The Physical Sciences Initiative. Chemistry Inservice D A T A L O G G I N G. Heat of Reaction. for. Graphic Calculator & Computer

Size: px
Start display at page:

Download "The Physical Sciences Initiative. Chemistry Inservice D A T A L O G G I N G. Heat of Reaction. for. Graphic Calculator & Computer"

Transcription

1 The Physical Sciences Initiative Chemistry Inservice D A T A L O G G I N G Heat of Reaction for Graphic Calculator & Computer Nov

2 Heat of Reaction. A Styrofoam cup calorimeter is used in this experiment to measure the heat released by the reaction between 1.0 M HCl solution and 1.0 M NaOH solution. For purposes of this experiment, you may assume that the heat loss to the calorimeter and the surrounding air is negligible. Solutions of aqueous sodium hydroxide and hydrochloric acid react to form water and aqueous sodium chloride as shown below. Na + (aq) + OH (aq) + H + (aq) ) + Cl (aq) H2O(l) + Na + (aq) + Cl (aq) H =? Apparatus and Chemicals 1. CBL 2 datalogger with DataMate Program 2. TI-83 Graphing Calculator 3. Temperature Sensor 4. Styrofoam cup cm 3 beaker 6. Stand and clamp cm M HCl cm M NaOH 9. Graduated Cylinder 10. Stirring rod 2

3 Setting up the calculator and datalogger Place the Calculator in the cradle. Place the CBL 2 datalogger on the underside of the cradle. Place the Temperature Sensor probe in channel 1 of the CBL 2. Connect the Calculator to the CBL 2 using the small connection lead. Make sure the lead is pressed fully home. (The connection ports are at the bottom of the Calculator and CBL 2). If the sensor is connected before the Calculator is turned on, it will be automatically detected. Selecting the Sensor and the type of data collection The Sensor Menu Data Collection Mode Menu 3

4 Turn on the Calculator. Press APPS (blue key). From the menu that appears select the Datamate program by pressing the appropriate number. Press CLEAR ( Removes any data present from previous experiments). Channel 1 should show the Temperature Sensor is attached. If the Temperature Sensor is not detected in channel 1, then it must be selected from the sensor menu. Press 1 Setup. Press ENTER at channel 1 and select the Sensor from the list. Select the units (C) by pressing the appropriate button. Press 1 OK. You must now decide on the type of data collection you require. Press 1 Setup. Scroll up using the arrow key to select Mode from the menu. Press ENTER. Press 2 Time graph. Select CHANGE TIME SETTINGS Type in 1 second as the chosen time between samples, Press ENTER. Type in 60 as the chosen number of samples Press ENTER. again. Press 1 OK twice. The CBL 2 and Calculator are now ready for the experiment. 4

5 Figure 1 Procedure for the Experiment and collecting the Data Set up the apparatus as shown in Figure 1. Measure out 50.0 cm 3 of 1.0 M HCl into the Styrofoam cup Lower the Temperature Sensor into the solution. Measure out 50.0 cm M NaOH into a graduated cylinder. Monitor temperature (in C) on the calculator screen. It may take several seconds for the Temperature Sensor to equilibrate at the temperature of the solution. Select START to begin data collection Allow three or four readings at the same temperature to be recorded. Add the NaOH solution to the Styrofoam cup. Using the stirring rod, stir continuously until the temperature has maximized and then begun to drop. Data collection will stop after 60 seconds 5

6 To confirm the initial (t1) and final (t2) values you recorded earlier, examine the data points along the curve on the displayed graph. As you move the cursor right or left, the time (X) and temperature (Y) values of each data point are displayed below the graph. Rinse and dry the Temperature Probe, Styrofoam cup, and Stirring Rod. Dispose of the solution as directed by your instructor. Analysing Data Once the experiment has finished the graph of the results is displayed on the screen. Pressing ENTER (followed if necessary by 1) will bring you back to the Main Menu Screen, so that the data may be analysed. The Main Menu The Analyse Menu 6

7 To find the Maximum and Minimum Temperature for this experiment. Choose 4 Analyse on the Main Menu screen Choose 4 Statistics on the Analyse Options screen Select the Left Boundary by pressing enter Use the Arrow keys to move to the Right Boundary. Press ENTER. The Minimum and Maximum temperature values recorded are displayed. Calculating Heat of Reaction Determine the temperature change, t = t2 t1, for the reaction. Calculate the heat released by the reaction, H, by using the formula H = m C t (C = 4.18 kj/kg C;---- m is the mass in kg of liquid taken to be water - which has absorbed heat. Density = 1g/cm 3 ) Calculate moles of NaOH used in the reaction by using the molarity, M, of the NaOH and its volume, L. Use the results of Step 2 and Step 3 calculations to determine the amount of heat per mole of NaOH released in the reaction. Apply the sign convention to obtain the heat of reaction 7

8 Data and Calculations 1. Mass (total) of solution, m Kg 2. Final temperature, t 2 o C 3. Initial temperature, t 1 o C 4. Change in temperature, t o C 5. Heat, H kj 6. Moles of NaOH mol 7. H/mol kj/mol 8. Experimental value kj/mol 9. Accepted value kj/mol 10. Percent error % 8

9 Transferring Data from the Calculator to a Computer Connect the Calculator to the Computer using the grey Graph link cable. On the Computer Click on the icon for Graphical Analysis. Choose File and select Import from TI calculator Select Port From the window choose COM 1 Click O.K On the Calculator Turn off the Calculator by pressing 2 nd. and Off Turn the computer back on. Press 2 nd Link Press 4 to select Lists Select L1.by pressing ENTER. Press the down arrow and press ENTER. to select L2. Move the cursor to the top and press the right Arrow to select Transmit Press 1 or ENTER. to Transmit data Your data should now appear on the Graphical Analysis screen. You can Analyse this data following the analysing instructions of LoggerPro found in the Computer version of these experiments. 9

