# SYNTHETIC DIVISION AND THE FACTOR THEOREM

Save this PDF as:

Size: px
Start display at page:

## Transcription

1 628 (11 48) Chapter 11 Functions In this section Synthetic Division The Factor Theorem Solving Polynomial Equations 11.6 SYNTHETIC DIVISION AND THE FACTOR THEOREM In this section we study functions defined by polynomials and learn to solve some higher-degree polynomial equations. Synthetic Division When dividing a polynomial by a binomial of the form x c, we can use synthetic division to speed up the process. For synthetic division we write only the essential parts of ordinary division. For example, to divide x 3 5x 2 4x 3byx 2, we write only the coefficients of the dividend 1, 5, 4, and 3 in order of descending exponents. From the divisor x 2 we use 2 and start with the following arrangement: (1 x 3 5x 2 4x 3) (x 2) Next we bring the first coefficient, 1, straight down: Bring down 1 We then multiply the 1 by the 2 from the divisor, place the answer under the 5, and then add that column. Using 2 for x 2 allows us to add the column rather than subtract as in ordinary division: } Add Multiply 1 3 We then repeat the multiply-and-add step for each of the remaining columns: Multiply Remainder Quotient From the bottom row we can read the quotient and remainder. Since the degree of the quotient is one less than the degree of the dividend, the quotient is 1x 2 3x 2. The remainder is 7. The strategy for getting the quotient Q(x) and remainder R by synthetic division can be stated as follows. Strategy for Using Synthetic Division 1. List the coefficients of the polynomial (the dividend). 2. Be sure to include zeros for any missing terms in the dividend. 3. For dividing by x c, place c to the left. 4. Bring the first coefficient down. 5. Multiply by c and add for each column. 6. Read Q(x) and R from the bottom row.

2 11.6 Synthetic Division and the Factor Theorem (11 49) 629 CAUTION Synthetic division is used only for dividing a polynomial by the binomial x c, where c is a constant. If the binomial is x 7, then c 7. For the binomial x 7 we have x 7 x ( 7) and c 7. E X A M P L E 1 Using synthetic division Find the quotient and remainder when 2x 4 5x 2 6x 9 is divided by x 2. Since x 2 x ( 2), we use 2 for the divisor. Because x 3 is missing in the dividend, use a zero for the coefficient of x 3 : Multiply Quotient and remainder Because the degree of the dividend is 4, the degree of the quotient is 3. The quotient is 2x 3 4x 2 3x, and the remainder is 9. 2x 4 0 x 3 5x 2 6x 9 Add helpful hint Note that the zeros of the polynomial function are factors of the constant term 15. The Factor Theorem Consider the polynomial function P(x) x 2 2x 15. The values of x for which P(x) 0 are called the zeros or roots of the function. We can find the zeros of the function by solving the equation P(x) 0: x 2 2x 15 0 (x 5)(x 3) 0 x 5 0 or x 3 0 x 5 or x 3 Because x 5 is a factor of x 2 2x 15, 5 is a solution to the equation x 2 2x 15 0 and a zero of the function P(x) x 2 2x 15. We can check that 5 is a zero of P(x) x 2 2x 15 as follows: P( 5) ( 5) 2 2( 5) Because x 3 is a factor of the polynomial, 3 is also a solution to the equation x 2 2x 15 0 and a zero of the polynomial function. Check that P(3) 0: P(3) Every linear factor of the polynomial corresponds to a zero of the polynomial function, and every zero of the polynomial function corresponds to a linear factor. Now suppose P(x) represents an arbitrary polynomial. If x c is a factor of the polynomial P(x), then c is a solution to the equation P(x) 0, and so P(c) 0. If we divide P(x) byx c and the remainder is 0, we must have P(x) (x c)(quotient). Dividend equals the divisor times the quotient. If the remainder is 0, then x c is a factor of P(x).

3 630 (11 50) Chapter 11 Functions The factor theorem summarizes these ideas. The Factor Theorem The following statements are equivalent for any polynomial P(x). 1. The remainder is zero when P(x) is divided by x c. 2. x c is a factor of P(x). 3. c is a solution to P(x) c is a zero of the function P(x), or P(c) 0. To say that statements are equivalent means that the truth of any one of them implies that the others are true. According to the factor theorem, if we want to determine whether a given number c is a zero of a polynomial function, we can divide the polynomial by x c. The remainder is zero if and only if c is a zero of the polynomial function. The quickest way to divide by x c is to use synthetic division. E X A M P L E 2 calculator close-up You can perform the multiplyand-add steps for synthetic division with a graphing calculator as shown here. Using the factor theorem Use synthetic division to determine whether 2 is a zero of P(x) x 3 3x 2 5x 2. By the factor theorem, 2 is a zero of the function if and only if the remainder is zero when P(x) is divided by x 2. We can use synthetic division to determine the remainder. If we divide by x 2, we use 2 on the left in synthetic division along with the coefficients 1, 3, 5, 2 from the polynomial: Because the remainder is 4, 2 is not a zero of the function. E X A M P L E 3 Using the factor theorem Use synthetic division to determine whether 4 is a solution to the equation 2x 4 28x 2 14x 8 0. By the factor theorem, 4 is a solution to the equation if and only if the remainder is zero when P(x) is divided by x 4. When dividing by x 4, we use 4 in the synthetic division: Because the remainder is zero, 4 is a solution to 2x 4 28x 2 14x 8 0.

