# Topics through Chapter 4

Save this PDF as:

Size: px
Start display at page:

## Transcription

1 Topics through Chapter The Doppler Effect: this is how we learn about the motions of objects in the universe, discover extraterrestrial planets, black holes at the centers of galaxies, and the expansion of the entire universe. 4.1 Spectral Lines: appearance, excess or deficit of energy at particular wavelengths. (Don t worry about Kirchoff s laws, and the pictures with little prisms and light bulbs etc.--see notes) 4.2 Atoms and Radiation: quantized energy levels of electrons in atoms, and how they interact with radiation. The hydrogen atom--the simplest, and most important case. 4.3 The Formation of Spectral Lines: understanding emission lines and absorption lines 4.4 Molecules: not just electronic changes, but vibrational and rotational changes of energy. 4.5 Spectral-Line Analysis: Information from spectral linesabundances, turbulent motions, rotation,

2 3.5 The Doppler Effect The wavelength (or frequency) of a wave, as measured by an observer, depends on the relative radial speed of the source and observer. Radial motion means: motion towards or away; along the line of sight. The Doppler effect involves only this component of motion. What we get from measuring it is called the radial velocity. Moving away: wavelengths increase ( redshift ) Moving toward: wavelengths decrease ( blueshift )

3 3.5 The Doppler Effect Relationship between wavelength and speed: Shift in λ compared to rest (no motion) wavelength is proportional to radial velocity So if you know the exact wavelength where some feature in the spectrum should be ( true wavelength ), and the wavelength at which it appears ( apparent wavelength ), you can obtain the radial velocity. This is how we get speeds of cosmic objects, stars, galaxies, even expansion of universe. Actual formula is: λ(apparent)/ λ(true) = 1 ± (speed of object/speed of light) where the ± sign means it is + if it is moving away from us (redshift, longer wavelength), - if it is moving toward us (blueshift, shorter wavelength) This applies to any wave; and no reason not to use frequency instead of wavelength. Textbook writes it this way:

4 See textbook for this rather confusing example. In class we ll use a simpler example of water waves in a pond. 3.5 The Doppler Effect Important point: Doppler effect depends only on the relative motion of source and observer

5 More Precisely 3-3: Measuring Velocities with the Doppler Effect Example: For a speed of 30 km/s, the Doppler shift is given by speed of object This may seem small, but it is easily detectable with a radar gun. It is NOT so easy to detect from the spectrum of an astronomical object, unless you know something about spectral lines. speed of light

6 Look at the Doppler shift formula again: λ(apparent)/ λ(true) = 1 ± (radial velocity of object./speed of light) If velocity of object away or toward us is much less than the speed of light (true for almost all objects in the universe), the apparent wavelength will be only slightly different from the laboratory or rest wavelength. For most objects in the universe, this relative shift is so tiny, that we can t detect it using the shift of the whole continuous spectrum. But we can use places in the spectrum whose wavelengths are precisely known by the presence of spectral lines (the subject of Chapter 4)

7 Chapter 4 Spectroscopy Don t worry if you can t understand what this pretty picture represents, unless it is the day before the next exam. A more important question Is why the authors insist on showing this form of spectra without adequately explaining!

8 4.1 Spectral Lines Spectroscope: Splits light into component colors (wavelengths, frequencies) Most of this illustration is completely unnecessary! The only important point is that light from any object can be spread out into a rainbow of wavelengths. A spectrum is a picture of how much light is at each wavelength. This illustration is showing a continuous spectrum.

9 4.1 Spectral Lines Continuous spectrum: Continuous range of frequencies emitted by an object (something like the black bodies we discussed in ch.3) Emission lines: Single frequencies emitted by particular atoms in a hot gas Absorption lines: If a continuous spectrum passes through a cool gas, atoms of the gas will absorb the same frequencies they emit

10 Spectral lines Spectral lines very narrow, well-defined (in wavelength) wavelength/frequency regions in the spectrum where excess photon energy appears (emission lines) or else where photons are missing (absorption lines). Cartoon view of absorption lines, both in the spectrum as a graph (below), and in the recorded spectrum (top), the band of colors--this is just how the spectra are gathered--pay no attention to the rectangular shape! Often these lines are superimposed on a smooth, continuous spectrum, which is the near-blackbody emission of a heated object that we have been discussing so far (ch. 3, Wien, Stefan-Boltzmann).

11 Spectral of real astronomical objects Here are spectra of two real astronomical objects, a comet (top) and star (bottom). By the time you take the next exam, you should be able to explain why these look so different. The wavelengths, shapes, and strengths of these spectral lines are the keys to understanding many of the physical properties of planets, stars and galaxies.