10 Heat of Reaction A Styrofoam cup calorimeter is used in this experiment to measure the heat released by the reaction between 1.0 M HCl solution and 1.0 M NaOH solution. For purposes of this experiment, you may assume that the heat loss to the calorimeter and the surrounding air is negligible. Solutions of aqueous sodium hydroxide and hydrochloric acid react to form water and aqueous sodium chloride as shown below. Na + (aq) + OH (aq) + H + (aq) ) + Cl (aq) H2O(l) + Na + (aq) + Cl (aq) Apparatus and Chemicals 1. LabPro data logger. H =? 2. PC with Logger Pro software installed 3. USB port connecting cable 4. Temperature Sensor 5. Styrofoam cup cm 3 beaker 7. Stand and clamp cm M HCl cm M NaOH 10. Graduated Cylinder 11. Stirring rod THE DATALOGGER Setting up the Data logger and PC Connect LabPro to the computer via the USB cable.you may need to slide the plastic window on the side of the data logger to access the port. Connect the Temperature Sensor to channel 1 on the LabPro Attach the power lead to LabPro and turn it on. 10

11 THE COMPUTER Double click on the Logger Pro icon on the desktop. If there is no icon displayed the program is found by clicking Start followed by Programs, followed by Vernier Software and finally Logger Pro. The program should detect the Temperature Sensor and the window below is displayed. If the program does not detect the Sensors you are greeted with a welcome page. Follow the instructions to open the prepared experiments. Click on File, select Open. Double Click on Chemistry with Computers. Double Click on Exp. 01 Endo -Exothermic. Click on Stainless Steel Temp. The screen is divided into three main areas. Graph Window here data points are plotted as soon as they are recorded. Meter Window this shows the reading recorded by the current sensors. Table Window Entries are recorded here in columns.(similar to Spreadsheet) Click on the Setup Collection icon at the top of the screen Set the data collection for Real Time Collect Set the Experiment Time for 60 seconds at a rate of one sample every second 11

12 You are now ready to collect data Procedure for the Experiment and Collecting the Data. Set up the apparatus as shown in Figure 1 Measure out 50.0 cm 3 of 1.0 M HCl into the Styrofoam cup. Lower the Temperature Sensor into the solution. Measure out 50.0 cm 3 of 1.0 M NaOH into a graduated cylinder.. Click on Collect at the top of the screen. Allow three or four readings at the same temperature to be recorded. Add the NaOH solution to the Styrofoam cup. Using the stirring rod, stir continuously until the temperature has maximized and then begun to drop. 12

13 Readings taken every second are being logged and plotted on a graph of Temperature against Time. Analysing the Data Click on the Graph Window where the Data points h ave been plotted. Click on the Autoscale icon at the top of the screen. Click on Analyse and choose Statistics A statistic box will appear containing Max. and Min. Temperatures From this data you can record the change in Temperature Click on Analyse from the top toolbar and select Examine Data values can be read.as you move along the graph. Rinse and dry the Temperature sensors Styrofoam cup and Stirring rod. Dispose of the solutions as directed by your instructor. Calculating Heat of Reaction 1.Determine the temperature change, t = t2 t1, for the reaction. 2.Calculate the heat released by the reaction, H, by using the formula H = C m t: (C = 4.18 kj/kg C;---- m is the mass in kg of liquid taken to be water - which has absorbed heat. Density = 1g/cm 3 ) 3.Calculate moles of NaOH used in the reaction by using the molarity, M, of the NaOH and its volume, L. 4.Use the results of Step 2 and Step 3 calculations to determine the amount of heat per mole of NaOH released in the reaction. 13

14 5.Apply the sign convention to obtain the heat of reaction Data and Calculations 1. Mass (total) of solution, m Kg 2. Final temperature, t2 o C 3. Initial temperature, t1 o C 4. Change in temperature, t o C 5. Heat, H kj 6. Moles of NaOH mol 7. H /mol kj/mol 8. Experimental value kj/mol 9. Accepted value kj/mol 10. Percent error % 14

Experiment 6 Coffee-cup Calorimetry

Experiment 6 Coffee-cup Calorimetry 6-1 Experiment 6 Coffee-cup Calorimetry Introduction: Chemical reactions involve the release or consumption of energy, usually in the form of heat. Heat is measured in the energy units, Joules (J), defined

More information

DETERMINATION OF PHOSPHORIC ACID CONTENT IN SOFT DRINKS

DETERMINATION OF PHOSPHORIC ACID CONTENT IN SOFT DRINKS DETERMINATION OF PHOSPHORIC ACID CONTENT IN SOFT DRINKS LAB PH 8 From Chemistry with Calculators, Vernier Software & Technology, 2000 INTRODUCTION Phosphoric acid is one of several weak acids that present

More information

Mixing Warm and Cold Water

Mixing Warm and Cold Water Mixing Warm and Cold Water A Continuing Investigation of Thermal Pollution By Kevin White 1 Context: This lesson is intended for students conducting an ongoing study of thermal pollution. Perhaps, students

More information

Endothermic and Exothermic Reactions. Evaluation copy. Mg(s) + 2 HCl(aq) H 2 (g) + MgCl 2 (aq)

Endothermic and Exothermic Reactions. Evaluation copy. Mg(s) + 2 HCl(aq) H 2 (g) + MgCl 2 (aq) Endothermic and Exothermic Reactions Computer 1 Many chemical reactions give off energy. Chemical reactions that release energy are called exothermic reactions. Some chemical reactions absorb energy and