4 11.6 Synthetic Division and the Factor Theorem (11 51) 631 In the next example we use the factor theorem to determine whether a given binomial is a factor of a polynomial. E X A M P L E 4 study tip Stay calm and confident. Take breaks when you study. Get 6 to 8 hours of sleep every night and keep reminding yourself that working hard all of the semester will really pay off. Using the factor theorem Use synthetic division to determine whether x 4 is a factor of x 3 3x According to the factor theorem, x 4 is a factor of x 3 3x 2 16 if and only if the remainder is zero when the polynomial is divided by x 4. Use synthetic division to determine the remainder: Because the remainder is zero, x 4 is a factor, and the polynomial can be written as x 3 3x 2 16 (x 4)(x 2 x 4). Because x 2 x 4 is a prime polynomial, the factoring is complete. Solving Polynomial Equations The techniques used to solve polynomial equations of degree 3 or higher are not as straightforward as those used to solve linear equations and quadratic equations. The next example shows how the factor theorem can be used to solve a third-degree polynomial equation. E X A M P L E 5 Solving a third-degree equation Suppose the equation x 3 4x 2 17x 60 0 is known to have a solution that is an integer between 3 and 3 inclusive. Find the solution set. Because one of the numbers 3, 2, 1, 0, 1, 2, and 3 is a solution to the equation, we can use synthetic division with these numbers until we discover which one is a solution. We arbitrarily select 1 to try first: helpful hint How did we know where to find a solution to the equation in Example 5? One way to get a good idea of where the solutions are is to graph y x 3 4x 2 17x 60. Every x-intercept on this graph corresponds to a solution to the equation Because the remainder is 40, 1 is not a solution to the equation. Next try 2: Because the remainder is not zero, 2 is not a solution to the equation. Next try 3:

5 632 (11 52) Chapter 11 Functions The remainder is zero, so 3 is a solution to the equation, and x 3 is a factor of the polynomial. (If 3 had not produced a remainder of zero, then we would have tried 3, 2, 1, and 0.) The other factor is the quotient, x 2 x 20. x 3 4x 2 17x 60 0 (x 3)(x 2 x 20) 0 Use the results of synthetic division to factor. (x 3)(x 5)(x 4) 0 Factor completely. x 3 0 or x 5 0 or x 4 0 x 3 or x 5 or x 4 Check each of these solutions in the original equation. The solution set is 3, 5, 4. WARM-UPS True or false? Explain your answers. 1. To divide x 3 4x 2 3byx 5, use 5 in the synthetic division. 2. To divide 5x 4 x 3 x 2byx 7, use 7 in the synthetic division. 3. The number 2 is a zero of P(x) 3x 3 5x 2 2x If x 3 8 is divided by x 2, then R If R 0 when x 4 1 is divided by x a, then x a is a factor of x If 2 satisfies x 4 8x 0, then x 2 is a factor of x 4 8x. 7. The binomial x 1 is a factor of x 35 3x 24 2x The binomial x 1 is a factor of x 3 3x 2 x If x 3 5x 4 is divided by x 1, then R If R 0 when P(x) x 3 5x 2 is divided by x 2, then P( 2) EXERCISES Reading and Writing After reading this section, write out the answers to these questions. Use complete sentences. 1. What is a zero of a function? 6. What are two ways to determine whether c is a zero of a polynomial? 2. What is a root of a function? 3. What does it mean that statements are equivalent? 4. What is the quickest way to divide a polynomial by x c? 5. If the remainder is zero when you divide P(x) by x c, then what can you say about P(c)? Use synthetic division to find the quotient and remainder when the first polynomial is divided by the second. See Example x 3 5x 2 6x 3, x 2 8. x 3 6x 2 3x 5, x x 2 4x 5, x x 2 7x 4, x x 4 15x 2 7x 9, x x 4 3x 2 5, x 2

