (H ), we ge: [ ] 5.97 cos La cos Dec sin Convering he change in he meridian angle o a ime span (measured in minues) and ignoring he sign, he equaion is saed as: T [ m] 24 cos La cos Dec sin The shores possible ime inerval for our observaions (La 0, Dec 0, 96 ) lass approx. 24 minues. As he observer moves norhward or souhward from he equaor, cos La and sin decrease (>90 ). Accordingly, he duraion of wiligh increases. When is 0 or 180, T is infinie. This is in accordance wih he wellknown fac ha wiligh is shores in equaorial regions and longes in polar regions. We would obain he same resul when calculaing for H 3 and H 9, respecively: [ m] 4 ( [ ] [ ] ) T 9 3 The Nauical Almanac provides abulaed values for he imes of sunrise, sunse, civil wiligh and nauical wiligh for laiudes beween 60 and +72 (referring o an observer being a he Greenwich meridian). In addiion, imes of moonrise and moonse are given.
Acceleration Lab Teacher s Guide
Acceleraion Lab Teacher s Guide Objecives:. Use graphs of disance vs. ime and velociy vs. ime o find acceleraion of a oy car.. Observe he relaionship beween he angle of an inclined plane and he acceleraion
More informationChapter 7. Response of FirstOrder RL and RC Circuits
Chaper 7. esponse of FirsOrder L and C Circuis 7.1. The Naural esponse of an L Circui 7.2. The Naural esponse of an C Circui 7.3. The ep esponse of L and C Circuis 7.4. A General oluion for ep and Naural
More informationcooking trajectory boiling water B (t) microwave 0 2 4 6 8 101214161820 time t (mins)
Alligaor egg wih calculus We have a large alligaor egg jus ou of he fridge (1 ) which we need o hea o 9. Now here are wo accepable mehods for heaing alligaor eggs, one is o immerse hem in boiling waer
More informationDuration and Convexity ( ) 20 = Bond B has a maturity of 5 years and also has a required rate of return of 10%. Its price is $613.
Graduae School of Business Adminisraion Universiy of Virginia UVAF38 Duraion and Convexiy he price of a bond is a funcion of he promised paymens and he marke required rae of reurn. Since he promised
More informationAppendix A: Area. 1 Find the radius of a circle that has circumference 12 inches.
Appendi A: Area workedou s o OddNumbered Eercises Do no read hese workedou s before aemping o do he eercises ourself. Oherwise ou ma mimic he echniques shown here wihou undersanding he ideas. Bes wa
More informationChapter 2 Problems. s = d t up. = 40km / hr d t down. 60km / hr. d t total. + t down. = t up. = 40km / hr + d. 60km / hr + 40km / hr
Chaper 2 Problems 2.2 A car ravels up a hill a a consan speed of 40km/h and reurns down he hill a a consan speed of 60 km/h. Calculae he average speed for he rip. This problem is a bi more suble han i
More informationMathematics in Pharmacokinetics What and Why (A second attempt to make it clearer)
Mahemaics in Pharmacokineics Wha and Why (A second aemp o make i clearer) We have used equaions for concenraion () as a funcion of ime (). We will coninue o use hese equaions since he plasma concenraions
More informationSection 5.1 The Unit Circle
Secion 5.1 The Uni Circle The Uni Circle EXAMPLE: Show ha he poin, ) is on he uni circle. Soluion: We need o show ha his poin saisfies he equaion of he uni circle, ha is, x +y 1. Since ) ) + 9 + 9 1 P
More informationMA261A Calculus III 2006 Fall Homework 4 Solutions Due 9/29/2006 8:00AM
MA6A Calculus III 006 Fall Homework 4 Soluions Due 9/9/006 00AM 97 #4 Describe in words he surface 3 A halflane in he osiive x and y erriory (See Figure in Page 67) 97 # Idenify he surface cos We see
More informationCHARGE AND DISCHARGE OF A CAPACITOR