More information

Neutralization Reactions. Evaluation copy

Neutralization Reactions. Evaluation copy Neutralization Reactions Computer 6 If an acid is added to a base, a chemical reaction called neutralization occurs. An example is the reaction between nitric acid, HNO 3, and the base potassium hydroxide,

More information

Evaluation copy. Titration of a Diprotic Acid: Identifying an Unknown. Computer

Evaluation copy. Titration of a Diprotic Acid: Identifying an Unknown. Computer Titration of a Diprotic Acid: Identifying an Unknown Computer 25 A diprotic acid is an acid that yields two H + ions per acid molecule. Examples of diprotic acids are sulfuric acid, H 2 SO 4, and carbonic

More information

Experiment 3 Limiting Reactants

Experiment 3 Limiting Reactants 3-1 Experiment 3 Limiting Reactants Introduction: Most chemical reactions require two or more reactants. Typically, one of the reactants is used up before the other, at which time the reaction stops. The

More information

ph units constitute a scale which allows scientists to determine the acid or base content of a substance or solution. The ph 0

ph units constitute a scale which allows scientists to determine the acid or base content of a substance or solution. The ph 0 ACID-BASE TITRATION LAB PH 2.PALM INTRODUCTION Acids and bases represent a major class of chemical substances. We encounter them every day as we eat, clean our homes and ourselves, and perform many other

More information

15. Acid-Base Titration. Discover the concentration of an unknown acid solution using acid-base titration.

15. Acid-Base Titration. Discover the concentration of an unknown acid solution using acid-base titration. S HIFT INTO NEUTRAL 15. Acid-Base Titration Shift into Neutral Student Instruction Sheet Challenge Discover the concentration of an unknown acid solution using acid-base titration. Equipment and Materials

More information

Appendix C. Vernier Tutorial

Appendix C. Vernier Tutorial C-1. Vernier Tutorial Introduction: In this lab course, you will collect, analyze and interpret data. The purpose of this tutorial is to teach you how to use the Vernier System to collect and transfer

More information

Experiment 17: Potentiometric Titration

Experiment 17: Potentiometric Titration 1 Experiment 17: Potentiometric Titration Objective: In this experiment, you will use a ph meter to follow the course of acid-base titrations. From the resulting titration curves, you will determine the

More information

DETERMINING THE ENTHALPY OF FORMATION OF CaCO 3

DETERMINING THE ENTHALPY OF FORMATION OF CaCO 3 DETERMINING THE ENTHALPY OF FORMATION OF CaCO 3 Standard Enthalpy Change Standard Enthalpy Change for a reaction, symbolized as H 0 298, is defined as The enthalpy change when the molar quantities of reactants

More information

Transfer of heat energy often occurs during chemical reactions. A reaction

Transfer of heat energy often occurs during chemical reactions. A reaction Chemistry 111 Lab: Thermochemistry Page I-3 THERMOCHEMISTRY Heats of Reaction The Enthalpy of Formation of Magnesium Oxide Transfer of heat energy often occurs during chemical reactions. A reaction may

More information

How Dense is SALT WATER? Focus Question What is the relationship between density and salinity?

How Dense is SALT WATER? Focus Question What is the relationship between density and salinity? Focus Question What is the relationship between density and salinity? Activity Overview Fresh water from the Mississippi River pours into the salty ocean water in the Gulf of Mexico. More than 152,400

More information

Experiment 2 Kinetics II Concentration-Time Relationships and Activation Energy

Experiment 2 Kinetics II Concentration-Time Relationships and Activation Energy 2-1 Experiment 2 Kinetics II Concentration-Time Relationships and Activation Energy Introduction: The kinetics of a decomposition reaction involving hydroxide ion and crystal violet, an organic dye used

More information

PREPARATION FOR CHEMISTRY LAB: COMBUSTION

PREPARATION FOR CHEMISTRY LAB: COMBUSTION 1 Name: Lab Instructor: PREPARATION FOR CHEMISTRY LAB: COMBUSTION 1. What is a hydrocarbon? 2. What products form in the complete combustion of a hydrocarbon? 3. Combustion is an exothermic reaction. What

More information

thermometer as simple as a styrofoam cup and a thermometer. In a calorimeter the reactants are placed into the

thermometer as simple as a styrofoam cup and a thermometer. In a calorimeter the reactants are placed into the Thermochemistry Readin assinment: Chan, Chemistry 10 th edition, pp. 249-258. Goals We will become familiar with the principles of calorimetry in order to determine the heats of reaction for endothermic

More information

Thermochemistry I: Endothermic & Exothermic Reactions

Thermochemistry I: Endothermic & Exothermic Reactions THERMOCHEMISTRY I 77 Thermochemistry I: Endothermic & Exothermic Reactions OBJECTIVES: Learn elementary concepts of calorimetry and thermochemistry Practice techniques of careful temperature, mass, and

More information

The Determination of an Equilibrium Constant

The Determination of an Equilibrium Constant The Determination of an Equilibrium Constant Computer 10 Chemical reactions occur to reach a state of equilibrium. The equilibrium state can be characterized by quantitatively defining its equilibrium

More information

Chem 1B Saddleback College Dr. White 1. Experiment 8 Titration Curve for a Monoprotic Acid

Chem 1B Saddleback College Dr. White 1. Experiment 8 Titration Curve for a Monoprotic Acid Chem 1B Saddleback College Dr. White 1 Experiment 8 Titration Curve for a Monoprotic Acid Objectives To learn the difference between titration curves involving a strong acid with a strong base and a weak

More information

Where the exp subscripts refer to the experimental temperature and pressure acquired in the laboratory.

