Understanding the Derivative Backward and Forward by Dave Slomer

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Understanding the Derivative Backward and Forward by Dave Slomer"

Transcription

1 Understanding te Derivative Backward and Forward by Dave Slomer Slopes of lines are important, giving average rates of cange. Slopes of curves are even more important, giving instantaneous rates of cange. Tis activity will define procedures for computing instantaneous rates of cange exactly and, wen exact is impossible or impractical, approximately. To do tis requires a rigorous definition of slope of a curve. Te slope of a curve at a point is defined to be te slope of te line tangent to te curve at tat point (see figure 1a). But te slope formula requires two points to get a slope. Often, as in figure 1a, a tangent line passes troug only one point on a curve. So were do we get anoter point from wic to compute te slope? We look to any oter nearby point. [Wen tey exist, tangent lines can be understood intuitively by zooming in at te point of tangency and noticing tat, after enoug zooms, te tangent and te curve appear to be te same grap. Hence, te curve, being virtually linear in tat window, can be tougt of as aving a definite slope. Before proceeding, exploring tis penomenon via anoter activity migt be advisable.] Fig. 1a Fig. 1b f ( x) If f is any function, ten is te slope of te secant line (see figure 1b) x a troug (a, f (a)) and (x, f (x)). Because it is a quotient in wic bot te numerator and denominator are differences, tat expression is called a difference quotient. Any secant line goes troug (at least) two points on te grap of a function; ence te numerator will always be te difference of two function values. If we want to someow use te secant line to approximate te slope of te tangent, ten x sould be near a. Exercise 1: Te point (x, f (x)) is referred to in te numerator of te difference quotient above. In figure 1b, were is tat point? Is tat point near enoug to P to give a decent approximation of te slope of te tangent at P (sown in fig. 1a)? f Oter forms of difference quotients include (wic is very generic, but concise) and x f ( a + x). If te latter two difference quotients are going to give slopes tat are ( a + x) a close to te slope of te tangent at (a, f (a)), teir denominators are going to ave to be near 0. (Convince yourself of tat.)

2 f ( a + x) Exercise 2: Simplify te difference quotient. (After simplification, ( a + x) a does it still look like a difference of two function values over te difference of two x s?) For tis difference quotient to be a good approximation of te slope of te tangent line at (a, f (a)), x must be near. If x is positive, te point (a + x, f (a + x)) will be to te rigt of (a, f (a)), so te difference quotient in Exercise 2 is called te forward difference quotient. f ( a) f ( a ) Exercise 3: Te difference quotient is te slope of te secant line troug two points on te grap of f. Assume tat is positive and locate te oter point on te sketc below and draw te secant line. [Te function expressions in te numerator tell you wat x s to use in te denominator.] Wat are te coordinates of te two points represented in te difference quotient above? In order for tis secant line to be a good approximation to te slope of te tangent line at P, ten would ave to be near. If is positive, te point (a, f (a )) will be to te left of (a, f (a)), so te difference quotient in Exercise 3 is called te backward difference quotient. Exercise 4: On te grap below, eac tick mark represents one unit and P is te point (a, f (a)). Let be 0.5, wic is not particularly close to 0, and draw te secant line troug te points (a, f (a )) and (a +, f (a + )). Ten express its slope as a difference quotient in terms of f, a, and. Do you see wy tis difference quotient is called te symmetric difference quotient?

3 Using te grid dots on te grap screen, estimate te slope given by te symmetric difference quotient. Draw te tangent line at P. How well does te symmetric difference quotient approximate its slope? π x Exercise 5: Te function in te grap in Exercise 4 is f( x) = sin and P as x- 3 coordinate 1. Grap tat function, zoom in [wit equal zoom factors] at P until te grap looks linear, and estimate te slope. Compute te symmetric difference quotient wit = 0.5. For wat value of are te forward and backward difference quotients as accurate as te symmetric wit = 1? Conclusions? Exercise 6: Sow algebraically [feel free to use your 89] tat te symmetric difference quotient is te average of te forward and backward difference quotients. (For aid, refer to figure 2, in wic te forward difference quotient gives te slope of PR, wile te backward gives te slope of PQ, and te symmetric gives te slope ofqr. You would be wise to let (a, f (a)) represent P and use eiter or x (consider bot to be positive) to determine te coordinates of Q and R.) Fig. 2 Exercise 7: Figure 2 was produced via te following window and function definitions. Matc te tangent line and forward, backward, and symmetric difference quotient secant lines wit te appropriate function in y2 troug y5. Eac equation in y2 troug y5 is a line in point-slope form, but every function defintion is at least partly cut off at te rigt margin. Write te equations for y2 troug y5.

4 [FYI figure 3 below was produced by turning off y3 troug y5 and storing {.1,.075,.05,.25} into.] OK, fine. We can find a lot of different types of secant lines wose slope can be expressed as many different-looking difference quotients tat are related in an interesting way (Exercise 6). But ow do we find slopes of tangents? Refer to figure 3 to see several forward secant lines (for =.1,.075,.05,.025) tat approac, as a limit, te tangent line, wic is also included in figure 3. Fig. 3 Exercise 8: In figure 3, were is te point of tangency? Wic line is te tangent? If te point of tangency is (a, f (a)), wat would be te equation of te tangent tere? It looks like te slope of te tangent line in figure 3 is a positive number. Wen it exists [sometimes it doesn t], te slope of te line tangent to te function y = f (x) at (a, f (a)) is f ( a + ) defined as f ( a) = lim. Tis is called te derivative of f at a. 0 Exercise 9: Wic difference quotient is used in te definition of derivative? Could eiter or bot of te oter two also ave been used? Explain. If, for some reason, te limits cannot be computed, te derivative can be approximated by using any of te individual difference quotients, if a small enoug can be used. As figure 2 sows, te backward and forward difference quotients are not likely to very good at estimating te slope of te tangent line unless is very close to 0. But, as figure 2 also sows (at least for te function involved), te symmetric difference quotient can be very close to correct, even if is not so small, or if we ave only a grap to proceed from. Exercise 10: For te function defined grapically and numerically below, estimate its derivative at x = 2.45 using all 3 difference quotients.

