# ELEMENTARY NUMBER THEORY AND METHODS OF PROOF

Save this PDF as:

Size: px
Start display at page:

## Transcription

3 Direct Proof and Counterexample IV: Division into Cases and the Quotient-Remainder Theorem The quotient-remainder theorem says that when any integer n is divided by any positive integer d, the result is a quotient q and a nonnegative remainder r that is smaller than d. 3

4 Example 1 The Quotient-Remainder Theorem For each of the following values of n and d, find integers q and r such that and a. n = 54, d = 4 b. n = 54, d = 4 c. n = 54, d = 70 Solution: a. b. c. 4

5 div and mod 5

6 div and mod A number of computer languages have built-in functions that enable you to compute many values of q and r for the quotient-remainder theorem. These functions are called div and mod in Pascal, are called / and % in C and C++, are called / and % in Java, and are called / (or \) and mod in.net. The functions give the values that satisfy the quotient-remainder theorem when a nonnegative integer n is divided by a positive integer d and the result is assigned to an integer variable. 6

7 div and mod However, they do not give the values that satisfy the quotient-remainder theorem when a negative integer n is divided by a positive integer d. 7

8 div and mod For instance, to compute n div d for a nonnegative integer n and a positive integer d, you just divide n by d and ignore the part of the answer to the right of the decimal point. To find n mod d, you can use the fact that if then Thus and so Hence, to find n mod d compute n div d, multiply by d, and subtract the result from n. 8

9 Example 2 Computing div and mod Compute 32 div 9 and 32 mod 9 by hand and with a calculator. Solution: Performing the division by hand gives the following results: If you use a four-function calculator to divide 32 by 9, you obtain an expression like

10 Example 2 Solution cont d Discarding the fractional part gives 32 div 9 = 3, and so A calculator with a built-in integer-part function ipart allows you to input a single expression for each computation: 10

11 Representations of Integers 11

12 Representations of Integers We have defined, an even integer to have the form twice some integer. At that time we could have defined an odd integer to be one that was not even. Instead, because it was more useful for proving theorems, we specified that an odd integer has the form twice some integer plus one. The quotient-remainder theorem brings these two ways of describing odd integers together by guaranteeing that any integer is either even or odd. 12

13 Representations of Integers To see why, let n be any integer, and consider what happens when n is divided by 2. By the quotient-remainder theorem (with d = 2), there exist unique integers q and r such that But the only integers that satisfy are r = 0 and r = 1. It follows that given any integer n, there exists an integer q with 13

14 Representations of Integers In the case that n is even. In the case that n is odd. Hence n is either even or odd, and, because of the uniqueness of q and r, n cannot be both even and odd. The parity of an integer refers to whether the integer is even or odd. For instance, 5 has odd parity and 28 has even parity. We call the fact that any integer is either even or odd the parity property. 14

15 Example 5 Consecutive Integers Have Opposite Parity Prove that given any two consecutive integers, one is even and the other is odd. Solution: Two integers are called consecutive if, and only if, one is one more than the other. So if one integer is m, the next consecutive integer is m + 1. To prove the given statement, start by supposing that you have two particular but arbitrarily chosen consecutive integers. If the smaller is m, then the larger will be m

16 Example 5 Solution cont d How do you know for sure that one of these is even and the other is odd? You might imagine some examples: 4, 5; 12, 13; 1,073, 1,074. In the first two examples, the smaller of the two integers is even and the larger is odd; in the last example, it is the reverse. These observations suggest dividing the analysis into two cases. Case 1: The smaller of the two integers is even. Case 2: The smaller of the two integers is odd. 16

17 Example 5 Solution cont d In the first case, when m is even, it appears that the next consecutive integer is odd. Is this always true? If an integer m is even, must m + 1 necessarily be odd? Of course the answer is yes. Because if m is even, then m = 2k for some integer k, and so m + 1 = 2k + 1, which is odd. In the second case, when m is odd, it appears that the next consecutive integer is even. Is this always true? If an integer m is odd, must m + 1 necessarily be even? 17

18 Example 5 Solution cont d Again, the answer is yes. For if m is odd, then for some integer k, and so which is even. 18

19 Example 5 Solution cont d This discussion is summarized as follows. Proof: Suppose that two [particular but arbitrarily chosen] consecutive integers are given; call them m and m + 1. [We must show that one of m and m + 1 is even and that the other is odd.] 19