REFERENCES RC Circuis: Elecrical Insrumens: Mos Inroducory Physics exs (e.g. A. Halliday and Resnick, Physics ; M. Sernheim and J. Kane, General Physics.) This Laboraory Manual: Commonly Used Insrumens:
More informationModule 4. Singlephase AC circuits. Version 2 EE IIT, Kharagpur
Module 4 Singlephase A circuis ersion EE T, Kharagpur esson 5 Soluion of urren in A Series and Parallel ircuis ersion EE T, Kharagpur n he las lesson, wo poins were described:. How o solve for he impedance,
More informationFullwave rectification, bulk capacitor calculations Chris Basso January 2009
ullwave recificaion, bulk capacior calculaions Chris Basso January 9 This shor paper shows how o calculae he bulk capacior value based on ripple specificaions and evaluae he rms curren ha crosses i. oal
More information11/6/2013. Chapter 14: Dynamic ADAS. Introduction. Introduction. Keeping track of time. The model s elements
Inroducion Chaper 14: Dynamic DS dynamic model of aggregae and aggregae supply gives us more insigh ino how he economy works in he shor run. I is a simplified version of a DSGE model, used in cuingedge
More informationMTH6121 Introduction to Mathematical Finance Lesson 5
26 MTH6121 Inroducion o Mahemaical Finance Lesson 5 Conens 2.3 Brownian moion wih drif........................... 27 2.4 Geomeric Brownian moion........................... 28 2.5 Convergence of random
More informationAP Calculus AB 2013 Scoring Guidelines
AP Calculus AB 1 Scoring Guidelines The College Board The College Board is a missiondriven noforprofi organizaion ha connecs sudens o college success and opporuniy. Founded in 19, he College Board was
More information9. Capacitor and Resistor Circuits
ElecronicsLab9.nb 1 9. Capacior and Resisor Circuis Inroducion hus far we have consider resisors in various combinaions wih a power supply or baery which provide a consan volage source or direc curren
More informationCircuit Types. () i( t) ( )
Circui Types DC Circuis Idenifying feaures: o Consan inpus: he volages of independen volage sources and currens of independen curren sources are all consan. o The circui does no conain any swiches. All
More informationRevisions to Nonfarm Payroll Employment: 1964 to 2011
Revisions o Nonfarm Payroll Employmen: 1964 o 2011 Tom Sark December 2011 Summary Over recen monhs, he Bureau of Labor Saisics (BLS) has revised upward is iniial esimaes of he monhly change in nonfarm
More informationRotational Inertia of a Point Mass
Roaional Ineria of a Poin Mass Saddleback College Physics Deparmen, adaped from PASCO Scienific PURPOSE The purpose of his experimen is o find he roaional ineria of a poin experimenally and o verify ha
More informationChapter 2 Kinematics in One Dimension
Chaper Kinemaics in One Dimension Chaper DESCRIBING MOTION:KINEMATICS IN ONE DIMENSION PREVIEW Kinemaics is he sudy of how hings moe how far (disance and displacemen), how fas (speed and elociy), and how
More information1. y 5y + 6y = 2e t Solution: Characteristic equation is r 2 5r +6 = 0, therefore r 1 = 2, r 2 = 3, and y 1 (t) = e 2t,
Homework6 Soluions.7 In Problem hrough 4 use he mehod of variaion of parameers o find a paricular soluion of he given differenial equaion. Then check your answer by using he mehod of undeermined coeffiens..
More informationMOTION ALONG A STRAIGHT LINE
Chaper 2: MOTION ALONG A STRAIGHT LINE 1 A paricle moes along he ais from i o f Of he following alues of he iniial and final coordinaes, which resuls in he displacemen wih he larges magniude? A i =4m,
More informationRC, RL and RLC circuits
Name Dae Time o Complee h m Parner Course/ Secion / Grade RC, RL and RLC circuis Inroducion In his experimen we will invesigae he behavior of circuis conaining combinaions of resisors, capaciors, and inducors.