5 Te data above came from te function f(x) = 2sin(3x) cos(x). Use te definition of derivative (a limit of a forward difference quotient) to calculate te exact value of te derivative. Your TI-89 can calculate many derivatives exactly. Define f(x)=2sin(3x) cos(x) and ten enter te command d(f(x),x) x=2.45. [d is above te 8 key.] Did you get te same result tat you did in te first bullet above? (Just cecking!) Wic difference quotient came closest? By ow muc did it miss? Wat is te relative error in te calculation? [Relative error is defined as actual value approximate value /actual value.] Wic missed by most? By ow muc? Wat is te relative error? Conclusions? Exercise 11: Consider te points (5,5), (10,25), and (15,10), plotted on 3 axes below. Te fact is tat any one of te 3 difference quotients could give te best estimate of te derivative. Draw a function for wic te FDQ would be te best estimate of te derivative at (10,25). Draw a function for wic te BDQ would be te best estimate of te derivative at (10,25). Draw a function for wic te SDQ would be te best estimate of te derivative at (10,25). Wic of te 3 functions you graped do you tink would be most likely to occur in a real-life problem? Wy? Exercise 12: Te symmetric difference quotient is so good tat it gives exact results for parabolas, even witout taking a limit! Prove tat tis is so. Exercise 13: Unlike te TI-89, some calculators, suc as te TI-83, cannot compute limits, since tey cannot do symbol manipulation. Still, tey ave te built-in capability to find derivatives approximately. Wy do you tink tey use te symmetric difference quotient to numerically approximate derivatives?

6 Exercise 14: Explain wy te symmetric difference quotient (and terefore te TI-83, for example) gives 0 as an approximate value of te derivative of x at 0. Wat do you get if you take te limit of te symmetric difference quotient for x at 0? (Hint: take te leftand rigt-and limits wen you compute te derivative from te definition.) Conclusions? Since te derivative is a limit, x can approac a from bot te rigt (x > a; see figure 1b) and te left (x < a), so it makes sense to ten talk about left- and rigt-and derivatives. If f ' (a) exists, te left- and rigt-and derivatives at a are equal, and all 3 derivatives equal te slope of te tangent line at (a, f (a). (See figure 1.) Sometimes x cannot approac a from bot sides. If ( ) 4 f( x) = x + x, te derivative only exists at 0 from te left. (Wy?) Oter times, te function may not even ave a derivative, aving different left- and rigt-and derivatives. (Can you tink of an example or two of suc a function?) And even if a function as a derivative for all x, if te function is piecewise-defined, it would be necessary to compute te left- and rigt-and derivatives separately at any point were te function definition canges from one piece to te next. Tus, te following definitions are necessary: Te rigt-and derivative of f at a, often designated as f ( a ) +, is defined as f( a+ ) f( a) lim. Similarly, te left-and derivative, f ( a), can be defined by eiter + 0 f( a+ ) f( a) f( a) f( a ) lim or lim Exercise 15: Compute te left-and derivative for ( ) ( ) 4 f x = x + x at 0. ln( x),0 < x< 1 Exercise 16: For f( x) = 2, find te left- and rigt-and derivatives at 1 ( x 2) 1, x 1 and let tem tell you weter te derivative of f exists at 1. Draw te grap of te derivative. Describe its beavior at 1. Conclusions? Calculus Generic Scope and Sequence Topics: Derivatives NCTM Standards: Number and operations, Algebra, Geometry, Measurement, Connections, Communication, Representation

Tangent Lines and Rates of Change

Tangent Lines and Rates of Change Tangent Lines and Rates of Cange 9-2-2005 Given a function y = f(x), ow do you find te slope of te tangent line to te grap at te point P(a, f(a))? (I m tinking of te tangent line as a line tat just skims

More information

Instantaneous Rate of Change:

Instantaneous Rate of Change: Instantaneous Rate of Cange: Last section we discovered tat te average rate of cange in F(x) can also be interpreted as te slope of a scant line. Te average rate of cange involves te cange in F(x) over

More information

Math 113 HW #5 Solutions

Math 113 HW #5 Solutions Mat 3 HW #5 Solutions. Exercise.5.6. Suppose f is continuous on [, 5] and te only solutions of te equation f(x) = 6 are x = and x =. If f() = 8, explain wy f(3) > 6. Answer: Suppose we ad tat f(3) 6. Ten

More information

Derivatives Math 120 Calculus I D Joyce, Fall 2013

Derivatives Math 120 Calculus I D Joyce, Fall 2013 Derivatives Mat 20 Calculus I D Joyce, Fall 203 Since we ave a good understanding of its, we can develop derivatives very quickly. Recall tat we defined te derivative f x of a function f at x to be te

More information

7.6 Complex Fractions

7.6 Complex Fractions Section 7.6 Comple Fractions 695 7.6 Comple Fractions In tis section we learn ow to simplify wat are called comple fractions, an eample of wic follows. 2 + 3 Note tat bot te numerator and denominator are

More information

Lecture 10: What is a Function, definition, piecewise defined functions, difference quotient, domain of a function

Lecture 10: What is a Function, definition, piecewise defined functions, difference quotient, domain of a function Lecture 10: Wat is a Function, definition, piecewise defined functions, difference quotient, domain of a function A function arises wen one quantity depends on anoter. Many everyday relationsips between