Where the exp subscripts refer to the experimental temperature and pressure acquired in the laboratory. Molar Volume of Carbon Dioxide Reading assignment: Julia Burdge, Chemistry 3rd edition, Chapter 10. Goals To determine the molar volume of carbon dioxide gas and the amount of sodium carbonate in a sample.

More information

6 H2O + 6 CO 2 (g) + energy

6 H2O + 6 CO 2 (g) + energy AEROBIC RESPIRATION LAB DO 2.CALC From Biology with Calculators, Vernier Software & Technology, 2000. INTRODUCTION Aerobic cellular respiration is the process of converting the chemical energy of organic

More information

Electrical Conductivity of Aqueous Solutions

Electrical Conductivity of Aqueous Solutions Electrical Conductivity of Aqueous Solutions PRE-LAB ASSIGNMENT: Reading: Chapter 4.-4.3 in Brown, LeMay, Bursten & Murphy.. Using Table in this handout, determine which solution has a higher conductivity,.

More information

Determining the Quantity of Iron in a Vitamin Tablet. Evaluation copy

Determining the Quantity of Iron in a Vitamin Tablet. Evaluation copy Determining the Quantity of Iron in a Vitamin Tablet Computer 34 As biochemical research becomes more sophisticated, we are learning more about the role of metallic elements in the human body. For example,

More information

Thermochemistry: Calorimetry and Hess s Law

Thermochemistry: Calorimetry and Hess s Law Thermochemistry: Calorimetry and Hess s Law Some chemical reactions are endothermic and proceed with absorption of heat while others are exothermic and proceed with an evolution of heat. The magnitude

More information

Experiment 6 Titration II Acid Dissociation Constant

Experiment 6 Titration II Acid Dissociation Constant 6-1 Experiment 6 Titration II Acid Dissociation Constant Introduction: An acid/base titration can be monitored with an indicator or with a ph meter. In either case, the goal is to determine the equivalence

More information

Heat of Solution. Purpose To calculate the heat of solution for sodium hydroxide (NaOH) and ammonium nitrate (NH 4 NO 3 )

Heat of Solution. Purpose To calculate the heat of solution for sodium hydroxide (NaOH) and ammonium nitrate (NH 4 NO 3 ) Heat of Solution Purpose To calculate the heat of solution for sodium hydroxide (NaOH) and ammonium nitrate (NH 4 NO 3 ) Background For a given solute, the heat of solution is the change in enerrgy that

More information

The energy level diagram for this reaction is shown below.

The energy level diagram for this reaction is shown below. Q. Methanol can be made when methane reacts with oxygen. (a) The energy level diagram for this reaction is shown below. (i) What is the energy change represented by A? () (ii) Use the energy level diagram

More information

Enzyme Action: Testing Catalase Activity

Enzyme Action: Testing Catalase Activity Enzyme Action: Testing Catalase Activity Experiment 6A Many organisms can decompose hydrogen peroxide (H 2 O 2 ) enzymatically. Enzymes are globular proteins, responsible for most of the chemical activities

More information

Exp 13 Volumetric Analysis: Acid-Base titration

Exp 13 Volumetric Analysis: Acid-Base titration Exp 13 Volumetric Analysis: Acid-Base titration Exp. 13 video (time: 47:17 minutes) Titration - is the measurement of the volume of a standard solution required to completely react with a measured volume

More information

Acid Base Titrations

Acid Base Titrations Acid Base Titrations Introduction A common question chemists have to answer is how much of something is present in a sample or a product. If the product contains an acid or base, this question is usually

More information

CONVECTION CURRENTS AND ANOMALOUS BEHAVIOUR OF WATER

CONVECTION CURRENTS AND ANOMALOUS BEHAVIOUR OF WATER CONVECTION CURRENTS AND ANOMALOUS BEHAVIOUR OF WATER Objective: To compare the thermal behaviour of water with that of other liquids, specifically alcohol and edible oil. To point out the anomaly of water

More information

The Determination of an Equilibrium Constant

The Determination of an Equilibrium Constant The Determination of an Equilibrium Constant Chemical reactions occur to reach a state of equilibrium. The equilibrium state can be characterized by quantitatively defining its equilibrium constant, K

More information

LIGHTSTICK KINETICS. INTRODUCTION: General background on rate, activation energy, absolute temperature, and graphing.

LIGHTSTICK KINETICS. INTRODUCTION: General background on rate, activation energy, absolute temperature, and graphing. LIGHTSTICK KINETICS From Advancing Science, Gettysburg College INTRODUCTION: General background on rate, activation energy, absolute temperature, and graphing. THE RATE LAW: The rate of a chemical reaction

More information

18 Conductometric Titration

18 Conductometric Titration Lab Activity 18 CONDUCTOMETRIC TITRATION LAB ACTIVITY 18 Conductometric Titration Background Titration is the a method of determining the concentration of an unknown solution (the analyte) by reacting

More information

Determining the Free Chlorine Content of Swimming Pool Water. HOCl H + + OCl. Evaluation copy

Determining the Free Chlorine Content of Swimming Pool Water. HOCl H + + OCl. Evaluation copy Determining the Free Chlorine Content of Swimming Pool Water Computer 33 Physicians in the nineteenth century used chlorine water as a disinfectant. Upon the discovery that certain diseases were transmitted

More information

GENERAL SCIENCE LABORATORY 1110L Lab Experiment 6: Ohm s Law

GENERAL SCIENCE LABORATORY 1110L Lab Experiment 6: Ohm s Law GENERAL SCIENCE LABORATORY 1110L Lab Experiment 6: Ohm s Law OBJECTIVES: To verify Ohm s law, the mathematical relationship among current, voltage or potential difference, and resistance, in a simple circuit.