More information17 Laplace transform. Solving linear ODE with piecewise continuous right hand sides
7 Laplace ransform. Solving linear ODE wih piecewise coninuous righ hand sides In his lecure I will show how o apply he Laplace ransform o he ODE Ly = f wih piecewise coninuous f. Definiion. A funcion
More informationSection 7.1 Angles and Their Measure
Secion 7.1 Angles and Their Measure Greek Leers Commonly Used in Trigonomery Quadran II Quadran III Quadran I Quadran IV α = alpha β = bea θ = hea δ = dela ω = omega γ = gamma DEGREES The angle formed
More informationName: Algebra II Review for Quiz #13 Exponential and Logarithmic Functions including Modeling
Name: Algebra II Review for Quiz #13 Exponenial and Logarihmic Funcions including Modeling TOPICS: Solving Exponenial Equaions (The Mehod of Common Bases) Solving Exponenial Equaions (Using Logarihms)
More informationThe Transport Equation
The Transpor Equaion Consider a fluid, flowing wih velociy, V, in a hin sraigh ube whose cross secion will be denoed by A. Suppose he fluid conains a conaminan whose concenraion a posiion a ime will be
More informationAP Calculus AB 2007 Scoring Guidelines
AP Calculus AB 7 Scoring Guidelines The College Board: Connecing Sudens o College Success The College Board is a noforprofi membership associaion whose mission is o connec sudens o college success and
More informationRandom Walk in 1D. 3 possible paths x vs n. 5 For our random walk, we assume the probabilities p,q do not depend on time (n)  stationary
Random Walk in D Random walks appear in many cones: diffusion is a random walk process undersanding buffering, waiing imes, queuing more generally he heory of sochasic processes gambling choosing he bes
More informationInductance and Transient Circuits
Chaper H Inducance and Transien Circuis Blinn College  Physics 2426  Terry Honan As a consequence of Faraday's law a changing curren hrough one coil induces an EMF in anoher coil; his is known as muual
More informationCapacitors and inductors
Capaciors and inducors We coninue wih our analysis of linear circuis by inroducing wo new passive and linear elemens: he capacior and he inducor. All he mehods developed so far for he analysis of linear
More informationAnswer, Key Homework 2 David McIntyre 45123 Mar 25, 2004 1
Answer, Key Homework 2 Daid McInyre 4123 Mar 2, 2004 1 This prinou should hae 1 quesions. Muliplechoice quesions may coninue on he ne column or page find all choices before making your selecion. The
More informationPermutations and Combinations
Permuaions and Combinaions Combinaorics Copyrigh Sandards 006, Tes  ANSWERS Barry Mabillard. 0 www.mah0s.com 1. Deermine he middle erm in he expansion of ( a b) To ge he kvalue for he middle erm, divide
More informationµ r of the ferrite amounts to 1000...4000. It should be noted that the magnetic length of the + δ
Page 9 Design of Inducors and High Frequency Transformers Inducors sore energy, ransformers ransfer energy. This is he prime difference. The magneic cores are significanly differen for inducors and high
More informationPROFIT TEST MODELLING IN LIFE ASSURANCE USING SPREADSHEETS PART ONE
Profi Tes Modelling in Life Assurance Using Spreadshees PROFIT TEST MODELLING IN LIFE ASSURANCE USING SPREADSHEETS PART ONE Erik Alm Peer Millingon 2004 Profi Tes Modelling in Life Assurance Using Spreadshees
More informationChapter 8: Regression with Lagged Explanatory Variables
Chaper 8: Regression wih Lagged Explanaory Variables Time series daa: Y for =1,..,T End goal: Regression model relaing a dependen variable o explanaory variables. Wih ime series new issues arise: 1. One
More informationThe Torsion of Thin, Open Sections
EM 424: Torsion of hin secions 26 The Torsion of Thin, Open Secions The resuls we obained for he orsion of a hin recangle can also be used be used, wih some qualificaions, for oher hin open secions such