More information

2 Limits and Derivatives

2 Limits and Derivatives 2 Limits and Derivatives 2.7 Tangent Lines, Velocity, and Derivatives A tangent line to a circle is a line tat intersects te circle at exactly one point. We would like to take tis idea of tangent line

More information

2.1: The Derivative and the Tangent Line Problem

2.1: The Derivative and the Tangent Line Problem .1.1.1: Te Derivative and te Tangent Line Problem Wat is te deinition o a tangent line to a curve? To answer te diiculty in writing a clear deinition o a tangent line, we can deine it as te iting position

More information

f(a + h) f(a) f (a) = lim

f(a + h) f(a) f (a) = lim Lecture 7 : Derivative AS a Function In te previous section we defined te derivative of a function f at a number a (wen te function f is defined in an open interval containing a) to be f (a) 0 f(a + )

More information

f(x) f(a) x a Our intuition tells us that the slope of the tangent line to the curve at the point P is m P Q =

f(x) f(a) x a Our intuition tells us that the slope of the tangent line to the curve at the point P is m P Q = Lecture 6 : Derivatives and Rates of Cange In tis section we return to te problem of finding te equation of a tangent line to a curve, y f(x) If P (a, f(a)) is a point on te curve y f(x) and Q(x, f(x))

More information

Sections 3.1/3.2: Introducing the Derivative/Rules of Differentiation

Sections 3.1/3.2: Introducing the Derivative/Rules of Differentiation Sections 3.1/3.2: Introucing te Derivative/Rules of Differentiation 1 Tangent Line Before looking at te erivative, refer back to Section 2.1, looking at average velocity an instantaneous velocity. Here

More information

Lecture 10. Limits (cont d) One-sided limits. (Relevant section from Stewart, Seventh Edition: Section 2.4, pp. 113.)

Lecture 10. Limits (cont d) One-sided limits. (Relevant section from Stewart, Seventh Edition: Section 2.4, pp. 113.) Lecture 10 Limits (cont d) One-sided its (Relevant section from Stewart, Sevent Edition: Section 2.4, pp. 113.) As you may recall from your earlier course in Calculus, we may define one-sided its, were

More information

Chapter 11. Limits and an Introduction to Calculus. Selected Applications

Chapter 11. Limits and an Introduction to Calculus. Selected Applications Capter Limits and an Introduction to Calculus. Introduction to Limits. Tecniques for Evaluating Limits. Te Tangent Line Problem. Limits at Infinit and Limits of Sequences.5 Te Area Problem Selected Applications

More information

1.6. Analyse Optimum Volume and Surface Area. Maximum Volume for a Given Surface Area. Example 1. Solution

1.6. Analyse Optimum Volume and Surface Area. Maximum Volume for a Given Surface Area. Example 1. Solution 1.6 Analyse Optimum Volume and Surface Area Estimation and oter informal metods of optimizing measures suc as surface area and volume often lead to reasonable solutions suc as te design of te tent in tis

More information

Average and Instantaneous Rates of Change: The Derivative

Average and Instantaneous Rates of Change: The Derivative 9.3 verage and Instantaneous Rates of Cange: Te Derivative 609 OBJECTIVES 9.3 To define and find average rates of cange To define te derivative as a rate of cange To use te definition of derivative to

More information

Differential Calculus: Differentiation (First Principles, Rules) and Sketching Graphs (Grade 12)

Differential Calculus: Differentiation (First Principles, Rules) and Sketching Graphs (Grade 12) OpenStax-CNX moule: m39313 1 Differential Calculus: Differentiation (First Principles, Rules) an Sketcing Graps (Grae 12) Free Hig Scool Science Texts Project Tis work is prouce by OpenStax-CNX an license

More information

1 Derivatives of Piecewise Defined Functions

1 Derivatives of Piecewise Defined Functions MATH 1010E University Matematics Lecture Notes (week 4) Martin Li 1 Derivatives of Piecewise Define Functions For piecewise efine functions, we often ave to be very careful in computing te erivatives.

More information

Section 3.3. Differentiation of Polynomials and Rational Functions. Difference Equations to Differential Equations

Section 3.3. Differentiation of Polynomials and Rational Functions. Difference Equations to Differential Equations Difference Equations to Differential Equations Section 3.3 Differentiation of Polynomials an Rational Functions In tis section we begin te task of iscovering rules for ifferentiating various classes of

More information

f(x + h) f(x) h as representing the slope of a secant line. As h goes to 0, the slope of the secant line approaches the slope of the tangent line.

f(x + h) f(x) h as representing the slope of a secant line. As h goes to 0, the slope of the secant line approaches the slope of the tangent line. Derivative of f(z) Dr. E. Jacobs Te erivative of a function is efine as a limit: f (x) 0 f(x + ) f(x) We can visualize te expression f(x+) f(x) as representing te slope of a secant line. As goes to 0,

More information

The Derivative as a Function

The Derivative as a Function Section 2.2 Te Derivative as a Function 200 Kiryl Tsiscanka Te Derivative as a Function DEFINITION: Te derivative of a function f at a number a, denoted by f (a), is if tis limit exists. f (a) f(a+) f(a)

More information

CHAPTER 8: DIFFERENTIAL CALCULUS

CHAPTER 8: DIFFERENTIAL CALCULUS CHAPTER 8: DIFFERENTIAL CALCULUS 1. Rules of Differentiation As we ave seen, calculating erivatives from first principles can be laborious an ifficult even for some relatively simple functions. It is clearly

More information

SAT Subject Math Level 1 Facts & Formulas

SAT Subject Math Level 1 Facts & Formulas Numbers, Sequences, Factors Integers:..., -3, -2, -1, 0, 1, 2, 3,... Reals: integers plus fractions, decimals, and irrationals ( 2, 3, π, etc.) Order Of Operations: Aritmetic Sequences: PEMDAS (Parenteses

More information

New Vocabulary volume

New Vocabulary volume -. Plan Objectives To find te volume of a prism To find te volume of a cylinder Examples Finding Volume of a Rectangular Prism Finding Volume of a Triangular Prism 3 Finding Volume of a Cylinder Finding

More information

CHAPTER 7. Di erentiation

CHAPTER 7. Di erentiation CHAPTER 7 Di erentiation 1. Te Derivative at a Point Definition 7.1. Let f be a function defined on a neigborood of x 0. f is di erentiable at x 0, if te following it exists: f 0 fx 0 + ) fx 0 ) x 0 )=.