More information

Energy Content of Fuels

Energy Content of Fuels Experiment 9 Energy content is an important property of fuels. This property helps scientists and engineers determine the usefulness of a fuel. Energy content is the amount of heat produced by the burning

More information

ENZYME ACTION: TESTING CATALASE ACTIVITY

ENZYME ACTION: TESTING CATALASE ACTIVITY ENZYME ACTION: TESTING CATALASE ACTIVITY LAB ENZ 1.CALC From Biology with Calculators, Vernier Software & Technology, 2000 INTRODUCTION Many organisms can decompose hydrogen peroxide (H 2 O 2 ) enzymatically.

More information

Quick Reference Manual

Quick Reference Manual Quick Reference Manual ii TABLE OF CONTENTS This guide first leads you through the basics of Logger Pro, including software installation procedures. You will learn how to collect data, manually enter data,

More information

To see how this data can be used, follow the titration of hydrofluoric acid against sodium hydroxide below. HF (aq) + NaOH (aq) H2O (l) + NaF (aq)

To see how this data can be used, follow the titration of hydrofluoric acid against sodium hydroxide below. HF (aq) + NaOH (aq) H2O (l) + NaF (aq) Weak Acid Titration v120413 You are encouraged to carefully read the following sections in Tro (2 nd ed.) to prepare for this experiment: Sec 4.8, pp 158-159 (Acid/Base Titrations), Sec 16.4, pp 729-43

More information

Vapor Pressure of Liquids

Vapor Pressure of Liquids Vapor Pressure of Liquids Experiment 10 In this experiment, you will investigate the relationship between the vapor pressure of a liquid and its temperature. When a liquid is added to the Erlenmeyer flask

More information

Osmosis. Evaluation copy

Osmosis. Evaluation copy Osmosis Computer 5 In order to survive, all organisms need to move molecules in and out of their cells. Molecules such as gases (e.g., O 2, CO 2 ), water, food, and wastes pass across the cell membrane.

More information

Evaluation copy. Energy Content of Foods. computer OBJECTIVES MATERIALS

Evaluation copy. Energy Content of Foods. computer OBJECTIVES MATERIALS Energy Content of Foods Computer 10 Energy content is an important property of food. The energy your body needs for running, talking, and thinking comes from the food you eat. Energy content is the amount

More information

Liquid Conductivity: Measuring Conductivity in Saline Water Solutions (Teacher s Guide)

Liquid Conductivity: Measuring Conductivity in Saline Water Solutions (Teacher s Guide) Liquid Conductivity: Measuring Conductivity in Saline Water Solutions (Teacher s Guide) OVERVIEW Students measure the conductivity of a solution of distilled water with varying amounts of NaCl and will

More information

Acid Dissociation Constants and the Titration of a Weak Acid

Acid Dissociation Constants and the Titration of a Weak Acid Acid Dissociation Constants and the Titration of a Weak Acid One of the most important applications of equilibria is the chemistry of acids and bases. The Brønsted-Lowry acid-base theory defines an acid

More information

Reflectivity of Light

Reflectivity of Light Reflectivity of Light Experiment 23 Light is reflected differently from various surfaces and colors. An understanding of these differences is useful in choosing colors and materials for clothing, in choosing

More information

To determine the equivalence points of two titrations from plots of ph versus ml of titrant added.

To determine the equivalence points of two titrations from plots of ph versus ml of titrant added. Titration Curves PURPOSE To determine the equivalence points of two titrations from plots of ph versus ml of titrant added. GOALS 1 To gain experience performing acid-base titrations with a ph meter. 2

More information

Experiment 13: Determination of Molecular Weight by Freezing Point Depression

Experiment 13: Determination of Molecular Weight by Freezing Point Depression 1 Experiment 13: Determination of Molecular Weight by Freezing Point Depression Objective: In this experiment, you will determine the molecular weight of a compound by measuring the freezing point of a

More information

Experiment 8 - Double Displacement Reactions

Experiment 8 - Double Displacement Reactions Experiment 8 - Double Displacement Reactions A double displacement reaction involves two ionic compounds that are dissolved in water. In a double displacement reaction, it appears as though the ions are

More information

HEAT OF FORMATION OF AMMONIUM NITRATE

HEAT OF FORMATION OF AMMONIUM NITRATE 303 HEAT OF FORMATION OF AMMONIUM NITRATE OBJECTIVES FOR THE EXPERIMENT The student will be able to do the following: 1. Calculate the change in enthalpy (heat of reaction) using the Law of Hess. 2. Find

More information

Determining the Identity of an Unknown Weak Acid

Determining the Identity of an Unknown Weak Acid Purpose The purpose of this experiment is to observe and measure a weak acid neutralization and determine the identity of an unknown acid by titration. Introduction The purpose of this exercise is to identify

More information

Enzyme Action: Testing Catalase Activity

Enzyme Action: Testing Catalase Activity Enzyme Action: Testing Catalase Activity Experiment 6A Many organisms can decompose hydrogen peroxide (H 2 O 2 ) enzymatically. Enzymes are globular proteins, responsible for most of the chemical activities

More information

Liquid phase. Balance equation Moles A Stoic. coefficient. Aqueous phase

Liquid phase. Balance equation Moles A Stoic. coefficient. Aqueous phase STOICHIOMETRY Objective The purpose of this exercise is to give you some practice on some Stoichiometry calculations. Discussion The molecular mass of a compound is the sum of the atomic masses of all

More information

Drop Counter Sensor Product Number: ENDRP-AD100

Drop Counter Sensor Product Number: ENDRP-AD100 imagine explore learn Drop Counter Sensor Product Number: ENDRP-AD100 Overview The Drop Counter sensor is an optical sensor that accurately records the number of drops of titrant added during a titration.