20 Example 5 Solution cont d By the parity property, either m is even or m is odd. [We break the proof into two cases depending on whether m is even or odd.] Case 1 (m is even): In this case, m = 2k for some integer k, and so m + 1 = 2k + 1, which is odd [by definition of odd]. Hence in this case, one of m and m + 1 is even and the other is odd. 20

21 Example 5 Solution cont d Case 2 (m is odd): In this case, m = 2k + 1 for some integer k, and so. But k + 1 is an integer because it is a sum of two integers. Therefore, m + 1 equals twice some integer, and thus m + 1 is even. Hence in this case also, one of m and m + 1 is even and the other is odd. 21

22 Example 5 Solution cont d It follows that regardless of which case actually occurs for the particular m and m + 1 that are chosen, one of m and m + 1 is even and the other is odd. [This is what was to be shown.] 22

23 Representations of Integers There are times when division into more than two cases is called for. Suppose that at some stage of developing a proof, you know that a statement of the form is true, and suppose you want to deduce a conclusion C. By definition of or, you know that at least one of the statements A i is true (although you may not know which). In this situation, you should use the method of division into cases. 23

24 Representations of Integers First assume A 1 is true and deduce C; next assume A 2 is true and deduce C; and so forth until you have assumed A n is true and deduced C. At that point, you can conclude that regardless of which statement A i happens to be true, the truth of C follows. 24

25 Example 6 Representations of Integers Modulo 4 Show that any integer can be written in one of the four forms for some integer q. Solution: Given any integer n, apply the quotient-remainder theorem to n with d = 4. This implies that there exist an integer quotient q and a remainder r such that 25

26 Example 6 Solution cont d But the only nonnegative remainders r that are less than 4 are 0, 1, 2, and 3. Hence for some integer q. 26

27 Example 7 The Square of an Odd Integer Prove: The square of any odd integer has the form 8m + 1 for some integer m. Solution: Begin by asking yourself, Where am I starting from? and What do I need to show? To help answer these questions, introduce variables to represent the quantities in the statement to be proved. Formal Restatement: odd integers n, an integer m such that From this, you can immediately identify the starting point and what is to be shown. 27

28 Example 7 Solution cont d Starting Point: Suppose n is a particular but arbitrarily chosen odd integer. To Show: an integer m such that This looks tough. Why should there be an integer m with the property that? That would say that (n 2 1)/8 is an integer, or that 8 divides n

29 Example 7 Solution cont d That means that their product is divisible by 4. But that s not enough. You need to show that the product is divisible by 8. This seems to be a blind alley. You could try another tack. Since n is odd, you could represent n as 2q + 1 for some integer q. Then 29

30 Example 7 Solution cont d It is clear from this analysis that n 2 can be written in the form 4m + 1, but it may not be clear that it can be written as 8m + 1. This also seems to be a blind alley. You could try breaking into cases based on these two different forms. It turns out that this last possibility works! In each of the two cases, the conclusion follows readily by direct calculation. 30

31 Example 7 Solution cont d The details are shown in the following formal proof: Proof: Suppose n is a [particular but arbitrarily chosen] odd integer. By the quotient-remainder theorem, n can be written in one of the forms for some integer q. In fact, since n is odd and 4q and 4q + 2 are even, n must have one of the forms 31

32 Example 7 Solution cont d Case 1 (n = 4q + 1 for some integer q): [We must find an integer m such that ] 32

33 Example 7 Solution cont d Let Then m is an integer since 2 and q are integers and sums and products of integers are integers. Thus, substituting, where m is an integer. 33

34 Example 7 Solution cont d Case 2 (n = 4q + 3 for some integer q): [We must find an integer m such that ] 34

35 Example 7 Solution cont d [The motivation for the choice of algebra steps was the desire to write the expression in the form 8 (some integer) + 1.] Let Then m is an integer since 1, 2, 3, and q are integers and sums and products of integers are integers. Thus, substituting, where m is an integer. 35

36 Example 7 Solution cont d Cases 1 and 2 show that given any odd integer, whether of the form for some integer m. [This is what we needed to show.] 36

37 Representations of Integers Note that the result of Theorem can also be written, For any odd integer n, n 2 mod 8 = 1. In general, according to the quotient-remainder theorem, if an integer n is divided by an integer d, the possible remainders are 0, 1, 2,..., (d 1). This implies that n can be written in one of the forms for some integer q. 37