More information

ACT Math Facts & Formulas

ACT Math Facts & Formulas Numbers, Sequences, Factors Integers:..., -3, -2, -1, 0, 1, 2, 3,... Rationals: fractions, tat is, anyting expressable as a ratio of integers Reals: integers plus rationals plus special numbers suc as

More information

Verifying Numerical Convergence Rates

Verifying Numerical Convergence Rates 1 Order of accuracy Verifying Numerical Convergence Rates We consider a numerical approximation of an exact value u. Te approximation depends on a small parameter, suc as te grid size or time step, and

More information

Similar interpretations can be made for total revenue and total profit functions.

Similar interpretations can be made for total revenue and total profit functions. EXERCISE 3-7 Tings to remember: 1. MARGINAL COST, REVENUE, AND PROFIT If is te number of units of a product produced in some time interval, ten: Total Cost C() Marginal Cost C'() Total Revenue R() Marginal

More information

The modelling of business rules for dashboard reporting using mutual information

The modelling of business rules for dashboard reporting using mutual information 8 t World IMACS / MODSIM Congress, Cairns, Australia 3-7 July 2009 ttp://mssanz.org.au/modsim09 Te modelling of business rules for dasboard reporting using mutual information Gregory Calbert Command, Control,

More information

MATHEMATICS FOR ENGINEERING DIFFERENTIATION TUTORIAL 1 - BASIC DIFFERENTIATION

MATHEMATICS FOR ENGINEERING DIFFERENTIATION TUTORIAL 1 - BASIC DIFFERENTIATION MATHEMATICS FOR ENGINEERING DIFFERENTIATION TUTORIAL 1 - BASIC DIFFERENTIATION Tis tutorial is essential pre-requisite material for anyone stuing mecanical engineering. Tis tutorial uses te principle of

More information

Compute the derivative by definition: The four step procedure

Compute the derivative by definition: The four step procedure Compute te derivative by definition: Te four step procedure Given a function f(x), te definition of f (x), te derivative of f(x), is lim 0 f(x + ) f(x), provided te limit exists Te derivative function

More information

Surface Areas of Prisms and Cylinders

Surface Areas of Prisms and Cylinders 12.2 TEXAS ESSENTIAL KNOWLEDGE AND SKILLS G.10.B G.11.C Surface Areas of Prisms and Cylinders Essential Question How can you find te surface area of a prism or a cylinder? Recall tat te surface area of

More information

Writing Mathematics Papers

Writing Mathematics Papers Writing Matematics Papers Tis essay is intended to elp your senior conference paper. It is a somewat astily produced amalgam of advice I ave given to students in my PDCs (Mat 4 and Mat 9), so it s not

More information

FINITE DIFFERENCE METHODS

FINITE DIFFERENCE METHODS FINITE DIFFERENCE METHODS LONG CHEN Te best known metods, finite difference, consists of replacing eac derivative by a difference quotient in te classic formulation. It is simple to code and economic to

More information

M(0) = 1 M(1) = 2 M(h) = M(h 1) + M(h 2) + 1 (h > 1)

M(0) = 1 M(1) = 2 M(h) = M(h 1) + M(h 2) + 1 (h > 1) Insertion and Deletion in VL Trees Submitted in Partial Fulfillment of te Requirements for Dr. Eric Kaltofen s 66621: nalysis of lgoritms by Robert McCloskey December 14, 1984 1 ackground ccording to Knut

More information

In other words the graph of the polynomial should pass through the points

In other words the graph of the polynomial should pass through the points Capter 3 Interpolation Interpolation is te problem of fitting a smoot curve troug a given set of points, generally as te grap of a function. It is useful at least in data analysis (interpolation is a form

More information

Finite Volume Discretization of the Heat Equation

Finite Volume Discretization of the Heat Equation Lecture Notes 3 Finite Volume Discretization of te Heat Equation We consider finite volume discretizations of te one-dimensional variable coefficient eat equation, wit Neumann boundary conditions u t x

More information

Can a Lump-Sum Transfer Make Everyone Enjoy the Gains. from Free Trade?