More information

Chemistry 212 VAPOR PRESSURE OF WATER LEARNING OBJECTIVES

Chemistry 212 VAPOR PRESSURE OF WATER LEARNING OBJECTIVES Chemistry 212 VAPOR PRESSURE OF WATER LEARNING OBJECTIVES The learning objectives of this experiment are to explore the relationship between the temperature and vapor pressure of water. determine the molar

More information

Project 1.3.4 Renewable Insulation Example Teacher Notes

Project 1.3.4 Renewable Insulation Example Teacher Notes Project 1.3.4 Renewable Insulation Example Teacher Notes Sample Data and Teacher Notes This guide is designed to provide sample calculations, background, and tips for the teachers performing this project

More information

Pressure -Temperature Relationship in Gases. Evaluation copy. Figure 1. 125 ml Erlenmeyer flask. Vernier computer interface

Pressure -Temperature Relationship in Gases. Evaluation copy. Figure 1. 125 ml Erlenmeyer flask. Vernier computer interface Pressure -Temperature Relationship in Gases Computer 7 Gases are made up of molecules that are in constant motion and exert pressure when they collide with the walls of their container. The velocity and

More information

Apparatus error for each piece of equipment = 100 x margin of error quantity measured

Apparatus error for each piece of equipment = 100 x margin of error quantity measured 1) Error Analysis Apparatus Errors (uncertainty) Every time you make a measurement with a piece of apparatus, there is a small margin of error (i.e. uncertainty) in that measurement due to the apparatus

More information

DETERMINING THE MASS OF A COPPER ATOM

DETERMINING THE MASS OF A COPPER ATOM DETERMINING THE MASS OF A COPPER ATOM LAB ADV.31 From Vernier Software & Technology, 2004 STANDARDS ADDRESSED 3.4.10 A Explains concepts about the structure and properties of matter. 3.4.12 A Apply concepts

More information

IB Chemistry. DP Chemistry Review

IB Chemistry. DP Chemistry Review DP Chemistry Review Topic 1: Quantitative chemistry 1.1 The mole concept and Avogadro s constant Assessment statement Apply the mole concept to substances. Determine the number of particles and the amount

More information

Chapter 13. Properties of Solutions

Chapter 13. Properties of Solutions Sample Exercise 13.1 (p. 534) By the process illustrated below, water vapor reacts with excess solid sodium sulfate to form the hydrated form of the salt. The chemical reaction is Na 2 SO 4(s) + 10 H 2

More information

USING TECHNOLOGY FOR DATA COLLECTION

USING TECHNOLOGY FOR DATA COLLECTION USING TECHNOLOGY FOR DATA COLLECTION The advances in technology have provided a number of instruments for collecting and interpreting data. These include portable microscopes, electronic balances, ph meters,

More information

KI6501 Data Manager. Software User Manual

KI6501 Data Manager. Software User Manual KI6501 Data Manager Software User Manual CONTENTS 1. Installation of USB Virtual COM Port driver software... 2 2. Installation of KI6501 Manager Software... 2 3. Connecting KI6501 to PC (Personal Computer)

More information

Chloride and Salinity

Chloride and Salinity INTRODUCTION Chloride Chloride and Chloride, in the form of the Cl ion, is one of the major inorganic anions, or negative ions, in saltwater and freshwater. It originates from the dissociation of salts,

More information

SubCue Analyzer Software - Introduction

SubCue Analyzer Software - Introduction SubCue Analyzer Software - Introduction The SubCue Analyzer is a tool to initialize and download the temperature data from implantable SubCue Dataloggers. To begin, open the SubCue Analyzer program from

More information

EXPERIMENT 2 THE HYDROLYSIS OF t-butyl CHLORIDE. PURPOSE: To verify a proposed mechanism for the hydrolysis of t-butyl Chloride.

EXPERIMENT 2 THE HYDROLYSIS OF t-butyl CHLORIDE. PURPOSE: To verify a proposed mechanism for the hydrolysis of t-butyl Chloride. PURPOSE: To verify a proposed mechanism for the hydrolysis of t-butyl Chloride. PRINCIPLES: Once the Rate Law for a reaction has been experimentally established the next step is its explanation in terms

More information

App and Program Transfer Guidebook

App and Program Transfer Guidebook App and Program Transfer Guidebook Vernier Software & Technology 13979 SW Millikan Way Beaverton, Oregon 97005-2886 (503) 277-2299 FAX (503) 277-2440 www.vernier.com info@vernier.com Copyright 2006 by

More information

User Guide. Temperature and Humidity Datalogger. Model 42280

User Guide. Temperature and Humidity Datalogger. Model 42280 User Guide Temperature and Humidity Datalogger Model 42280 Introduction Congratulations on your purchase of the Extech 42280 Thermometer and Relative Humidity Datalogger. The 42280 is a wall-mount, tripod

More information

Related concepts Kohlrausch s law, equivalent conductivity, temperature dependence of conductivity, Ostwald s dilution law.