More informationAnalogue and Digital Signal Processing. First Term Third Year CS Engineering By Dr Mukhtiar Ali Unar
Analogue and Digial Signal Processing Firs Term Third Year CS Engineering By Dr Mukhiar Ali Unar Recommended Books Haykin S. and Van Veen B.; Signals and Sysems, John Wiley& Sons Inc. ISBN: 073807 Ifeachor
More informationNikkei Stock Average Volatility Index Realtime Version Index Guidebook
Nikkei Sock Average Volailiy Index Realime Version Index Guidebook Nikkei Inc. Wih he modificaion of he mehodology of he Nikkei Sock Average Volailiy Index as Nikkei Inc. (Nikkei) sars calculaing and
More informationAP Calculus BC 2010 Scoring Guidelines
AP Calculus BC Scoring Guidelines The College Board The College Board is a noforprofi membership associaion whose mission is o connec sudens o college success and opporuniy. Founded in, he College Board
More informationIndividual Health Insurance April 30, 2008 Pages 167170
Individual Healh Insurance April 30, 2008 Pages 167170 We have received feedback ha his secion of he e is confusing because some of he defined noaion is inconsisen wih comparable life insurance reserve
More informationEconomics Honors Exam 2008 Solutions Question 5
Economics Honors Exam 2008 Soluions Quesion 5 (a) (2 poins) Oupu can be decomposed as Y = C + I + G. And we can solve for i by subsiuing in equaions given in he quesion, Y = C + I + G = c 0 + c Y D + I
More informationChapter 2 Problems. 3600s = 25m / s d = s t = 25m / s 0.5s = 12.5m. Δx = x(4) x(0) =12m 0m =12m
Chaper 2 Problems 2.1 During a hard sneeze, your eyes migh shu for 0.5s. If you are driving a car a 90km/h during such a sneeze, how far does he car move during ha ime s = 90km 1000m h 1km 1h 3600s = 25m
More informationHedging with Forwards and Futures
Hedging wih orwards and uures Hedging in mos cases is sraighforward. You plan o buy 10,000 barrels of oil in six monhs and you wish o eliminae he price risk. If you ake he buyside of a forward/fuures
More informationChapter 2: Principles of steadystate converter analysis
Chaper 2 Principles of SeadySae Converer Analysis 2.1. Inroducion 2.2. Inducor volsecond balance, capacior charge balance, and he small ripple approximaion 2.3. Boos converer example 2.4. Cuk converer
More informationPRESSURE BUILDUP. Figure 1: Schematic of an ideal buildup test
Tom Aage Jelmer NTNU Dearmen of Peroleum Engineering and Alied Geohysics PRESSURE BUILDUP I is difficul o kee he rae consan in a roducing well. This is no an issue in a buildu es since he well is closed.
More informationLecture 2: Telegrapher Equations For Transmission Lines. Power Flow.
Whies, EE 481 Lecure 2 Page 1 of 13 Lecure 2: Telegraher Equaions For Transmission Lines. Power Flow. Microsri is one mehod for making elecrical connecions in a microwae circui. I is consruced wih a ground
More informationMotion Along a Straight Line
Moion Along a Sraigh Line On Sepember 6, 993, Dave Munday, a diesel mechanic by rade, wen over he Canadian edge of Niagara Falls for he second ime, freely falling 48 m o he waer (and rocks) below. On his
More information4.2 Trigonometric Functions; The Unit Circle
4. Trigonomeric Funcions; The Uni Circle Secion 4. Noes Page A uni circle is a circle cenered a he origin wih a radius of. Is equaion is as shown in he drawing below. Here he leer represens an angle measure.
More informationModule 3 Design for Strength. Version 2 ME, IIT Kharagpur
Module 3 Design for Srengh Lesson 2 Sress Concenraion Insrucional Objecives A he end of his lesson, he sudens should be able o undersand Sress concenraion and he facors responsible. Deerminaion of sress
More informationA Curriculum Module for AP Calculus BC Curriculum Module
Vecors: A Curriculum Module for AP Calculus BC 00 Curriculum Module The College Board The College Board is a noforprofi membership associaion whose mission is o connec sudens o college success and opporuniy.