38 Representations of Integers Many properties of integers can be obtained by giving d a variety of different values and analyzing the cases that result. 38

39 Absolute Value and the Triangle Inequality 39

40 Absolute Value and the Triangle Inequality The triangle inequality is one of the most important results involving absolute value. It has applications in many areas of mathematics. 40

41 Absolute Value and the Triangle Inequality A lemma is a statement that does not have much intrinsic interest but is helpful in deriving other results. 41

42 Absolute Value and the Triangle Inequality Lemmas and now provide a basis for proving the triangle inequality. 42

### Elementary Number Theory and Methods of Proof. CSE 215, Foundations of Computer Science Stony Brook University http://www.cs.stonybrook.

Elementary Number Theory and Methods of Proof CSE 215, Foundations of Computer Science Stony Brook University http://www.cs.stonybrook.edu/~cse215 1 Number theory Properties: 2 Properties of integers (whole

### MODULAR ARITHMETIC. a smallest member. It is equivalent to the Principle of Mathematical Induction.

MODULAR ARITHMETIC 1 Working With Integers The usual arithmetic operations of addition, subtraction and multiplication can be performed on integers, and the result is always another integer Division, on

### 1.6 The Order of Operations

1.6 The Order of Operations Contents: Operations Grouping Symbols The Order of Operations Exponents and Negative Numbers Negative Square Roots Square Root of a Negative Number Order of Operations and Negative

### Homework 5 Solutions

Homework 5 Solutions 4.2: 2: a. 321 = 256 + 64 + 1 = (01000001) 2 b. 1023 = 512 + 256 + 128 + 64 + 32 + 16 + 8 + 4 + 2 + 1 = (1111111111) 2. Note that this is 1 less than the next power of 2, 1024, which

### Discrete Mathematics Lecture 3 Elementary Number Theory and Methods of Proof. Harper Langston New York University

Discrete Mathematics Lecture 3 Elementary Number Theory and Methods of Proof Harper Langston New York University Proof and Counterexample Discovery and proof Even and odd numbers number n from Z is called

### 2. Methods of Proof Types of Proofs. Suppose we wish to prove an implication p q. Here are some strategies we have available to try.

2. METHODS OF PROOF 69 2. Methods of Proof 2.1. Types of Proofs. Suppose we wish to prove an implication p q. Here are some strategies we have available to try. Trivial Proof: If we know q is true then

### Binary Numbers. Bob Brown Information Technology Department Southern Polytechnic State University

Binary Numbers Bob Brown Information Technology Department Southern Polytechnic State University Positional Number Systems The idea of number is a mathematical abstraction. To use numbers, we must represent

### 3 Some Integer Functions

3 Some Integer Functions A Pair of Fundamental Integer Functions The integer function that is the heart of this section is the modulo function. However, before getting to it, let us look at some very simple

### CONTINUED FRACTIONS AND PELL S EQUATION. Contents 1. Continued Fractions 1 2. Solution to Pell s Equation 9 References 12

CONTINUED FRACTIONS AND PELL S EQUATION SEUNG HYUN YANG Abstract. In this REU paper, I will use some important characteristics of continued fractions to give the complete set of solutions to Pell s equation.

### Solutions of Linear Equations in One Variable

2. Solutions of Linear Equations in One Variable 2. OBJECTIVES. Identify a linear equation 2. Combine like terms to solve an equation We begin this chapter by considering one of the most important tools

### Partial Fractions. Combining fractions over a common denominator is a familiar operation from algebra:

Partial Fractions Combining fractions over a common denominator is a familiar operation from algebra: From the standpoint of integration, the left side of Equation 1 would be much easier to work with than

### Pythagorean Triples Pythagorean triple similar primitive

Pythagorean Triples One of the most far-reaching problems to appear in Diophantus Arithmetica was his Problem II-8: To divide a given square into two squares. Namely, find integers x, y, z, so that x 2

PYTHAGOREAN TRIPLES KEITH CONRAD 1. Introduction A Pythagorean triple is a triple of positive integers (a, b, c) where a + b = c. Examples include (3, 4, 5), (5, 1, 13), and (8, 15, 17). Below is an ancient

### Activity 1: Using base ten blocks to model operations on decimals

Rational Numbers 9: Decimal Form of Rational Numbers Objectives To use base ten blocks to model operations on decimal numbers To review the algorithms for addition, subtraction, multiplication and division