Related concepts Kohlrausch s law, equivalent conductivity, temperature dependence of conductivity, Ostwald s dilution law. Conductivity of strong and weak electrolytes TEC Related concepts Kohlrausch s law, equivalent conductivity, temperature dependence of conductivity, Ostwald s dilution law. Principle It is possible to

More information

1A Rate of reaction. AS Chemistry introduced the qualitative aspects of rates of reaction. These include:

1A Rate of reaction. AS Chemistry introduced the qualitative aspects of rates of reaction. These include: 1A Rate of reaction AS Chemistry introduced the qualitative aspects of rates of reaction. These include: Collision theory Effect of temperature Effect of concentration Effect of pressure Activation energy

More information

PHOTOSYNTHESIS AND RESPIRATION

PHOTOSYNTHESIS AND RESPIRATION PHOTOSYNTHESIS AND RESPIRATION STANDARDS: 3.2.10.B.3, 3.2.10.C.4 3.3.10.B.4 Westminster College INTRODUCTION Plants make sugar, storing the energy of the sun as chemical energy, by the process of photosynthesis.

More information

ph Measurement and Control

ph Measurement and Control ph Measurement and Control Tech Tip #14 1997 I. The Need for ph II. ph System Requirements III. ph Electrode Conditioning Procedures IV. How the electrode works V. Identifying the Electrode Components

More information

EXPERIMENT 7 Reaction Stoichiometry and Percent Yield

EXPERIMENT 7 Reaction Stoichiometry and Percent Yield EXPERIMENT 7 Reaction Stoichiometry and Percent Yield INTRODUCTION Stoichiometry calculations are about calculating the amounts of substances that react and form in a chemical reaction. The word stoichiometry

More information

Determination of the enthalpy of combustion using a bomb calorimeter TEC

Determination of the enthalpy of combustion using a bomb calorimeter TEC Determination of the enthalpy of TEC Related concepts First law of thermodynamics, Hess s law of constant heat summation, enthalpy of combustion, enthalpy of formation, heat capacity. Principle The bomb

More information

Experiment 4 (Future - Lab needs an unknown)

Experiment 4 (Future - Lab needs an unknown) Experiment 4 (Future - Lab needs an unknown) USING A ph TITRATION TO DETERMINE THE ACID CONTENT OF SOFT DRINKS 2 lab periods Reading: Chapter 9, 185-197; Chapter 10, pg 212-218; Chapter 14 pg 317-323,

More information

ph: Measurement and Uses

ph: Measurement and Uses ph: Measurement and Uses One of the most important properties of aqueous solutions is the concentration of hydrogen ion. The concentration of H + (or H 3 O + ) affects the solubility of inorganic and organic

More information

Pre-Lab Notebook Content: Your notebook should include the title, date, purpose, procedure; data tables.

Pre-Lab Notebook Content: Your notebook should include the title, date, purpose, procedure; data tables. Determination of Molar Mass by Freezing Point Depression M. Burkart & M. Kim Experimental Notes: Students work in pairs. Safety: Goggles and closed shoes must be worn. Dispose of all chemical in the plastic

More information

Properties of Acids and Bases

Properties of Acids and Bases Lab 22 Properties of Acids and Bases TN Standard 4.2: The student will investigate the characteristics of acids and bases. Have you ever brushed your teeth and then drank a glass of orange juice? What

More information

Chemistry 12 Worksheet 1-1 - Measuring Reaction Rates

Chemistry 12 Worksheet 1-1 - Measuring Reaction Rates Chemistry 12 Worksheet 1-1 - Measuring Reaction Rates 1. A chemist wishes to determine the rate of reaction of zinc with hydrochloric acid. The equation for the reaction is: Zn (s) + 2HCl (aq) oh 2(g)

More information

Experiment 18: ph Measurements of Common Substances. Experiment 17: Reactions of Acids with Common Substances

Experiment 18: ph Measurements of Common Substances. Experiment 17: Reactions of Acids with Common Substances Experiment 18: ph Measurements of Common Substances and Experiment 17: Reactions of Acids with Common Substances What is this lab about? You mean what ARE THESE labs about? Ok, so what are THESE labs about?

More information

TITRATION CURVES, INDICATORS, AND ACID DISSOCIATION CONSTANTS

TITRATION CURVES, INDICATORS, AND ACID DISSOCIATION CONSTANTS TITRATION CURVES, INDICATORS, AND ACID DISSOCIATION CONSTANTS Adapted from "Chemistry with Computers" Vernier Software, Portland OR, 1997 INTRODUCTION Titration is the volumetric measurement of a solution

More information

USER S GUIDE 94150 Humidity and Temperature USB Datalogger

USER S GUIDE 94150 Humidity and Temperature USB Datalogger USER S GUIDE 94150 Humidity and Temperature USB Datalogger FEATURES Memory for 32,000 readings (16000 temperature and 16,000 humidity readings) Dew point indication Status Indication USB Interface User-Selectable

More information

Instructions Answer all questions in the spaces provided. Do all rough work in this book. Cross through any work you do not want to be marked.

Instructions Answer all questions in the spaces provided. Do all rough work in this book. Cross through any work you do not want to be marked. GCSE CHEMISTRY Higher Tier Chemistry 1H H Specimen 2018 Time allowed: 1 hour 45 minutes Materials For this paper you must have: a ruler a calculator the periodic table (enclosed). Instructions Answer all

More information

Tutorial 4 SOLUTION STOICHIOMETRY. Solution stoichiometry calculations involve chemical reactions taking place in solution.