More informationCHAPTER FIVE. Solutions for Section 5.1
CHAPTER FIVE 5. SOLUTIONS 87 Soluions for Secion 5.. (a) The velociy is 3 miles/hour for he firs hours, 4 miles/hour for he ne / hour, and miles/hour for he las 4 hours. The enire rip lass + / + 4 = 6.5
More informationBALANCE OF PAYMENTS. First quarter 2008. Balance of payments
BALANCE OF PAYMENTS DATE: 20080530 PUBLISHER: Balance of Paymens and Financial Markes (BFM) Lena Finn + 46 8 506 944 09, lena.finn@scb.se Camilla Bergeling +46 8 506 942 06, camilla.bergeling@scb.se
More informationA Note on Using the Svensson procedure to estimate the risk free rate in corporate valuation
A Noe on Using he Svensson procedure o esimae he risk free rae in corporae valuaion By Sven Arnold, Alexander Lahmann and Bernhard Schwezler Ocober 2011 1. The risk free ineres rae in corporae valuaion
More informationMorningstar Investor Return
Morningsar Invesor Reurn Morningsar Mehodology Paper Augus 31, 2010 2010 Morningsar, Inc. All righs reserved. The informaion in his documen is he propery of Morningsar, Inc. Reproducion or ranscripion
More informationKinematics in 1D From Problems and Solutions in Introductory Mechanics (Draft version, August 2014) David Morin, morin@physics.harvard.
Chaper 2 Kinemaics in 1D From Problems and Soluions in Inroducory Mechanics (Draf ersion, Augus 2014) Daid Morin, morin@physics.harard.edu As menioned in he preface, his book should no be hough of as
More informationChapter 4: Exponential and Logarithmic Functions
Chaper 4: Eponenial and Logarihmic Funcions Secion 4.1 Eponenial Funcions... 15 Secion 4. Graphs of Eponenial Funcions... 3 Secion 4.3 Logarihmic Funcions... 4 Secion 4.4 Logarihmic Properies... 53 Secion
More informationJournal Of Business & Economics Research September 2005 Volume 3, Number 9
Opion Pricing And Mone Carlo Simulaions George M. Jabbour, (Email: jabbour@gwu.edu), George Washingon Universiy YiKang Liu, (yikang@gwu.edu), George Washingon Universiy ABSTRACT The advanage of Mone Carlo
More informationTable of contents Chapter 1 Interest rates and factors Chapter 2 Level annuities Chapter 3 Varying annuities
Table of conens Chaper 1 Ineres raes and facors 1 1.1 Ineres 2 1.2 Simple ineres 4 1.3 Compound ineres 6 1.4 Accumulaed value 10 1.5 Presen value 11 1.6 Rae of discoun 13 1.7 Consan force of ineres 17
More informationChabot College Physics Lab RC Circuits Scott Hildreth
Chabo College Physics Lab Circuis Sco Hildreh Goals: Coninue o advance your undersanding of circuis, measuring resisances, currens, and volages across muliple componens. Exend your skills in making breadboard
More informationTwo Compartment Body Model and V d Terms by Jeff Stark
Two Comparmen Body Model and V d Terms by Jeff Sark In a onecomparmen model, we make wo imporan assumpions: (1) Linear pharmacokineics  By his, we mean ha eliminaion is firs order and ha pharmacokineic
More informationEDEXCEL NATIONAL CERTIFICATE/DIPLOMA UNIT 67  FURTHER ELECTRICAL PRINCIPLES NQF LEVEL 3 OUTCOME 2 TUTORIAL 1  TRANSIENTS
EDEXEL NAIONAL ERIFIAE/DIPLOMA UNI 67  FURHER ELERIAL PRINIPLE NQF LEEL 3 OUOME 2 UORIAL 1  RANIEN Uni conen 2 Undersand he ransien behaviour of resisorcapacior (R) and resisorinducor (RL) D circuis
More informationCOMPUTATION OF CENTILES AND ZSCORES FOR HEIGHTFORAGE, WEIGHTFORAGE AND BMIFORAGE
COMPUTATION OF CENTILES AND ZSCORES FOR HEIGHTFORAGE, WEIGHTFORAGE AND BMIFORAGE The mehod used o consruc he 2007 WHO references relied on GAMLSS wih he BoxCox power exponenial disribuion (Rigby
More informationGraduate Macro Theory II: Notes on Neoclassical Growth Model
Graduae Macro Theory II: Noes on Neoclassical Growh Model Eric Sims Universiy of Nore Dame Spring 2011 1 Basic Neoclassical Growh Model The economy is populaed by a large number of infiniely lived agens.