6 11.6 Synthetic Division and the Factor Theorem (11 53) x 5 1, x x 6 1, x x 3 5x 6, x x 3 3x 7, x x x 0.6, x x 2 3.5x 4.7, x 1.8 Determine whether each given value of x is a zero of the given function. See Example x 1, P(x) x 3 x 2 x x 2, P(x) 2x 3 5x 2 3x x 3, P(x) x 4 3x 3 2x x 4, P(x) x 4 x 2 8x x 2, P(x) 2x 3 4x 2 5x x 3, P(x) x 3 5x 2 2x 1 Use synthetic division to determine whether each given value of x is a solution to the given equation. See Example x 3, x 3 5x 2 2x x 5, x 2 3x x 2, x 4 3x 3 5x 2 10x x 3, x 3 4x 2 x x 4, 2x 4 30x 2 5x x 6, x 4 x 3 40x x 3, 0.8x 2 0.3x x 5, 6.2x x Use synthetic division to determine whether the first polynomial is a factor of the second. If it is, then factor the polynomial completely. See Example x 3, x 3 6x x 2, x 3 6x x 5, x 3 9x 2 23x x 3, x 4 9x 2 x x 2, x 3 8x 2 4x x 5, x x 1, x 4 x 3 8x x 2, x 3 6x 2 12x x 0.5, 2x 3 3x 2 11x x 1 3, 3x3 10x 2 27x 10 Solve each equation, given that at least one of the solutions to each equation is an integer between 5 and 5. See Example x 3 13x x 3 2x 2 5x x 3 9x 2 7x x 3 13x x 3 3x 2 50x x 3 7x 2 2x x 3 5x 2 3x x 3 6x 2 12x x 4 4x 3 3x 2 4x x 4 x 3 7x 2 x 6 0 GETTING MORE INVOLVED 53. Exploration. We can find the zeros of a polynomial function by solving a polynomial equation. We can also work backward to find a polynomial function that has given zeros. a) Write a first-degree polynomial function whose zero is 2. b) Write a second-degree polynomial function whose zeros are 5 and 5. c) Write a third-degree polynomial function whose zeros are 1, 3, and 4. d) Is there a polynomial function with any given number of zeros? What is its degree? GRAPHING CALCULATOR EXERCISES 54. The x-coordinate of each x-intercept on the graph of a polynomial function is a zero of the polynomial function. Find the zeros of each function from its graph. Use synthetic division to check that the zeros found on your calculator really are zeros of the function. a) P(x) x 3 2x 2 5x 6 b) P(x) 12x 3 20x 2 x With a graphing calculator an equation can be solved without the kind of hint that was given for Exercises Solve each of the following equations by examining the graph of a corresponding function. Use synthetic division to check. a) x 3 4x 2 7x 10 0 b) 8x 3 20x 2 18x 45 0

### 63. Graph y 1 2 x and y 2 THE FACTOR THEOREM. The Factor Theorem. Consider the polynomial function. P(x) x 2 2x 15.

9.4 (9-27) 517 Gear ratio d) For a fixed wheel size and chain ring, does the gear ratio increase or decrease as the number of teeth on the cog increases? decreases 100 80 60 40 20 27-in. wheel, 44 teeth

### Zeros of Polynomial Functions

Review: Synthetic Division Find (x 2-5x - 5x 3 + x 4 ) (5 + x). Factor Theorem Solve 2x 3-5x 2 + x + 2 =0 given that 2 is a zero of f(x) = 2x 3-5x 2 + x + 2. Zeros of Polynomial Functions Introduction

### Polynomial and Synthetic Division. Long Division of Polynomials. Example 1. 6x 2 7x 2 x 2) 19x 2 16x 4 6x3 12x 2 7x 2 16x 7x 2 14x. 2x 4.

_.qd /7/5 9: AM Page 5 Section.. Polynomial and Synthetic Division 5 Polynomial and Synthetic Division What you should learn Use long division to divide polynomials by other polynomials. Use synthetic

### JUST THE MATHS UNIT NUMBER 1.8. ALGEBRA 8 (Polynomials) A.J.Hobson

JUST THE MATHS UNIT NUMBER 1.8 ALGEBRA 8 (Polynomials) by A.J.Hobson 1.8.1 The factor theorem 1.8.2 Application to quadratic and cubic expressions 1.8.3 Cubic equations 1.8.4 Long division of polynomials

### 5.1 The Remainder and Factor Theorems; Synthetic Division

5.1 The Remainder and Factor Theorems; Synthetic Division In this section you will learn to: understand the definition of a zero of a polynomial function use long and synthetic division to divide polynomials

### 3.2 The Factor Theorem and The Remainder Theorem

3. The Factor Theorem and The Remainder Theorem 57 3. The Factor Theorem and The Remainder Theorem Suppose we wish to find the zeros of f(x) = x 3 + 4x 5x 4. Setting f(x) = 0 results in the polynomial

### Zero: If P is a polynomial and if c is a number such that P (c) = 0 then c is a zero of P.

MATH 11011 FINDING REAL ZEROS KSU OF A POLYNOMIAL Definitions: Polynomial: is a function of the form P (x) = a n x n + a n 1 x n 1 + + a x + a 1 x + a 0. The numbers a n, a n 1,..., a 1, a 0 are called

### SOLVING POLYNOMIAL EQUATIONS

C SOLVING POLYNOMIAL EQUATIONS We will assume in this appendix that you know how to divide polynomials using long division and synthetic division. If you need to review those techniques, refer to an algebra

### Pre-Calculus II Factoring and Operations on Polynomials

Factoring... 1 Polynomials...1 Addition of Polynomials... 1 Subtraction of Polynomials...1 Multiplication of Polynomials... Multiplying a monomial by a monomial... Multiplying a monomial by a polynomial...

### A.4 Polynomial Division; Synthetic Division

SECTION A.4 Polynomial Division; Synthetic Division 977 A.4 Polynomial Division; Synthetic Division OBJECTIVES 1 Divide Polynomials Using Long Division 2 Divide Polynomials Using Synthetic Division 1 Divide

### Application. Outline. 3-1 Polynomial Functions 3-2 Finding Rational Zeros of. Polynomial. 3-3 Approximating Real Zeros of.