Tutorial 4 SOLUTION STOICHIOMETRY. Solution stoichiometry calculations involve chemical reactions taking place in solution. T-27 Tutorial 4 SOLUTION STOICHIOMETRY Solution stoichiometry calculations involve chemical reactions taking place in solution. Of the various methods of expressing solution concentration the most convenient

More information

Target Mole Lab. Mole Relationships and the Balanced Equation. For each student group Hydrochloric acid solution, HCl, 3 M, 30 ml

Target Mole Lab. Mole Relationships and the Balanced Equation. For each student group Hydrochloric acid solution, HCl, 3 M, 30 ml elearning 2009 Introduction Target Mole Lab Mole Relationships and the Balanced Equation Publication No. A common chemical reaction used in chemistry class is zinc and hydrochloric In this lab, students

More information

Experiment 7: Titration of an Antacid

Experiment 7: Titration of an Antacid 1 Experiment 7: Titration of an Antacid Objective: In this experiment, you will standardize a solution of base using the analytical technique known as titration. Using this standardized solution, you will

More information

Net ionic equation: 2I (aq) + 2H (aq) + H O (aq) I (s) + 2H O(l)

Net ionic equation: 2I (aq) + 2H (aq) + H O (aq) I (s) + 2H O(l) Experiment 5 Goals To determine the differential rate law for the reaction between iodide and hydrogen peroxide in an acidic environment. To determine the activation energy and pre-exponential factor for

More information

Q.1 Classify the following according to Lewis theory and Brønsted-Lowry theory.

Q.1 Classify the following according to Lewis theory and Brønsted-Lowry theory. Acid-base A4 1 Acid-base theories ACIDS & BASES - IONIC EQUILIBRIA 1. LEWIS acid electron pair acceptor H, AlCl 3 base electron pair donor NH 3, H 2 O, C 2 H 5 OH, OH e.g. H 3 N: -> BF 3 > H 3 N BF 3 see

More information

Determination of a Chemical Formula

Determination of a Chemical Formula 1 Determination of a Chemical Formula Introduction Molar Ratios Elements combine in fixed ratios to form compounds. For example, consider the compound TiCl 4 (titanium chloride). Each molecule of TiCl

More information

CHM1 Review for Exam 12

CHM1 Review for Exam 12 Topics Solutions 1. Arrhenius Acids and bases a. An acid increases the H + concentration in b. A base increases the OH - concentration in 2. Strong acids and bases completely dissociate 3. Weak acids and

More information

Module 5: Combustion Technology. Lecture 34: Calculation of calorific value of fuels

Module 5: Combustion Technology. Lecture 34: Calculation of calorific value of fuels 1 P age Module 5: Combustion Technology Lecture 34: Calculation of calorific value of fuels 2 P age Keywords : Gross calorific value, Net calorific value, enthalpy change, bomb calorimeter 5.3 Calculation

More information

SUGGESTION ANSWER SCHEME CHAPTER 8: THERMOCHEMISTRY. 1 (a) Use the data in the table below to answer the following questions:

SUGGESTION ANSWER SCHEME CHAPTER 8: THERMOCHEMISTRY. 1 (a) Use the data in the table below to answer the following questions: SUGGESTION ANSWER SCHEME CHAPTER 8: THERMOCHEMISTRY ANSWER SCHEME UPS 2004/2005 SK027 1 (a) Use the data in the table below to answer the following questions: Enthalpy change ΔH (kj/mol) Atomization energy

More information

Determination of the enthalpy of combustion using a bomb calorimeter TEC. Safety precautions

Determination of the enthalpy of combustion using a bomb calorimeter TEC. Safety precautions Safety precautions Naphthalene is harmful if swallowed. May cause cancer. Is further very toxic to aquatic organisms and can have long-term harmful effects in bodies of water. Equipment 1 Bomb calorimeter

More information

Stoichiometry Limiting Reagent Laboratory. Chemistry 118 Laboratory University of Massachusetts, Boston

Stoichiometry Limiting Reagent Laboratory. Chemistry 118 Laboratory University of Massachusetts, Boston Chemistry 118 Laboratory University of Massachusetts, Boston STOICHIOMETRY - LIMITING REAGENT -----------------------------------------------------------------------------------------------------------------------------

More information

Stoichiometry Limiting Reagent Laboratory. Chemistry 118 Laboratory University of Massachusetts, Boston

Stoichiometry Limiting Reagent Laboratory. Chemistry 118 Laboratory University of Massachusetts, Boston Chemistry 118 Laboratory University of Massachusetts, Boston STOICHIOMETRY - LIMITING REAGENT --------------------------------------------------------------------------------------------------------------------------------------------

More information

EXPERIMENT INTRODUCTION TO INDICATORS AND ACID-BASE TITRATIONS

EXPERIMENT INTRODUCTION TO INDICATORS AND ACID-BASE TITRATIONS EXPERIMENT INTRODUCTION TO INDICATORS AND ACID-BASE TITRATIONS By Dale A. Hammond, PhD, Brigham Young University Hawaii LEARNING OBJECTIVES The objectives of this experiment are... an introduction to ph

More information

Cambridge International Examinations Cambridge International General Certificate of Secondary Education

Cambridge International Examinations Cambridge International General Certificate of Secondary Education Cambridge International Examinations Cambridge International General Certificate of Secondary Education *0123456789* CHEMISTRY 0620/04 Paper 4 Theory (Extended) For Examination from 2016 SPECIMEN PAPER

More information

Chemistry 112 Laboratory Experiment 6: The Reaction of Aluminum and Zinc with Hydrochloric Acid

Chemistry 112 Laboratory Experiment 6: The Reaction of Aluminum and Zinc with Hydrochloric Acid Chemistry 112 Laboratory Experiment 6: The Reaction of Aluminum and Zinc with Hydrochloric Acid Introduction Many metals react with acids to form hydrogen gas. In this experiment, you will use the reactions

More information

TFA. KlimaLogg Pro. User Manual. Revision: 0.1

TFA. KlimaLogg Pro. User Manual. Revision: 0.1 TFA KlimaLogg Pro User Manual Revision: 0.1 Table of Contents Overview... 2 Getting Started... 2 Setting up the KlimaLogg Pro device... 2 Installing the USB-Stick... 2 Installation... 2 System Requirements...

More information