### LAMC Beginners Circle: Parity of a Permutation Problems from Handout by Oleg Gleizer Solutions by James Newton

LAMC Beginners Circle: Parity of a Permutation Problems from Handout by Oleg Gleizer Solutions by James Newton 1. Take a two-digit number and write it down three times to form a six-digit number. For example,

### Every Positive Integer is the Sum of Four Squares! (and other exciting problems)

Every Positive Integer is the Sum of Four Squares! (and other exciting problems) Sophex University of Texas at Austin October 18th, 00 Matilde N. Lalín 1. Lagrange s Theorem Theorem 1 Every positive integer

### Elementary Number Theory We begin with a bit of elementary number theory, which is concerned

CONSTRUCTION OF THE FINITE FIELDS Z p S. R. DOTY Elementary Number Theory We begin with a bit of elementary number theory, which is concerned solely with questions about the set of integers Z = {0, ±1,

### Answer Key for California State Standards: Algebra I

Algebra I: Symbolic reasoning and calculations with symbols are central in algebra. Through the study of algebra, a student develops an understanding of the symbolic language of mathematics and the sciences.

### 25 Integers: Addition and Subtraction

25 Integers: Addition and Subtraction Whole numbers and their operations were developed as a direct result of people s need to count. But nowadays many quantitative needs aside from counting require numbers

### Indices and Surds. The Laws on Indices. 1. Multiplication: Mgr. ubomíra Tomková

Indices and Surds The term indices refers to the power to which a number is raised. Thus x is a number with an index of. People prefer the phrase "x to the power of ". Term surds is not often used, instead

### Basic Proof Techniques

Basic Proof Techniques David Ferry dsf43@truman.edu September 13, 010 1 Four Fundamental Proof Techniques When one wishes to prove the statement P Q there are four fundamental approaches. This document

### Chapter 11 Number Theory

Chapter 11 Number Theory Number theory is one of the oldest branches of mathematics. For many years people who studied number theory delighted in its pure nature because there were few practical applications

### Settling a Question about Pythagorean Triples

Settling a Question about Pythagorean Triples TOM VERHOEFF Department of Mathematics and Computing Science Eindhoven University of Technology P.O. Box 513, 5600 MB Eindhoven, The Netherlands E-Mail address:

### COMP 250 Fall 2012 lecture 2 binary representations Sept. 11, 2012

Binary numbers The reason humans represent numbers using decimal (the ten digits from 0,1,... 9) is that we have ten fingers. There is no other reason than that. There is nothing special otherwise about

### The Division Algorithm E. L. Lady (July 11, 2000)

The Division Algorithm E. L. Lady (July 11, 2000) Theorem [Division Algorithm]. Given any strictly positive integer d and any integer a, there exist unique integers q and r such that a = qd + r, and 0

### CS 103X: Discrete Structures Homework Assignment 3 Solutions

CS 103X: Discrete Structures Homework Assignment 3 s Exercise 1 (20 points). On well-ordering and induction: (a) Prove the induction principle from the well-ordering principle. (b) Prove the well-ordering

### Linear Codes. In the V[n,q] setting, the terms word and vector are interchangeable.

Linear Codes Linear Codes In the V[n,q] setting, an important class of codes are the linear codes, these codes are the ones whose code words form a sub-vector space of V[n,q]. If the subspace of V[n,q]

### Clock Arithmetic and Modular Systems Clock Arithmetic The introduction to Chapter 4 described a mathematical system

CHAPTER Number Theory FIGURE FIGURE FIGURE Plus hours Plus hours Plus hours + = + = + = FIGURE. Clock Arithmetic and Modular Systems Clock Arithmetic The introduction to Chapter described a mathematical

### LINEAR INEQUALITIES. Mathematics is the art of saying many things in many different ways. MAXWELL

Chapter 6 LINEAR INEQUALITIES 6.1 Introduction Mathematics is the art of saying many things in many different ways. MAXWELL In earlier classes, we have studied equations in one variable and two variables

### Paramedic Program Pre-Admission Mathematics Test Study Guide

Paramedic Program Pre-Admission Mathematics Test Study Guide 05/13 1 Table of Contents Page 1 Page 2 Page 3 Page 4 Page 5 Page 6 Page 7 Page 8 Page 9 Page 10 Page 11 Page 12 Page 13 Page 14 Page 15 Page