Polynomial and Rational Functions Outline 3-1 Polynomial Functions 3-2 Finding Rational Zeros of Polynomials 3-3 Approximating Real Zeros of Polynomials 3-4 Rational Functions Chapter 3 Group Activity:

### Zeros of a Polynomial Function

Zeros of a Polynomial Function An important consequence of the Factor Theorem is that finding the zeros of a polynomial is really the same thing as factoring it into linear factors. In this section we

### In this lesson you will learn to find zeros of polynomial functions that are not factorable.

2.6. Rational zeros of polynomial functions. In this lesson you will learn to find zeros of polynomial functions that are not factorable. REVIEW OF PREREQUISITE CONCEPTS: A polynomial of n th degree has

### Solutions to Self-Test for Chapter 4 c4sts - p1

Solutions to Self-Test for Chapter 4 c4sts - p1 1. Graph a polynomial function. Label all intercepts and describe the end behavior. a. P(x) = x 4 2x 3 15x 2. (1) Domain = R, of course (since this is a

### FACTORING POLYNOMIALS

296 (5-40) Chapter 5 Exponents and Polynomials where a 2 is the area of the square base, b 2 is the area of the square top, and H is the distance from the base to the top. Find the volume of a truncated

### Determinants can be used to solve a linear system of equations using Cramer s Rule.

2.6.2 Cramer s Rule Determinants can be used to solve a linear system of equations using Cramer s Rule. Cramer s Rule for Two Equations in Two Variables Given the system This system has the unique solution

### 2.5 Zeros of a Polynomial Functions

.5 Zeros of a Polynomial Functions Section.5 Notes Page 1 The first rule we will talk about is Descartes Rule of Signs, which can be used to determine the possible times a graph crosses the x-axis and

### Monomials with the same variables to the same powers are called like terms, If monomials are like terms only their coefficients can differ.

Chapter 7.1 Introduction to Polynomials A monomial is an expression that is a number, a variable or the product of a number and one or more variables with nonnegative exponents. Monomials that are real

### Zeros of Polynomial Functions

Zeros of Polynomial Functions The Rational Zero Theorem If f (x) = a n x n + a n-1 x n-1 + + a 1 x + a 0 has integer coefficients and p/q (where p/q is reduced) is a rational zero, then p is a factor of

### FACTORING ax 2 bx c. Factoring Trinomials with Leading Coefficient 1

5.7 Factoring ax 2 bx c (5-49) 305 5.7 FACTORING ax 2 bx c In this section In Section 5.5 you learned to factor certain special polynomials. In this section you will learn to factor general quadratic polynomials.

### Zeros of Polynomial Functions

Zeros of Polynomial Functions Objectives: 1.Use the Fundamental Theorem of Algebra to determine the number of zeros of polynomial functions 2.Find rational zeros of polynomial functions 3.Find conjugate

### FACTORING OUT COMMON FACTORS

278 (6 2) Chapter 6 Factoring 6.1 FACTORING OUT COMMON FACTORS In this section Prime Factorization of Integers Greatest Common Factor Finding the Greatest Common Factor for Monomials Factoring Out the

### Procedure for Graphing Polynomial Functions

Procedure for Graphing Polynomial Functions P(x) = a n x n + a n-1 x n-1 + + a 1 x + a 0 To graph P(x): As an example, we will examine the following polynomial function: P(x) = 2x 3 3x 2 23x + 12 1. Determine

### Unit 1: Polynomials. Expressions: - mathematical sentences with no equal sign. Example: 3x + 2

Pure Math 0 Notes Unit : Polynomials Unit : Polynomials -: Reviewing Polynomials Epressions: - mathematical sentences with no equal sign. Eample: Equations: - mathematical sentences that are equated with

### 2.4 Real Zeros of Polynomial Functions

SECTION 2.4 Real Zeros of Polynomial Functions 197 What you ll learn about Long Division and the Division Algorithm Remainder and Factor Theorems Synthetic Division Rational Zeros Theorem Upper and Lower

### 3.6 The Real Zeros of a Polynomial Function

SECTION 3.6 The Real Zeros of a Polynomial Function 219 3.6 The Real Zeros of a Polynomial Function PREPARING FOR THIS SECTION Before getting started, review the following: Classification of Numbers (Appendix,

### POLYNOMIAL FUNCTIONS

POLYNOMIAL FUNCTIONS Polynomial Division.. 314 The Rational Zero Test.....317 Descarte s Rule of Signs... 319 The Remainder Theorem.....31 Finding all Zeros of a Polynomial Function.......33 Writing a

### Copy in your notebook: Add an example of each term with the symbols used in algebra 2 if there are any.

Algebra 2 - Chapter Prerequisites Vocabulary Copy in your notebook: Add an example of each term with the symbols used in algebra 2 if there are any. P1 p. 1 1. counting(natural) numbers - {1,2,3,4,...}

### UNCORRECTED PAGE PROOFS

number and and algebra TopIC 17 Polynomials 17.1 Overview Why learn this? Just as number is learned in stages, so too are graphs. You have been building your knowledge of graphs and functions over time.