More informationChapter 6: Business Valuation (Income Approach)
Chaper 6: Business Valuaion (Income Approach) Cash flow deerminaion is one of he mos criical elemens o a business valuaion. Everyhing may be secondary. If cash flow is high, hen he value is high; if he
More informationDYNAMIC MODELS FOR VALUATION OF WRONGFUL DEATH PAYMENTS
DYNAMIC MODELS FOR VALUATION OF WRONGFUL DEATH PAYMENTS Hong Mao, Shanghai Second Polyechnic Universiy Krzyszof M. Osaszewski, Illinois Sae Universiy Youyu Zhang, Fudan Universiy ABSTRACT Liigaion, exper
More informationOPERATION MANUAL. Indoor unit for air to water heat pump system and options EKHBRD011ABV1 EKHBRD014ABV1 EKHBRD016ABV1
OPERAION MANUAL Indoor uni for air o waer hea pump sysem and opions EKHBRD011ABV1 EKHBRD014ABV1 EKHBRD016ABV1 EKHBRD011ABY1 EKHBRD014ABY1 EKHBRD016ABY1 EKHBRD011ACV1 EKHBRD014ACV1 EKHBRD016ACV1 EKHBRD011ACY1
More informationTHE FIRM'S INVESTMENT DECISION UNDER CERTAINTY: CAPITAL BUDGETING AND RANKING OF NEW INVESTMENT PROJECTS
VII. THE FIRM'S INVESTMENT DECISION UNDER CERTAINTY: CAPITAL BUDGETING AND RANKING OF NEW INVESTMENT PROJECTS The mos imporan decisions for a firm's managemen are is invesmen decisions. While i is surely
More informationForm measurement systems from HommelEtamic Geometrical tolerancing in practice DKDK02401. Precision is our business.
Form measuremen sysems from HommelEamic Geomerical olerancing in pracice DKDK02401 Precision is our business. Drawing enries Tolerance frame 0.01 0.01 Daum leer Tolerance value in mm Symbol for he oleranced
More informationThe naive method discussed in Lecture 1 uses the most recent observations to forecast future values. That is, Y ˆ t + 1
Business Condiions & Forecasing Exponenial Smoohing LECTURE 2 MOVING AVERAGES AND EXPONENTIAL SMOOTHING OVERVIEW This lecure inroduces imeseries smoohing forecasing mehods. Various models are discussed,
More informationA Mathematical Description of MOSFET Behavior
10/19/004 A Mahemaical Descripion of MOSFET Behavior.doc 1/8 A Mahemaical Descripion of MOSFET Behavior Q: We ve learned an awful lo abou enhancemen MOSFETs, bu we sill have ye o esablished a mahemaical
More informationA Probability Density Function for Google s stocks
A Probabiliy Densiy Funcion for Google s socks V.Dorobanu Physics Deparmen, Poliehnica Universiy of Timisoara, Romania Absrac. I is an approach o inroduce he Fokker Planck equaion as an ineresing naural
More informationTopic Overview. Learning Objectives. Capital Budgeting Steps: WHAT IS CAPITAL BUDGETING?
Chaper 10: THE BASICS OF CAPITAL BUDGETING Should we build his plan? Topic Overview Projec Types Capial Budgeing Decision Crieria Payback Period Discouned Payback Period Ne Presen Value () Inernal Rae
More informationVTEC BEHAVIOR IN THE AMERICAN SECTOR DURING HIGH SOLAR ACTIVITY
XA3338 VTEC BEHAVIOR IN THE AMERICAN SECTOR DURING HIGH SOLAR ACTIVITY R.G. Ezquer  23, C. Brunini, A. Meza, F. Azpilicuea, M. Moser 5 and S. M. Radicella" ] FRT, Universidad Tecnologica Naional, Argenina,
More informationEntropy: From the Boltzmann equation to the Maxwell Boltzmann distribution
Enropy: From he Bolzmann equaion o he Maxwell Bolzmann disribuion A formula o relae enropy o probabiliy Ofen i is a lo more useful o hink abou enropy in erms of he probabiliy wih which differen saes are
More information5.8 Resonance 231. The study of vibrating mechanical systems ends here with the theory of pure and practical resonance.