### We now explore a third method of proof: proof by contradiction.

CHAPTER 6 Proof by Contradiction We now explore a third method of proof: proof by contradiction. This method is not limited to proving just conditional statements it can be used to prove any kind of statement

### A Second Course in Mathematics Concepts for Elementary Teachers: Theory, Problems, and Solutions

A Second Course in Mathematics Concepts for Elementary Teachers: Theory, Problems, and Solutions Marcel B. Finan Arkansas Tech University c All Rights Reserved First Draft February 8, 2006 1 Contents 25

### Solution to Exercise 2.2. Both m and n are divisible by d, som = dk and n = dk. Thus m ± n = dk ± dk = d(k ± k ),som + n and m n are divisible by d.

[Chap. ] Pythagorean Triples 6 (b) The table suggests that in every primitive Pythagorean triple, exactly one of a, b,orc is a multiple of 5. To verify this, we use the Pythagorean Triples Theorem to write

### 2 is the BASE 5 is the EXPONENT. Power Repeated Standard Multiplication. To evaluate a power means to find the answer in standard form.

Grade 9 Mathematics Unit : Powers and Exponent Rules Sec.1 What is a Power 5 is the BASE 5 is the EXPONENT The entire 5 is called a POWER. 5 = written as repeated multiplication. 5 = 3 written in standard

### Section 6-2 Mathematical Induction

6- Mathematical Induction 457 In calculus, it can be shown that e x k0 x k k! x x x3!! 3!... xn n! where the larger n is, the better the approximation. Problems 6 and 6 refer to this series. Note that

### TYPES OF NUMBERS. Example 2. Example 1. Problems. Answers

TYPES OF NUMBERS When two or more integers are multiplied together, each number is a factor of the product. Nonnegative integers that have exactly two factors, namely, one and itself, are called prime

### 3. Applications of Number Theory

3. APPLICATIONS OF NUMBER THEORY 163 3. Applications of Number Theory 3.1. Representation of Integers. Theorem 3.1.1. Given an integer b > 1, every positive integer n can be expresses uniquely as n = a

### SECTION 10-2 Mathematical Induction

73 0 Sequences and Series 6. Approximate e 0. using the first five terms of the series. Compare this approximation with your calculator evaluation of e 0.. 6. Approximate e 0.5 using the first five terms

### 3. Mathematical Induction

3. MATHEMATICAL INDUCTION 83 3. Mathematical Induction 3.1. First Principle of Mathematical Induction. Let P (n) be a predicate with domain of discourse (over) the natural numbers N = {0, 1,,...}. If (1)

### Properties of Real Numbers

16 Chapter P Prerequisites P.2 Properties of Real Numbers What you should learn: Identify and use the basic properties of real numbers Develop and use additional properties of real numbers Why you should

### Math Workshop October 2010 Fractions and Repeating Decimals

Math Workshop October 2010 Fractions and Repeating Decimals This evening we will investigate the patterns that arise when converting fractions to decimals. As an example of what we will be looking at,

### Part 1 Expressions, Equations, and Inequalities: Simplifying and Solving

Section 7 Algebraic Manipulations and Solving Part 1 Expressions, Equations, and Inequalities: Simplifying and Solving Before launching into the mathematics, let s take a moment to talk about the words

### Polynomial Expression

DETAILED SOLUTIONS AND CONCEPTS - POLYNOMIAL EXPRESSIONS Prepared by Ingrid Stewart, Ph.D., College of Southern Nevada Please Send Questions and Comments to ingrid.stewart@csn.edu. Thank you! PLEASE NOTE

### PRINCIPLES OF PROBLEM SOLVING

PRINCIPLES OF PROBLEM SOLVING There are no hard and fast rules that will ensure success in solving problems. However, it is possible to outline some general steps in the problem-solving process and to

### def: An axiom is a statement that is assumed to be true, or in the case of a mathematical system, is used to specify the system.

Section 1.5 Methods of Proof 1.5.1 1.5 METHODS OF PROOF Some forms of argument ( valid ) never lead from correct statements to an incorrect. Some other forms of argument ( fallacies ) can lead from true

### 3 0 + 4 + 3 1 + 1 + 3 9 + 6 + 3 0 + 1 + 3 0 + 1 + 3 2 mod 10 = 4 + 3 + 1 + 27 + 6 + 1 + 1 + 6 mod 10 = 49 mod 10 = 9.