### Question 1a of 14 ( 2 Identifying the roots of a polynomial and their importance 91008 )

Quiz: Factoring by Graphing Question 1a of 14 ( 2 Identifying the roots of a polynomial and their importance 91008 ) (x-3)(x-6), (x-6)(x-3), (1x-3)(1x-6), (1x-6)(1x-3), (x-3)*(x-6), (x-6)*(x-3), (1x- 3)*(1x-6),

### UNIT 3: POLYNOMIALS AND ALGEBRAIC FRACTIONS. A polynomial is an algebraic expression that consists of a sum of several monomials. x n 1...

UNIT 3: POLYNOMIALS AND ALGEBRAIC FRACTIONS. Polynomials: A polynomial is an algebraic expression that consists of a sum of several monomials. Remember that a monomial is an algebraic expression as ax

### March 29, 2011. 171S4.4 Theorems about Zeros of Polynomial Functions

MAT 171 Precalculus Algebra Dr. Claude Moore Cape Fear Community College CHAPTER 4: Polynomial and Rational Functions 4.1 Polynomial Functions and Models 4.2 Graphing Polynomial Functions 4.3 Polynomial

### Polynomials. Dr. philippe B. laval Kennesaw State University. April 3, 2005

Polynomials Dr. philippe B. laval Kennesaw State University April 3, 2005 Abstract Handout on polynomials. The following topics are covered: Polynomial Functions End behavior Extrema Polynomial Division

### Name: where Nx ( ) and Dx ( ) are the numerator and

Oblique and Non-linear Asymptote Activity Name: Prior Learning Reminder: Rational Functions In the past we discussed vertical and horizontal asymptotes of the graph of a rational function of the form m

### 2.3. Finding polynomial functions. An Introduction:

2.3. Finding polynomial functions. An Introduction: As is usually the case when learning a new concept in mathematics, the new concept is the reverse of the previous one. Remember how you first learned

### SOLVING EQUATIONS WITH RADICALS AND EXPONENTS 9.5. section ( 3 5 3 2 )( 3 25 3 10 3 4 ). The Odd-Root Property

498 (9 3) Chapter 9 Radicals and Rational Exponents Replace the question mark by an expression that makes the equation correct. Equations involving variables are to be identities. 75. 6 76. 3?? 1 77. 1

### 3.3. The Factor Theorem. Investigate Determining the Factors of a Polynomial. Reflect and Respond

3.3 The Factor Theorem Focus on... factoring polynomials explaining the relationship between the linear factors of a polynomial expression and the zeros of the corresponding function modelling and solving

### Indiana State Core Curriculum Standards updated 2009 Algebra I

Indiana State Core Curriculum Standards updated 2009 Algebra I Strand Description Boardworks High School Algebra presentations Operations With Real Numbers Linear Equations and A1.1 Students simplify and

2.5 ZEROS OF POLYNOMIAL FUNCTIONS Copyright Cengage Learning. All rights reserved. What You Should Learn Use the Fundamental Theorem of Algebra to determine the number of zeros of polynomial functions.

### Polynomial Expressions and Equations

Polynomial Expressions and Equations This is a really close-up picture of rain. Really. The picture represents falling water broken down into molecules, each with two hydrogen atoms connected to one oxygen

### 3-17 15-25 5 15-10 25 3-2 5 0. 1b) since the remainder is 0 I need to factor the numerator. Synthetic division tells me this is true

Section 5.2 solutions #1-10: a) Perform the division using synthetic division. b) if the remainder is 0 use the result to completely factor the dividend (this is the numerator or the polynomial to the

### Some facts about polynomials modulo m (Full proof of the Fingerprinting Theorem)

Some facts about polynomials modulo m (Full proof of the Fingerprinting Theorem) In order to understand the details of the Fingerprinting Theorem on fingerprints of different texts from Chapter 19 of the

### The Euclidean Algorithm

The Euclidean Algorithm A METHOD FOR FINDING THE GREATEST COMMON DIVISOR FOR TWO LARGE NUMBERS To be successful using this method you have got to know how to divide. If this is something that you have

### 3.4 Complex Zeros and the Fundamental Theorem of Algebra

86 Polynomial Functions.4 Complex Zeros and the Fundamental Theorem of Algebra In Section., we were focused on finding the real zeros of a polynomial function. In this section, we expand our horizons and

### Unit 6: Polynomials. 1 Polynomial Functions and End Behavior. 2 Polynomials and Linear Factors. 3 Dividing Polynomials

Date Period Unit 6: Polynomials DAY TOPIC 1 Polynomial Functions and End Behavior Polynomials and Linear Factors 3 Dividing Polynomials 4 Synthetic Division and the Remainder Theorem 5 Solving Polynomial

### Algebra 1 Course Title

Algebra 1 Course Title Course- wide 1. What patterns and methods are being used? Course- wide 1. Students will be adept at solving and graphing linear and quadratic equations 2. Students will be adept

### 6.1 The Greatest Common Factor; Factoring by Grouping

386 CHAPTER 6 Factoring and Applications 6.1 The Greatest Common Factor; Factoring by Grouping OBJECTIVES 1 Find the greatest common factor of a list of terms. 2 Factor out the greatest common factor.