5.8 Resonance 231 5.8 Resonance The sudy of vibraing mechanical sysems ends here wih he heory of pure and pracical resonance. Pure Resonance The noion of pure resonance in he differenial equaion (1) ()
More informationOn alternative methods of determining Radius of Curvature using Newton s Rings set up
Inernaional Leers of Chemisry, Physics and Asronomy Online: 0035 ISSN: 993843, Vol. 48, pp 731 doi:10.1805/www.scipress.com/ilcpa.48.7 0 SciPress Ld., Swizerland On alernaive mehods of deermining Radius
More informationTHE PRESSURE DERIVATIVE
Tom Aage Jelmer NTNU Dearmen of Peroleum Engineering and Alied Geohysics THE PRESSURE DERIVATIVE The ressure derivaive has imoran diagnosic roeries. I is also imoran for making ye curve analysis more reliable.
More informationAnalysis of Pricing and Efficiency Control Strategy between Internet Retailer and Conventional Retailer
Recen Advances in Business Managemen and Markeing Analysis of Pricing and Efficiency Conrol Sraegy beween Inerne Reailer and Convenional Reailer HYUG RAE CHO 1, SUG MOO BAE and JOG HU PARK 3 Deparmen of
More informationRC Circuit and Time Constant
ircui and Time onsan 8M Objec: Apparaus: To invesigae he volages across he resisor and capacior in a resisorcapacior circui ( circui) as he capacior charges and discharges. We also wish o deermine he
More informationPhysics 111 Fall 2007 Electric Currents and DC Circuits
Physics 111 Fall 007 Elecric Currens and DC Circuis 1 Wha is he average curren when all he sodium channels on a 100 µm pach of muscle membrane open ogeher for 1 ms? Assume a densiy of 0 sodium channels
More informationPart 1: White Noise and Moving Average Models
Chaper 3: Forecasing From Time Series Models Par 1: Whie Noise and Moving Average Models Saionariy In his chaper, we sudy models for saionary ime series. A ime series is saionary if is underlying saisical
More informationImagine a Source (S) of sound waves that emits waves having frequency f and therefore
heoreical Noes: he oppler Eec wih ound Imagine a ource () o sound waes ha emis waes haing requency and hereore period as measured in he res rame o he ource (). his means ha any eecor () ha is no moing
More informationAppendix D Flexibility Factor/Margin of Choice Desktop Research
Appendix D Flexibiliy Facor/Margin of Choice Deskop Research Cheshire Eas Council Cheshire Eas Employmen Land Review Conens D1 Flexibiliy Facor/Margin of Choice Deskop Research 2 Final Ocober 2012 \\GLOBAL.ARUP.COM\EUROPE\MANCHESTER\JOBS\200000\22348900\4
More informationSignal Rectification
9/3/25 Signal Recificaion.doc / Signal Recificaion n imporan applicaion of juncion diodes is signal recificaion. here are wo ypes of signal recifiers, halfwae and fullwae. Le s firs consider he ideal
More informationWorking Paper No. 482. Net Intergenerational Transfers from an Increase in Social Security Benefits
Working Paper No. 482 Ne Inergeneraional Transfers from an Increase in Social Securiy Benefis By Li Gan Texas A&M and NBER Guan Gong Shanghai Universiy of Finance and Economics Michael Hurd RAND Corporaion
More informationDensity Dependence. births are a decreasing function of density b(n) and deaths are an increasing function of density d(n).