Can a Lump-Sum Transfer Make Everyone Enjoy the Gains. from Free Trade? Can a Lump-Sum Transfer Make Everyone Enjoy te Gains from Free Trade? Yasukazu Icino Department of Economics, Konan University June 30, 2010 Abstract I examine lump-sum transfer rules to redistribute te

More information

The EOQ Inventory Formula

The EOQ Inventory Formula Te EOQ Inventory Formula James M. Cargal Matematics Department Troy University Montgomery Campus A basic problem for businesses and manufacturers is, wen ordering supplies, to determine wat quantity of

More information

4.1 Right-angled Triangles 2. 4.2 Trigonometric Functions 19. 4.3 Trigonometric Identities 36. 4.4 Applications of Trigonometry to Triangles 53

4.1 Right-angled Triangles 2. 4.2 Trigonometric Functions 19. 4.3 Trigonometric Identities 36. 4.4 Applications of Trigonometry to Triangles 53 ontents 4 Trigonometry 4.1 Rigt-angled Triangles 4. Trigonometric Functions 19 4.3 Trigonometric Identities 36 4.4 pplications of Trigonometry to Triangles 53 4.5 pplications of Trigonometry to Waves 65

More information

An inquiry into the multiplier process in IS-LM model

An inquiry into the multiplier process in IS-LM model An inquiry into te multiplier process in IS-LM model Autor: Li ziran Address: Li ziran, Room 409, Building 38#, Peing University, Beijing 00.87,PRC. Pone: (86) 00-62763074 Internet Address: jefferson@water.pu.edu.cn

More information

EC201 Intermediate Macroeconomics. EC201 Intermediate Macroeconomics Problem set 8 Solution

EC201 Intermediate Macroeconomics. EC201 Intermediate Macroeconomics Problem set 8 Solution EC201 Intermediate Macroeconomics EC201 Intermediate Macroeconomics Prolem set 8 Solution 1) Suppose tat te stock of mone in a given econom is given te sum of currenc and demand for current accounts tat

More information

Determine the perimeter of a triangle using algebra Find the area of a triangle using the formula

Determine the perimeter of a triangle using algebra Find the area of a triangle using the formula Student Name: Date: Contact Person Name: Pone Number: Lesson 0 Perimeter, Area, and Similarity of Triangles Objectives Determine te perimeter of a triangle using algebra Find te area of a triangle using

More information

- 1 - Handout #22 May 23, 2012 Huffman Encoding and Data Compression. CS106B Spring 2012. Handout by Julie Zelenski with minor edits by Keith Schwarz

- 1 - Handout #22 May 23, 2012 Huffman Encoding and Data Compression. CS106B Spring 2012. Handout by Julie Zelenski with minor edits by Keith Schwarz CS106B Spring 01 Handout # May 3, 01 Huffman Encoding and Data Compression Handout by Julie Zelenski wit minor edits by Keit Scwarz In te early 1980s, personal computers ad ard disks tat were no larger

More information

4.4 The Derivative. 51. Disprove the claim: If lim f (x) = L, then either lim f (x) = L or. 52. If lim x a. f (x) = and lim x a. g(x) =, then lim x a

4.4 The Derivative. 51. Disprove the claim: If lim f (x) = L, then either lim f (x) = L or. 52. If lim x a. f (x) = and lim x a. g(x) =, then lim x a Capter 4 Real Analysis 281 51. Disprove te claim: If lim f () = L, ten eiter lim f () = L or a a lim f () = L. a 52. If lim a f () = an lim a g() =, ten lim a f + g =. 53. If lim f () = an lim g() = L

More information

Area of a Parallelogram

Area of a Parallelogram Area of a Parallelogram Focus on After tis lesson, you will be able to... φ develop te φ formula for te area of a parallelogram calculate te area of a parallelogram One of te sapes a marcing band can make

More information

Guide to Cover Letters & Thank You Letters

Guide to Cover Letters & Thank You Letters Guide to Cover Letters & Tank You Letters 206 Strebel Student Center (315) 792-3087 Fax (315) 792-3370 TIPS FOR WRITING A PERFECT COVER LETTER Te resume never travels alone. Eac time you submit your resume

More information

Math Test Sections. The College Board: Expanding College Opportunity

Math Test Sections. The College Board: Expanding College Opportunity Taking te SAT I: Reasoning Test Mat Test Sections Te materials in tese files are intended for individual use by students getting ready to take an SAT Program test; permission for any oter use must be sougt

More information

The differential amplifier

The differential amplifier DiffAmp.doc 1 Te differential amplifier Te emitter coupled differential amplifier output is V o = A d V d + A c V C Were V d = V 1 V 2 and V C = (V 1 + V 2 ) / 2 In te ideal differential amplifier A c

More information

CHAPTER TWO. f(x) Slope = f (3) = Rate of change of f at 3. x 3. f(1.001) f(1) Average velocity = 1.1 1 1.01 1. s(0.8) s(0) 0.8 0

CHAPTER TWO. f(x) Slope = f (3) = Rate of change of f at 3. x 3. f(1.001) f(1) Average velocity = 1.1 1 1.01 1. s(0.8) s(0) 0.8 0 CHAPTER TWO 2.1 SOLUTIONS 99 Solutions for Section 2.1 1. (a) Te average rate of cange is te slope of te secant line in Figure 2.1, wic sows tat tis slope is positive. (b) Te instantaneous rate of cange

More information

An Interest Rate Model

An Interest Rate Model An Interest Rate Model Concepts and Buzzwords Building Price Tree from Rate Tree Lognormal Interest Rate Model Nonnegativity Volatility and te Level Effect Readings Tuckman, capters 11 and 12. Lognormal

More information

Distances in random graphs with infinite mean degrees

Distances in random graphs with infinite mean degrees Distances in random graps wit infinite mean degrees Henri van den Esker, Remco van der Hofstad, Gerard Hoogiemstra and Dmitri Znamenski April 26, 2005 Abstract We study random graps wit an i.i.d. degree

More information

College Planning Using Cash Value Life Insurance

College Planning Using Cash Value Life Insurance College Planning Using Cas Value Life Insurance CAUTION: Te advisor is urged to be extremely cautious of anoter college funding veicle wic provides a guaranteed return of premium immediately if funded

More information

Spiral Physics. Modern Physics ... The Schrödinger Equation

Spiral Physics. Modern Physics ... The Schrödinger Equation .......... Spiral Pysics Modern Pysics.......... Te Scrödinger quation Copyrigt 3 Paul D Alessandris Spiral Pysics Rocester, NY 1463 All rigts reserved. No part of tis book may be reproduced or transmitted