### 2x 2x 2 8x. Now, let s work backwards to FACTOR. We begin by placing the terms of the polynomial inside the cells of the box. 2x 2

Activity 23 Math 40 Factoring using the BOX Team Name (optional): Your Name: Partner(s): 1. (2.) Task 1: Factoring out the greatest common factor Mini Lecture: Factoring polynomials is our focus now. Factoring

### 6.1 Add & Subtract Polynomial Expression & Functions

6.1 Add & Subtract Polynomial Expression & Functions Objectives 1. Know the meaning of the words term, monomial, binomial, trinomial, polynomial, degree, coefficient, like terms, polynomial funciton, quardrtic

### 8 Polynomials Worksheet

8 Polynomials Worksheet Concepts: Quadratic Functions The Definition of a Quadratic Function Graphs of Quadratic Functions - Parabolas Vertex Absolute Maximum or Absolute Minimum Transforming the Graph

### 0.4 FACTORING POLYNOMIALS

36_.qxd /3/5 :9 AM Page -9 SECTION. Factoring Polynomials -9. FACTORING POLYNOMIALS Use special products and factorization techniques to factor polynomials. Find the domains of radical expressions. Use

### Functions and Equations

Centre for Education in Mathematics and Computing Euclid eworkshop # Functions and Equations c 014 UNIVERSITY OF WATERLOO Euclid eworkshop # TOOLKIT Parabolas The quadratic f(x) = ax + bx + c (with a,b,c

### 5.1 FACTORING OUT COMMON FACTORS

C H A P T E R 5 Factoring he sport of skydiving was born in the 1930s soon after the military began using parachutes as a means of deploying troops. T Today, skydiving is a popular sport around the world.

### Polynomials and Factoring

Lesson 2 Polynomials and Factoring A polynomial function is a power function or the sum of two or more power functions, each of which has a nonnegative integer power. Because polynomial functions are built

### Polynomial Degree and Finite Differences

CONDENSED LESSON 7.1 Polynomial Degree and Finite Differences In this lesson you will learn the terminology associated with polynomials use the finite differences method to determine the degree of a polynomial

### Alum Rock Elementary Union School District Algebra I Study Guide for Benchmark III

Alum Rock Elementary Union School District Algebra I Study Guide for Benchmark III Name Date Adding and Subtracting Polynomials Algebra Standard 10.0 A polynomial is a sum of one ore more monomials. Polynomial

9.3 Solving Quadratic Equations by Using the Quadratic Formula 9.3 OBJECTIVES 1. Solve a quadratic equation by using the quadratic formula 2. Determine the nature of the solutions of a quadratic equation

### LAKE ELSINORE UNIFIED SCHOOL DISTRICT

LAKE ELSINORE UNIFIED SCHOOL DISTRICT Title: PLATO Algebra 1-Semester 2 Grade Level: 10-12 Department: Mathematics Credit: 5 Prerequisite: Letter grade of F and/or N/C in Algebra 1, Semester 2 Course Description:

### Using the Properties in Computation. a) 347 35 65 b) 3 435 c) 6 28 4 28

(1-) Chapter 1 Real Numbers and Their Properties In this section 1.8 USING THE PROPERTIES TO SIMPLIFY EXPRESSIONS The properties of the real numbers can be helpful when we are doing computations. In this

### Polynomials. Key Terms. quadratic equation parabola conjugates trinomial. polynomial coefficient degree monomial binomial GCF

Polynomials 5 5.1 Addition and Subtraction of Polynomials and Polynomial Functions 5.2 Multiplication of Polynomials 5.3 Division of Polynomials Problem Recognition Exercises Operations on Polynomials

### Algebra 1-2. A. Identify and translate variables and expressions.

St. Mary's College High School Algebra 1-2 The Language of Algebra What is a variable? A. Identify and translate variables and expressions. The following apply to all the skills How is a variable used

### MATH 65 NOTEBOOK CERTIFICATIONS

MATH 65 NOTEBOOK CERTIFICATIONS Review Material from Math 60 2.5 4.3 4.4a Chapter #8: Systems of Linear Equations 8.1 8.2 8.3 Chapter #5: Exponents and Polynomials 5.1 5.2a 5.2b 5.3 5.4 5.5 5.6a 5.7a 1

### FOIL FACTORING. Factoring is merely undoing the FOIL method. Let s look at an example: Take the polynomial x²+4x+4.

FOIL FACTORING Factoring is merely undoing the FOIL method. Let s look at an example: Take the polynomial x²+4x+4. First we take the 3 rd term (in this case 4) and find the factors of it. 4=1x4 4=2x2 Now

### The Factor Theorem and a corollary of the Fundamental Theorem of Algebra

Math 421 Fall 2010 The Factor Theorem and a corollary of the Fundamental Theorem of Algebra 27 August 2010 Copyright 2006 2010 by Murray Eisenberg. All rights reserved. Prerequisites Mathematica Aside

### College Algebra - MAT 161 Page: 1 Copyright 2009 Killoran

College Algebra - MAT 6 Page: Copyright 2009 Killoran Zeros and Roots of Polynomial Functions Finding a Root (zero or x-intercept) of a polynomial is identical to the process of factoring a polynomial.