FW 662 Densiydependen populaion models In he previous lecure we considered densiy independen populaion models ha assumed ha birh and deah raes were consan and no a funcion of populaion size. Longerm
More informationSimulation of the motion of a sphere through a viscous fluid
ENSEÑANZA REVISTA MEXICANA DE FÍSICA 49 () 166 174 ABRIL 003 Simulaion of he moion of a sphere hrough a viscous fluid R.M. Valladares a, P. Goldsein b, C. Sern c, and A. Calles d Deparameno de Física,
More informationThe option pricing framework
Chaper 2 The opion pricing framework The opion markes based on swap raes or he LIBOR have become he larges fixed income markes, and caps (floors) and swapions are he mos imporan derivaives wihin hese markes.
More informationCredit Index Options: the noarmageddon pricing measure and the role of correlation after the subprime crisis
Second Conference on The Mahemaics of Credi Risk, Princeon May 2324, 2008 Credi Index Opions: he noarmageddon pricing measure and he role of correlaion afer he subprime crisis Damiano Brigo  Join work
More informationReturn Calculation of U.S. Treasury Constant Maturity Indices
Reurn Calculaion of US Treasur Consan Mauri Indices Morningsar Mehodolog Paper Sepeber 30 008 008 Morningsar Inc All righs reserved The inforaion in his docuen is he proper of Morningsar Inc Reproducion
More informationMACROECONOMIC FORECASTS AT THE MOF A LOOK INTO THE REAR VIEW MIRROR
MACROECONOMIC FORECASTS AT THE MOF A LOOK INTO THE REAR VIEW MIRROR The firs experimenal publicaion, which summarised pas and expeced fuure developmen of basic economic indicaors, was published by he Minisry
More informationA Bayesian framework with auxiliary particle filter for GMTI based ground vehicle tracking aided by domain knowledge
A Bayesian framework wih auxiliary paricle filer for GMTI based ground vehicle racking aided by domain knowledge Miao Yu a, Cunjia Liu a, Wenhua Chen a and Jonahon Chambers b a Deparmen of Aeronauical
More informationMarkit Excess Return Credit Indices Guide for price based indices
Marki Excess Reurn Credi Indices Guide for price based indices Sepember 2011 Marki Excess Reurn Credi Indices Guide for price based indices Conens Inroducion...3 Index Calculaion Mehodology...4 Semiannual
More informationRC (ResistorCapacitor) Circuits. AP Physics C
(ResisorCapacior Circuis AP Physics C Circui Iniial Condiions An circui is one where you have a capacior and resisor in he same circui. Suppose we have he following circui: Iniially, he capacior is UNCHARGED
More informationANALYSIS AND COMPARISONS OF SOME SOLUTION CONCEPTS FOR STOCHASTIC PROGRAMMING PROBLEMS
ANALYSIS AND COMPARISONS OF SOME SOLUTION CONCEPTS FOR STOCHASTIC PROGRAMMING PROBLEMS R. Caballero, E. Cerdá, M. M. Muñoz and L. Rey () Deparmen of Applied Economics (Mahemaics), Universiy of Málaga,
More informationAP Calculus AB 2010 Scoring Guidelines
AP Calculus AB 1 Scoring Guidelines The College Board The College Board is a noforprofi membership associaion whose mission is o connec sudens o college success and opporuniy. Founded in 1, he College
More informationAstable multivibrator using the 555 IC.(10)
Visi hp://elecronicsclub.cjb.ne for more resources THE 555 IC TIMER The 555 IC TIMER.(2) Monosable mulivibraor using he 555 IC imer...() Design Example 1 wih Mulisim 2001 ools and graphs..(8) Lile descripion
More information3 RungeKutta Methods
3 RungeKua Mehods In conras o he mulisep mehods of he previous secion, RungeKua mehods are singlesep mehods however, muliple sages per sep. They are moivaed by he dependence of he Taylor mehods on he
More informationTransient Analysis of First Order RC and RL circuits
Transien Analysis of Firs Order and iruis The irui shown on Figure 1 wih he swih open is haraerized by a pariular operaing ondiion. Sine he swih is open, no urren flows in he irui (i=0) and v=0. The volage
More information