SOLUTIONS TO HOMEWORK 2 - MATH 170, SUMMER SESSION I (2012) (1) (Exercise 11, Page 107) Which of the following is the correct UPC for Progresso minestrone soup? Show why the other numbers are not valid

### Click on the links below to jump directly to the relevant section

Click on the links below to jump directly to the relevant section What is algebra? Operations with algebraic terms Mathematical properties of real numbers Order of operations What is Algebra? Algebra is

### The Inverse of a Square Matrix

These notes closely follow the presentation of the material given in David C Lay s textbook Linear Algebra and its Applications (3rd edition) These notes are intended primarily for in-class presentation

### Rules of Signs for Decimals

CHAPTER 6 C Rules of Signs for Decimals c GOAL Apply the rules of signs for calculating with decimals. You will need number lines a calculator with a sign change key Learn about the Math Positive and negative

9.3 Solving Quadratic Equations by Using the Quadratic Formula 9.3 OBJECTIVES 1. Solve a quadratic equation by using the quadratic formula 2. Determine the nature of the solutions of a quadratic equation

### 23. RATIONAL EXPONENTS

23. RATIONAL EXPONENTS renaming radicals rational numbers writing radicals with rational exponents When serious work needs to be done with radicals, they are usually changed to a name that uses exponents,

### Solving Rational Equations

Lesson M Lesson : Student Outcomes Students solve rational equations, monitoring for the creation of extraneous solutions. Lesson Notes In the preceding lessons, students learned to add, subtract, multiply,

### Zeros of a Polynomial Function

Zeros of a Polynomial Function An important consequence of the Factor Theorem is that finding the zeros of a polynomial is really the same thing as factoring it into linear factors. In this section we

### MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS

MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS Systems of Equations and Matrices Representation of a linear system The general system of m equations in n unknowns can be written a x + a 2 x 2 + + a n x n b a

### Lesson 9: Radicals and Conjugates

Student Outcomes Students understand that the sum of two square roots (or two cube roots) is not equal to the square root (or cube root) of their sum. Students convert expressions to simplest radical form.

### a = bq + r where 0 r < b.

Lecture 5: Euclid s algorithm Introduction The fundamental arithmetic operations are addition, subtraction, multiplication and division. But there is a fifth operation which I would argue is just as fundamental

### 26 Integers: Multiplication, Division, and Order

26 Integers: Multiplication, Division, and Order Integer multiplication and division are extensions of whole number multiplication and division. In multiplying and dividing integers, the one new issue

### Appendix F: Mathematical Induction

Appendix F: Mathematical Induction Introduction In this appendix, you will study a form of mathematical proof called mathematical induction. To see the logical need for mathematical induction, take another

### Expressions and Equations

Expressions and Equations Standard: CC.6.EE.2 Write expressions that record operations with numbers and with letters standing for numbers. For example, express the calculation Subtract y from 5 as 5 y.

### Math Review. for the Quantitative Reasoning Measure of the GRE revised General Test

Math Review for the Quantitative Reasoning Measure of the GRE revised General Test www.ets.org Overview This Math Review will familiarize you with the mathematical skills and concepts that are important

### Continued Fractions and the Euclidean Algorithm

Continued Fractions and the Euclidean Algorithm Lecture notes prepared for MATH 326, Spring 997 Department of Mathematics and Statistics University at Albany William F Hammond Table of Contents Introduction

### Math Circle Beginners Group October 18, 2015

Math Circle Beginners Group October 18, 2015 Warm-up problem 1. Let n be a (positive) integer. Prove that if n 2 is odd, then n is also odd. (Hint: Use a proof by contradiction.) Suppose that n 2 is odd

### 1.4 Factors and Prime Factorization

1.4 Factors and Prime Factorization Recall from Section 1.2 that the word factor refers to a number which divides into another number. For example, 3 and 6 are factors of 18 since 3 6 = 18. Note also that

### CHAPTER 5. Number Theory. 1. Integers and Division. Discussion

CHAPTER 5 Number Theory 1. Integers and Division 1.1. Divisibility. Definition 1.1.1. Given two integers a and b we say a divides b if there is an integer c such that b = ac. If a divides b, we write a

### The Product Property of Square Roots states: For any real numbers a and b, where a 0 and b 0, ab = a b.

Chapter 9. Simplify Radical Expressions Any term under a radical sign is called a radical or a square root expression. The number or expression under the the radical sign is called the radicand. The radicand