### PREPARATION FOR MATH TESTING at CityLab Academy

PREPARATION FOR MATH TESTING at CityLab Academy compiled by Gloria Vachino, M.S. Refresh your math skills with a MATH REVIEW and find out if you are ready for the math entrance test by taking a PRE-TEST

### Basic Properties of Rational Expressions

Basic Properties of Rational Expressions A fraction is not defined when the denominator is zero! Examples: Simplify and use Mathematics Writing Style. a) x + 8 b) x 9 x 3 Solution: a) x + 8 (x + 4) x +

### For each learner you will need: mini-whiteboard. For each small group of learners you will need: Card set A Factors; Card set B True/false.

Level A11 of challenge: D A11 Mathematical goals Starting points Materials required Time needed Factorising cubics To enable learners to: associate x-intercepts with finding values of x such that f (x)

### 2. Simplify. College Algebra Student Self-Assessment of Mathematics (SSAM) Answer Key. Use the distributive property to remove the parentheses

College Algebra Student Self-Assessment of Mathematics (SSAM) Answer Key 1. Multiply 2 3 5 1 Use the distributive property to remove the parentheses 2 3 5 1 2 25 21 3 35 31 2 10 2 3 15 3 2 13 2 15 3 2

### Algebra I Vocabulary Cards

Algebra I Vocabulary Cards Table of Contents Expressions and Operations Natural Numbers Whole Numbers Integers Rational Numbers Irrational Numbers Real Numbers Absolute Value Order of Operations Expression

### Polynomial. Functions. 6A Operations with Polynomials. 6B Applying Polynomial. Functions. You can use polynomials to predict the shape of containers.

Polynomial Functions 6A Operations with Polynomials 6-1 Polynomials 6- Multiplying Polynomials 6-3 Dividing Polynomials Lab Explore the Sum and Difference of Two Cubes 6-4 Factoring Polynomials 6B Applying

### EXPONENTS. To the applicant: KEY WORDS AND CONVERTING WORDS TO EQUATIONS

To the applicant: The following information will help you review math that is included in the Paraprofessional written examination for the Conejo Valley Unified School District. The Education Code requires

### ModuMath Algebra Lessons

ModuMath Algebra Lessons Program Title 1 Getting Acquainted With Algebra 2 Order of Operations 3 Adding & Subtracting Algebraic Expressions 4 Multiplying Polynomials 5 Laws of Algebra 6 Solving Equations

### Section 2.1 Intercepts; Symmetry; Graphing Key Equations

Intercepts: An intercept is the point at which a graph crosses or touches the coordinate axes. x intercept is 1. The point where the line crosses (or intercepts) the x-axis. 2. The x-coordinate of a point

### SECTION 0.6: POLYNOMIAL, RATIONAL, AND ALGEBRAIC EXPRESSIONS

(Section 0.6: Polynomial, Rational, and Algebraic Expressions) 0.6.1 SECTION 0.6: POLYNOMIAL, RATIONAL, AND ALGEBRAIC EXPRESSIONS LEARNING OBJECTIVES Be able to identify polynomial, rational, and algebraic

### Previously, you learned the names of the parts of a multiplication problem. 1. a. 6 2 = 12 6 and 2 are the. b. 12 is the

Tallahassee Community College 13 PRIME NUMBERS AND FACTORING (Use your math book with this lab) I. Divisors and Factors of a Number Previously, you learned the names of the parts of a multiplication problem.

### Section 6-2 Mathematical Induction

6- Mathematical Induction 457 In calculus, it can be shown that e x k0 x k k! x x x3!! 3!... xn n! where the larger n is, the better the approximation. Problems 6 and 6 refer to this series. Note that

### a 1 x + a 0 =0. (3) ax 2 + bx + c =0. (4)

ROOTS OF POLYNOMIAL EQUATIONS In this unit we discuss polynomial equations. A polynomial in x of degree n, where n 0 is an integer, is an expression of the form P n (x) =a n x n + a n 1 x n 1 + + a 1 x

### Chapter 4. Polynomial and Rational Functions. 4.1 Polynomial Functions and Their Graphs

Chapter 4. Polynomial and Rational Functions 4.1 Polynomial Functions and Their Graphs A polynomial function of degree n is a function of the form P = a n n + a n 1 n 1 + + a 2 2 + a 1 + a 0 Where a s

### Definition 2.1 The line x = a is a vertical asymptote of the function y = f(x) if y approaches ± as x approaches a from the right or left.