More information

6. Differentiating the exponential and logarithm functions

6. Differentiating the exponential and logarithm functions 1 6. Differentiating te exponential and logaritm functions We wis to find and use derivatives for functions of te form f(x) = a x, were a is a constant. By far te most convenient suc function for tis purpose

More information

MAT1A01: Differentiation of Polynomials & Exponential Functions + the Product & Quotient Rules

MAT1A01: Differentiation of Polynomials & Exponential Functions + the Product & Quotient Rules MAT1A01: Differentiation of Polynomials & Exponential Functions + te Prouct & Quotient Rules Dr Craig 17 April 2013 Reminer Mats Learning Centre: C-Ring 512 My office: C-Ring 533A (Stats Dept corrior)

More information

Shell and Tube Heat Exchanger

Shell and Tube Heat Exchanger Sell and Tube Heat Excanger MECH595 Introduction to Heat Transfer Professor M. Zenouzi Prepared by: Andrew Demedeiros, Ryan Ferguson, Bradford Powers November 19, 2009 1 Abstract 2 Contents Discussion

More information

Notes: Most of the material in this chapter is taken from Young and Freedman, Chap. 12.

Notes: Most of the material in this chapter is taken from Young and Freedman, Chap. 12. Capter 6. Fluid Mecanics Notes: Most of te material in tis capter is taken from Young and Freedman, Cap. 12. 6.1 Fluid Statics Fluids, i.e., substances tat can flow, are te subjects of tis capter. But

More information

Note nine: Linear programming CSE 101. 1 Linear constraints and objective functions. 1.1 Introductory example. Copyright c Sanjoy Dasgupta 1

Note nine: Linear programming CSE 101. 1 Linear constraints and objective functions. 1.1 Introductory example. Copyright c Sanjoy Dasgupta 1 Copyrigt c Sanjoy Dasgupta Figure. (a) Te feasible region for a linear program wit two variables (see tet for details). (b) Contour lines of te objective function: for different values of (profit). Te

More information

Solutions by: KARATUĞ OZAN BiRCAN. PROBLEM 1 (20 points): Let D be a region, i.e., an open connected set in

Solutions by: KARATUĞ OZAN BiRCAN. PROBLEM 1 (20 points): Let D be a region, i.e., an open connected set in KOÇ UNIVERSITY, SPRING 2014 MATH 401, MIDTERM-1, MARCH 3 Instructor: BURAK OZBAGCI TIME: 75 Minutes Solutions by: KARATUĞ OZAN BiRCAN PROBLEM 1 (20 points): Let D be a region, i.e., an open connected set

More information

2.28 EDGE Program. Introduction

2.28 EDGE Program. Introduction Introduction Te Economic Diversification and Growt Enterprises Act became effective on 1 January 1995. Te creation of tis Act was to encourage new businesses to start or expand in Newfoundland and Labrador.

More information

Area of Trapezoids. Find the area of the trapezoid. 7 m. 11 m. 2 Use the Area of a Trapezoid. Find the value of b 2

Area of Trapezoids. Find the area of the trapezoid. 7 m. 11 m. 2 Use the Area of a Trapezoid. Find the value of b 2 Page 1 of. Area of Trapezoids Goal Find te area of trapezoids. Recall tat te parallel sides of a trapezoid are called te bases of te trapezoid, wit lengts denoted by and. base, eigt Key Words trapezoid

More information

Projective Geometry. Projective Geometry

Projective Geometry. Projective Geometry Euclidean versus Euclidean geometry describes sapes as tey are Properties of objects tat are uncanged by rigid motions» Lengts» Angles» Parallelism Projective geometry describes objects as tey appear Lengts,

More information

is called the geometric transformation. In computers the world is represented by numbers; thus geometrical properties and transformations must

is called the geometric transformation. In computers the world is represented by numbers; thus geometrical properties and transformations must Capter 5 TRANSFORMATIONS, CLIPPING AND PROJECTION 5.1 Geometric transformations Tree-dimensional grapics aims at producing an image of 3D objects. Tis means tat te geometrical representation of te image

More information

2.23 Gambling Rehabilitation Services. Introduction

2.23 Gambling Rehabilitation Services. Introduction 2.23 Gambling Reabilitation Services Introduction Figure 1 Since 1995 provincial revenues from gambling activities ave increased over 56% from $69.2 million in 1995 to $108 million in 2004. Te majority

More information

Pressure. Pressure. Atmospheric pressure. Conceptual example 1: Blood pressure. Pressure is force per unit area:

Pressure. Pressure. Atmospheric pressure. Conceptual example 1: Blood pressure. Pressure is force per unit area: Pressure Pressure is force per unit area: F P = A Pressure Te direction of te force exerted on an object by a fluid is toward te object and perpendicular to its surface. At a microscopic level, te force

More information

Strategic trading in a dynamic noisy market. Dimitri Vayanos

Strategic trading in a dynamic noisy market. Dimitri Vayanos LSE Researc Online Article (refereed) Strategic trading in a dynamic noisy market Dimitri Vayanos LSE as developed LSE Researc Online so tat users may access researc output of te Scool. Copyrigt and Moral

More information

Strategic trading and welfare in a dynamic market. Dimitri Vayanos

Strategic trading and welfare in a dynamic market. Dimitri Vayanos LSE Researc Online Article (refereed) Strategic trading and welfare in a dynamic market Dimitri Vayanos LSE as developed LSE Researc Online so tat users may access researc output of te Scool. Copyrigt