### 3.1. RATIONAL EXPRESSIONS

3.1. RATIONAL EXPRESSIONS RATIONAL NUMBERS In previous courses you have learned how to operate (do addition, subtraction, multiplication, and division) on rational numbers (fractions). Rational numbers

### 1. Give the 16 bit signed (twos complement) representation of the following decimal numbers, and convert to hexadecimal:

Exercises 1 - number representations Questions 1. Give the 16 bit signed (twos complement) representation of the following decimal numbers, and convert to hexadecimal: (a) 3012 (b) - 435 2. For each of

### HOMEWORK 5 SOLUTIONS. n!f n (1) lim. ln x n! + xn x. 1 = G n 1 (x). (2) k + 1 n. (n 1)!

Math 7 Fall 205 HOMEWORK 5 SOLUTIONS Problem. 2008 B2 Let F 0 x = ln x. For n 0 and x > 0, let F n+ x = 0 F ntdt. Evaluate n!f n lim n ln n. By directly computing F n x for small n s, we obtain the following

### Math 319 Problem Set #3 Solution 21 February 2002

Math 319 Problem Set #3 Solution 21 February 2002 1. ( 2.1, problem 15) Find integers a 1, a 2, a 3, a 4, a 5 such that every integer x satisfies at least one of the congruences x a 1 (mod 2), x a 2 (mod

### Spring 2007 Math 510 Hints for practice problems

Spring 2007 Math 510 Hints for practice problems Section 1 Imagine a prison consisting of 4 cells arranged like the squares of an -chessboard There are doors between all adjacent cells A prisoner in one

### Applications of Fermat s Little Theorem and Congruences

Applications of Fermat s Little Theorem and Congruences Definition: Let m be a positive integer. Then integers a and b are congruent modulo m, denoted by a b mod m, if m (a b). Example: 3 1 mod 2, 6 4

### Section 4.2: The Division Algorithm and Greatest Common Divisors

Section 4.2: The Division Algorithm and Greatest Common Divisors The Division Algorithm The Division Algorithm is merely long division restated as an equation. For example, the division 29 r. 20 32 948

### Math 55: Discrete Mathematics

Math 55: Discrete Mathematics UC Berkeley, Fall 2011 Homework # 5, due Wednesday, February 22 5.1.4 Let P (n) be the statement that 1 3 + 2 3 + + n 3 = (n(n + 1)/2) 2 for the positive integer n. a) What

### Pigeonhole Principle Solutions

Pigeonhole Principle Solutions 1. Show that if we take n + 1 numbers from the set {1, 2,..., 2n}, then some pair of numbers will have no factors in common. Solution: Note that consecutive numbers (such

### Limit processes are the basis of calculus. For example, the derivative. f f (x + h) f (x)

SEC. 4.1 TAYLOR SERIES AND CALCULATION OF FUNCTIONS 187 Taylor Series 4.1 Taylor Series and Calculation of Functions Limit processes are the basis of calculus. For example, the derivative f f (x + h) f

### Math 0980 Chapter Objectives. Chapter 1: Introduction to Algebra: The Integers.

Math 0980 Chapter Objectives Chapter 1: Introduction to Algebra: The Integers. 1. Identify the place value of a digit. 2. Write a number in words or digits. 3. Write positive and negative numbers used

### Computer Science 281 Binary and Hexadecimal Review

Computer Science 281 Binary and Hexadecimal Review 1 The Binary Number System Computers store everything, both instructions and data, by using many, many transistors, each of which can be in one of two

### 8 Divisibility and prime numbers

8 Divisibility and prime numbers 8.1 Divisibility In this short section we extend the concept of a multiple from the natural numbers to the integers. We also summarize several other terms that express

### DigitalCommons@University of Nebraska - Lincoln

University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln MAT Exam Expository Papers Math in the Middle Institute Partnership 7-1-007 Pythagorean Triples Diane Swartzlander University

### MULTIPLICATION AND DIVISION OF REAL NUMBERS In this section we will complete the study of the four basic operations with real numbers.