Vertical and Horizontal Asymptotes Definition 2.1 The line x = a is a vertical asymptote of the function y = f(x) if y approaches ± as x approaches a from the right or left. This graph has a vertical asymptote

### Algebra Practice Problems for Precalculus and Calculus

Algebra Practice Problems for Precalculus and Calculus Solve the following equations for the unknown x: 1. 5 = 7x 16 2. 2x 3 = 5 x 3. 4. 1 2 (x 3) + x = 17 + 3(4 x) 5 x = 2 x 3 Multiply the indicated polynomials

### Math 0980 Chapter Objectives. Chapter 1: Introduction to Algebra: The Integers.

Math 0980 Chapter Objectives Chapter 1: Introduction to Algebra: The Integers. 1. Identify the place value of a digit. 2. Write a number in words or digits. 3. Write positive and negative numbers used

### Some Polynomial Theorems. John Kennedy Mathematics Department Santa Monica College 1900 Pico Blvd. Santa Monica, CA 90405 rkennedy@ix.netcom.

Some Polynomial Theorems by John Kennedy Mathematics Department Santa Monica College 1900 Pico Blvd. Santa Monica, CA 90405 rkennedy@ix.netcom.com This paper contains a collection of 31 theorems, lemmas,

### MATH 10034 Fundamental Mathematics IV

MATH 0034 Fundamental Mathematics IV http://www.math.kent.edu/ebooks/0034/funmath4.pdf Department of Mathematical Sciences Kent State University January 2, 2009 ii Contents To the Instructor v Polynomials.

### SECTION 10-2 Mathematical Induction

73 0 Sequences and Series 6. Approximate e 0. using the first five terms of the series. Compare this approximation with your calculator evaluation of e 0.. 6. Approximate e 0.5 using the first five terms

### 1. LINEAR EQUATIONS. A linear equation in n unknowns x 1, x 2,, x n is an equation of the form

1. LINEAR EQUATIONS A linear equation in n unknowns x 1, x 2,, x n is an equation of the form a 1 x 1 + a 2 x 2 + + a n x n = b, where a 1, a 2,..., a n, b are given real numbers. For example, with x and

### ACCUPLACER. Testing & Study Guide. Prepared by the Admissions Office Staff and General Education Faculty Draft: January 2011

ACCUPLACER Testing & Study Guide Prepared by the Admissions Office Staff and General Education Faculty Draft: January 2011 Thank you to Johnston Community College staff for giving permission to revise

Section 5.4 The Quadratic Formula 481 5.4 The Quadratic Formula Consider the general quadratic function f(x) = ax + bx + c. In the previous section, we learned that we can find the zeros of this function

### Accuplacer Arithmetic Study Guide

Testing Center Student Success Center Accuplacer Arithmetic Study Guide I. Terms Numerator: which tells how many parts you have (the number on top) Denominator: which tells how many parts in the whole

### SECTION 2.5: FINDING ZEROS OF POLYNOMIAL FUNCTIONS

SECTION 2.5: FINDING ZEROS OF POLYNOMIAL FUNCTIONS Assume f ( x) is a nonconstant polynomial with real coefficients written in standard form. PART A: TECHNIQUES WE HAVE ALREADY SEEN Refer to: Notes 1.31

### Algebra Tiles Activity 1: Adding Integers

Algebra Tiles Activity 1: Adding Integers NY Standards: 7/8.PS.6,7; 7/8.CN.1; 7/8.R.1; 7.N.13 We are going to use positive (yellow) and negative (red) tiles to discover the rules for adding and subtracting

### Five 5. Rational Expressions and Equations C H A P T E R

Five C H A P T E R Rational Epressions and Equations. Rational Epressions and Functions. Multiplication and Division of Rational Epressions. Addition and Subtraction of Rational Epressions.4 Comple Fractions.

### Mth 95 Module 2 Spring 2014

Mth 95 Module Spring 014 Section 5.3 Polynomials and Polynomial Functions Vocabulary of Polynomials A term is a number, a variable, or a product of numbers and variables raised to powers. Terms in an expression

### Guide to SRW Section 1.7: Solving inequalities

Guide to SRW Section 1.7: Solving inequalities When you solve the equation x 2 = 9, the answer is written as two very simple equations: x = 3 (or) x = 3 The diagram of the solution is -6-5 -4-3 -2-1 0

74 In the Herb Business, Part III Factoring and Quadratic Equations In the herbal medicine business, you and your partner sold 120 bottles of your best herbal medicine each week when you sold at your original

### Prerequisites: TSI Math Complete and high school Algebra II and geometry or MATH 0303.

Course Syllabus Math 1314 College Algebra Revision Date: 8-21-15 Catalog Description: In-depth study and applications of polynomial, rational, radical, exponential and logarithmic functions, and systems

### Factoring Polynomials

UNIT 11 Factoring Polynomials You can use polynomials to describe framing for art. 396 Unit 11 factoring polynomials A polynomial is an expression that has variables that represent numbers. A number can

### The degree of a polynomial function is equal to the highest exponent found on the independent variables.

DETAILED SOLUTIONS AND CONCEPTS - POLYNOMIAL FUNCTIONS Prepared by Ingrid Stewart, Ph.D., College of Southern Nevada Please Send Questions and Comments to ingrid.stewart@csn.edu. Thank you! PLEASE NOTE