More information

Cyber Epidemic Models with Dependences

Cyber Epidemic Models with Dependences Cyber Epidemic Models wit Dependences Maocao Xu 1, Gaofeng Da 2 and Souuai Xu 3 1 Department of Matematics, Illinois State University mxu2@ilstu.edu 2 Institute for Cyber Security, University of Texas

More information

Chapter 7 Numerical Differentiation and Integration

Chapter 7 Numerical Differentiation and Integration 45 We ave a abit in writing articles publised in scientiþc journals to make te work as Þnised as possible, to cover up all te tracks, to not worry about te blind alleys or describe ow you ad te wrong idea

More information

Chapter 10: Refrigeration Cycles

Chapter 10: Refrigeration Cycles Capter 10: efrigeration Cycles Te vapor compression refrigeration cycle is a common metod for transferring eat from a low temperature to a ig temperature. Te above figure sows te objectives of refrigerators

More information

Grade 12 Assessment Exemplars

Grade 12 Assessment Exemplars Grade Assessment Eemplars Learning Outcomes and. Assignment : Functions - Memo. Investigation: Sequences and Series Memo/Rubric 5. Control Test: Number Patterns, Finance and Functions - Memo 7. Project:

More information

2.13 Solid Waste Management. Introduction. Scope and Objectives. Conclusions

2.13 Solid Waste Management. Introduction. Scope and Objectives. Conclusions Introduction Te planning and delivery of waste management in Newfoundland and Labrador is te direct responsibility of municipalities and communities. Te Province olds overall responsibility for te development

More information

Computer Science and Engineering, UCSD October 7, 1999 Goldreic-Levin Teorem Autor: Bellare Te Goldreic-Levin Teorem 1 Te problem We æx a an integer n for te lengt of te strings involved. If a is an n-bit

More information

Area Formulas with Applications

Area Formulas with Applications Formulas wit Applications Ojective To review and use formulas for perimeter, circumference, and area. www.everydaymatonline.com epresentations etoolkit Algoritms Practice EM Facts Worksop Game Family Letters

More information

Theoretical calculation of the heat capacity

Theoretical calculation of the heat capacity eoretical calculation of te eat capacity Principle of equipartition of energy Heat capacity of ideal and real gases Heat capacity of solids: Dulong-Petit, Einstein, Debye models Heat capacity of metals

More information

Binary Search Trees. Adnan Aziz. Heaps can perform extract-max, insert efficiently O(log n) worst case

Binary Search Trees. Adnan Aziz. Heaps can perform extract-max, insert efficiently O(log n) worst case Binary Searc Trees Adnan Aziz 1 BST basics Based on CLRS, C 12. Motivation: Heaps can perform extract-max, insert efficiently O(log n) worst case Has tables can perform insert, delete, lookup efficiently

More information

Schedulability Analysis under Graph Routing in WirelessHART Networks

Schedulability Analysis under Graph Routing in WirelessHART Networks Scedulability Analysis under Grap Routing in WirelessHART Networks Abusayeed Saifulla, Dolvara Gunatilaka, Paras Tiwari, Mo Sa, Cenyang Lu, Bo Li Cengjie Wu, and Yixin Cen Department of Computer Science,

More information

Reinforced Concrete Beam

Reinforced Concrete Beam Mecanics of Materials Reinforced Concrete Beam Concrete Beam Concrete Beam We will examine a concrete eam in ending P P A concrete eam is wat we call a composite eam It is made of two materials: concrete

More information

Pre-trial Settlement with Imperfect Private Monitoring

Pre-trial Settlement with Imperfect Private Monitoring Pre-trial Settlement wit Imperfect Private Monitoring Mostafa Beskar University of New Hampsire Jee-Hyeong Park y Seoul National University July 2011 Incomplete, Do Not Circulate Abstract We model pretrial

More information

Environmental Policy and Competitiveness: The Porter Hypothesis and the Composition of Capital 1

Environmental Policy and Competitiveness: The Porter Hypothesis and the Composition of Capital 1 Journal of Environmental Economics and Management 7, 65 8 Ž 999. Article ID jeem.998.6, available online at ttp: www.idealibrary.com on Environmental Policy and Competitiveness: Te Porter ypotesis and

More information

For Sale By Owner Program. We can help with our for sale by owner kit that includes:

For Sale By Owner Program. We can help with our for sale by owner kit that includes: Dawn Coen Broker/Owner For Sale By Owner Program If you want to sell your ome By Owner wy not:: For Sale Dawn Coen Broker/Owner YOUR NAME YOUR PHONE # Look as professional as possible Be totally prepared

More information

Distributed and Centralized Bypass Architectures Compared. E. Guidotti - AC Power Product Manager A. Ferro - Key Account Manager

Distributed and Centralized Bypass Architectures Compared. E. Guidotti - AC Power Product Manager A. Ferro - Key Account Manager Distributed and Centralized Bypass Arcitectures Compared E. Guidotti - AC Power Product Manager A. Ferro - Key Account Manager Contents Executive Summary 3 Distributed / Centralized - System description

More information

3 Ans. 1 of my $30. 3 on. 1 on ice cream and the rest on 2011 MATHCOUNTS STATE COMPETITION SPRINT ROUND

3 Ans. 1 of my $30. 3 on. 1 on ice cream and the rest on 2011 MATHCOUNTS STATE COMPETITION SPRINT ROUND 0 MATHCOUNTS STATE COMPETITION SPRINT ROUND. boy scouts are accompanied by scout leaders. Eac person needs bottles of water per day and te trip is day. + = 5 people 5 = 5 bottles Ans.. Cammie as pennies,

More information

2.12 Student Transportation. Introduction

2.12 Student Transportation. Introduction Introduction Figure 1 At 31 Marc 2003, tere were approximately 84,000 students enrolled in scools in te Province of Newfoundland and Labrador, of wic an estimated 57,000 were transported by scool buses.