1.4 Multiplication and (1-25) 25 In this section Multiplication of Real Numbers Division by Zero helpful hint The product of two numbers with like signs is positive, but the product of three numbers with

### Supplemental Worksheet Problems To Accompany: The Pre-Algebra Tutor: Volume 1 Section 5 Subtracting Integers

Supplemental Worksheet Problems To Accompany: The Pre-Algebra Tutor: Volume 1 Please watch Section 5 of this DVD before working these problems. The DVD is located at: http://www.mathtutordvd.com/products/item66.cfm

### Definition 1 Let a and b be positive integers. A linear combination of a and b is any number n = ax + by, (1) where x and y are whole numbers.

Greatest Common Divisors and Linear Combinations Let a and b be positive integers The greatest common divisor of a and b ( gcd(a, b) ) has a close and very useful connection to things called linear combinations

### Lesson Plan. N.RN.3: Use properties of rational and irrational numbers.

N.RN.3: Use properties of rational irrational numbers. N.RN.3: Use Properties of Rational Irrational Numbers Use properties of rational irrational numbers. 3. Explain why the sum or product of two rational

### 8 Primes and Modular Arithmetic

8 Primes and Modular Arithmetic 8.1 Primes and Factors Over two millennia ago already, people all over the world were considering the properties of numbers. One of the simplest concepts is prime numbers.

### NUMBER SYSTEMS. William Stallings

NUMBER SYSTEMS William Stallings The Decimal System... The Binary System...3 Converting between Binary and Decimal...3 Integers...4 Fractions...5 Hexadecimal Notation...6 This document available at WilliamStallings.com/StudentSupport.html

### Corinne: I m thinking of a number between 220 and 20. What s my number? Benjamin: Is it 25?

Walk the Line Adding Integers, Part I Learning Goals In this lesson, you will: Model the addition of integers on a number line. Develop a rule for adding integers. Corinne: I m thinking of a number between

### Trigonometric Functions and Triangles

Trigonometric Functions and Triangles Dr. Philippe B. Laval Kennesaw STate University August 27, 2010 Abstract This handout defines the trigonometric function of angles and discusses the relationship between

### Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan

Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan 3 Binary Operations We are used to addition and multiplication of real numbers. These operations combine two real numbers

### Heron Triangles. by Kathy Temple. Arizona Teacher Institute. Math Project Thesis

Heron Triangles by Kathy Temple Arizona Teacher Institute Math Project Thesis In partial fulfillment of the M.S. Degree in Middle School Mathematics Teaching Leadership Department of Mathematics University

### CHAPTER 3 Numbers and Numeral Systems

CHAPTER 3 Numbers and Numeral Systems Numbers play an important role in almost all areas of mathematics, not least in calculus. Virtually all calculus books contain a thorough description of the natural,

### x if x 0, x if x < 0.

Chapter 3 Sequences In this chapter, we discuss sequences. We say what it means for a sequence to converge, and define the limit of a convergent sequence. We begin with some preliminary results about the

### Simplifying Square-Root Radicals Containing Perfect Square Factors

DETAILED SOLUTIONS AND CONCEPTS - OPERATIONS ON IRRATIONAL NUMBERS Prepared by Ingrid Stewart, Ph.D., College of Southern Nevada Please Send Questions and Comments to ingrid.stewart@csn.edu. Thank you!

### V55.0106 Quantitative Reasoning: Computers, Number Theory and Cryptography

V55.0106 Quantitative Reasoning: Computers, Number Theory and Cryptography 3 Congruence Congruences are an important and useful tool for the study of divisibility. As we shall see, they are also critical

### Section 3 Sequences and Limits, Continued.

Section 3 Sequences and Limits, Continued. Lemma 3.6 Let {a n } n N be a convergent sequence for which a n 0 for all n N and it α 0. Then there exists N N such that for all n N. α a n 3 α In particular

### Discrete Mathematics: Solutions to Homework (12%) For each of the following sets, determine whether {2} is an element of that set.

Discrete Mathematics: Solutions to Homework 2 1. (12%) For each of the following sets, determine whether {2} is an element of that set. (a) {x R x is an integer greater than 1} (b) {x R x is the square

### ALGEBRA. sequence, term, nth term, consecutive, rule, relationship, generate, predict, continue increase, decrease finite, infinite

ALGEBRA Pupils should be taught to: Generate and describe sequences As outcomes, Year 7 pupils should, for example: Use, read and write, spelling correctly: sequence, term, nth term, consecutive, rule,

### Solving Inequalities Examples

Solving Inequalities Examples 1. Joe and Katie are dancers. Suppose you compare their weights. You can make only one of the following statements. Joe s weight is less than Kate s weight. Joe s weight is