More information

Catalogue no. 12-001-XIE. Survey Methodology. December 2004

Catalogue no. 12-001-XIE. Survey Methodology. December 2004 Catalogue no. 1-001-XIE Survey Metodology December 004 How to obtain more information Specific inquiries about tis product and related statistics or services sould be directed to: Business Survey Metods

More information

Geo-Activity. 1 Use a straightedge to draw a line through one of the vertices of an index card. height is perpendicular to the bases.

Geo-Activity. 1 Use a straightedge to draw a line through one of the vertices of an index card. height is perpendicular to the bases. Page of 7 8. Area of Parallelograms Goal Find te area of parallelograms. Key Words ase of a parallelogram eigt of a parallelogram parallelogram p. 0 romus p. Geo-Activity Use a straigtedge to draw a line

More information

A Multigrid Tutorial part two

A Multigrid Tutorial part two A Multigrid Tutorial part two William L. Briggs Department of Matematics University of Colorado at Denver Van Emden Henson Center for Applied Scientific Computing Lawrence Livermore National Laboratory

More information

SAT Math Facts & Formulas

SAT Math Facts & Formulas Numbers, Sequences, Factors SAT Mat Facts & Formuas Integers:..., -3, -2, -1, 0, 1, 2, 3,... Reas: integers pus fractions, decimas, and irrationas ( 2, 3, π, etc.) Order Of Operations: Aritmetic Sequences:

More information

13 PERIMETER AND AREA OF 2D SHAPES

13 PERIMETER AND AREA OF 2D SHAPES 13 PERIMETER AND AREA OF D SHAPES 13.1 You can find te perimeter of sapes Key Points Te perimeter of a two-dimensional (D) sape is te total distance around te edge of te sape. l To work out te perimeter

More information

Chapter 6 Tail Design

Chapter 6 Tail Design apter 6 Tail Design Moammad Sadraey Daniel Webster ollege Table of ontents apter 6... 74 Tail Design... 74 6.1. Introduction... 74 6.. Aircraft Trim Requirements... 78 6..1. Longitudinal Trim... 79 6...

More information

RISK ASSESSMENT MATRIX

RISK ASSESSMENT MATRIX U.S.C.G. AUXILIARY STANDARD AV-04-4 Draft Standard Doc. AV- 04-4 18 August 2004 RISK ASSESSMENT MATRIX STANDARD FOR AUXILIARY AVIATION UNITED STATES COAST GUARD AUXILIARY NATIONAL OPERATIONS DEPARTMENT

More information

Geometric Stratification of Accounting Data

Geometric Stratification of Accounting Data Stratification of Accounting Data Patricia Gunning * Jane Mary Horgan ** William Yancey *** Abstract: We suggest a new procedure for defining te boundaries of te strata in igly skewed populations, usual

More information

SWITCH T F T F SELECT. (b) local schedule of two branches. (a) if-then-else construct A & B MUX. one iteration cycle

SWITCH T F T F SELECT. (b) local schedule of two branches. (a) if-then-else construct A & B MUX. one iteration cycle 768 IEEE RANSACIONS ON COMPUERS, VOL. 46, NO. 7, JULY 997 Compile-ime Sceduling of Dynamic Constructs in Dataæow Program Graps Soonoi Ha, Member, IEEE and Edward A. Lee, Fellow, IEEE Abstract Sceduling

More information

Background Facts on Economic Statistics

Background Facts on Economic Statistics Background Facts on Economic Statistics 2003:3 SAMU Te system for co-ordination of frame populations and samples from te Business Register at Statistics Sweden epartment of Economic Statistics Te series

More information

The Dynamics of Movie Purchase and Rental Decisions: Customer Relationship Implications to Movie Studios

The Dynamics of Movie Purchase and Rental Decisions: Customer Relationship Implications to Movie Studios Te Dynamics of Movie Purcase and Rental Decisions: Customer Relationsip Implications to Movie Studios Eddie Ree Associate Professor Business Administration Stoneill College 320 Wasington St Easton, MA

More information

A strong credit score can help you score a lower rate on a mortgage

A strong credit score can help you score a lower rate on a mortgage NET GAIN Scoring points for your financial future AS SEEN IN USA TODAY S MONEY SECTION, JULY 3, 2007 A strong credit score can elp you score a lower rate on a mortgage By Sandra Block Sales of existing

More information

Calculus Card Matching

Calculus Card Matching Card Matching Card Matching A Game of Matching Functions Description Give each group of students a packet of cards. Students work as a group to match the cards, by thinking about their card and what information

More information

The use of visualization for learning and teaching mathematics

The use of visualization for learning and teaching mathematics Te use of visualization for learning and teacing matematics Medat H. Raim Radcliffe Siddo Lakeead University Lakeead University Tunder Bay, Ontario Tunder Bay, Ontario CANADA CANADA mraim@lakeeadu.ca rsiddo@lakeeadu.ca

More information

Improved dynamic programs for some batcing problems involving te maximum lateness criterion A P M Wagelmans Econometric Institute Erasmus University Rotterdam PO Box 1738, 3000 DR Rotterdam Te Neterlands

More information

Volumes of Pyramids and Cones. Use the Pythagorean Theorem to find the value of the variable. h 2 m. 1.5 m 12 in. 8 in. 2.5 m

Volumes of Pyramids and Cones. Use the Pythagorean Theorem to find the value of the variable. h 2 m. 1.5 m 12 in. 8 in. 2.5 m -5 Wat You ll Learn To find te volume of a pramid To find te volume of a cone... And W To find te volume of a structure in te sape of a pramid, as in Eample Volumes of Pramids and Cones Ceck Skills You

More information