12 Spectra are not black rectangles with vertical lines. They are a recording of how many photons per second are being emitted as a function of wavelength

13 4.1 Spectral Lines Emission spectrum can be used to identify elements An absorption spectrum can also be used to identify elements. These are the emission and absorption spectra of sodium:

14 Here is the Sun s spectrum, along with a blackbody of the sun s temperature (top--why are there no lines?), and the spectra of individual elements as observed in the laboratory. Each spectral line is a chemical fingerprint telling you which elements, and how much of each element, is contained in the object you are observing. Continuous spectrum Sun (absorption lines) Emission lines of various elements

15 Kirchoff s laws: don t memorize them. Instead, come back to this illustration later and find if you understand enough to explain them Kirchoff s laws are usually presented with prisms and striped colorful spectra. This is confusing, and they aren t even laws at all! Just note that prism is supposed to represent an instrument, called a spectrometer. Maybe a star, or a planet Maybe the atmosphere of a star or planet If the light from the hot star or blackbody doesn t pass through any low-density gas, then the spectrum is featureless--it is a continuous spectrum. (top) If that continuous spectrum passes through a cloud of gas that is cooler than the source, the cloud can absorb particular wavelengths, and you get an absorption spectrum (middle) But if the gas is hot, say at least a few thousand degrees, it will emit spectral lines on its own (bottom), I.e. emission lines. How does this occur? The answer lies in the structure of atoms.

16 Next : Energy levels of electrons in atoms

17 4.2 Atoms and Radiation Existence of spectral lines required new model of atom, so that only certain amounts of energy could be emitted or absorbed Bohr model had certain allowed orbits for electron

18 4.2 Atoms and Radiation Emission energies correspond to energy differences between allowed levels Modern model has electron cloud rather than orbit

19 4.3 The Formation of Spectral Lines Absorption spectrum: Created when atoms absorb photons of right energy for excitation Multielectron atoms: Much more complicated spectra, many more possible states Ionization changes energy levels

20 Energy levels in H and He

21 The light emitted has a wavelength corresponding to the the energy difference between the two electron energy levels. Spectral lines = electronic transitions

22 Spectral lines of hydrogen Energy levels of the hydrogen atom, showing two series of emission lines:lyman and Balmer The energies of the electrons in each orbit are given by: The emission lines correspond to the energy differences

23 4.3 The Formation of Spectral Lines Absorption of energy (either by a collision, or by absorbing a photon) can boost an electron to the second (or higher) excited state Two ways to decay: 1. To ground state 2. Cascade one orbital at a time

24 4.3 The Formation of Spectral Lines (a) Direct decay (b) Cascade

25 Absorption of light as it passes through an atmosphere

26 Emission lines can be used to identify atoms

27 4.4 Molecules Molecules can vibrate and rotate, besides having energy levels Electron transitions produce visible and ultraviolet lines Vibrational transitions produce infrared lines Rotational transitions produce radio-wave lines

28 4.4 Molecules Molecular spectra are much more complex than atomic spectra, even for hydrogen: (a) Molecular hydrogen(b) Atomic hydrogen

29 Information that can be gleaned from spectral lines: Chemical composition Temperature Radial velocity 4.5 Spectral-Line Analysis

30 Line broadening can be due to a variety of causes 4.5 Spectral-Line Analysis

31 4.5 Spectral-Line Analysis

32 The Doppler shift may cause thermal broadening of spectral lines 4.5 Spectral-Line Analysis

33 4.5 Spectral-Line Analysis Rotation will also cause broadening of spectral lines through the Doppler effect

34 Summary of Chapter 4 Spectroscope (spectrometer) splits light beam into component frequencies/wavelengths Continuous spectrum is emitted by solid, liquid, and dense gas Hot gas has characteristic emission spectrum Continuous spectrum incident on cool, thin gas gives characteristic absorption spectrum

35 Summary of Chapter 4 (cont.) Spectra can be explained using atomic models, with electrons occupying specific orbitals Emission and absorption lines result from transitions between orbitals Molecules can also emit and absorb radiation when making transitions between vibrational or rotational states

### From lowest energy to highest energy, which of the following correctly orders the different categories of electromagnetic radiation?

From lowest energy to highest energy, which of the following correctly orders the different categories of electromagnetic radiation? From lowest energy to highest energy, which of the following correctly

### Newton s laws of motion and gravity

Newton s laws of motion and gravity 1. Every body continues in a state of rest or uniform motion (constant velocity) in a straight line unless acted on by a force. (A deeper statement of this law is that

### The Cosmic Perspective Seventh Edition. Light and Matter: Reading Messages from the Cosmos. Chapter 5 Reading Quiz Clickers

Reading Quiz Clickers The Cosmic Perspective Seventh Edition Light and Matter: Reading Messages from the Cosmos 5.1 Light in Everyday Life How do we experience light? How do light and matter interact?

### 5. The Nature of Light. Does Light Travel Infinitely Fast? EMR Travels At Finite Speed. EMR: Electric & Magnetic Waves

5. The Nature of Light Light travels in vacuum at 3.0. 10 8 m/s Light is one form of electromagnetic radiation Continuous radiation: Based on temperature Wien s Law & the Stefan-Boltzmann Law Light has

### The Nature of Electromagnetic Radiation

II The Nature of Electromagnetic Radiation The Sun s energy has traveled across space as electromagnetic radiation, and that is the form in which it arrives on Earth. It is this radiation that determines

### Light as a Wave. The Nature of Light. EM Radiation Spectrum. EM Radiation Spectrum. Electromagnetic Radiation

The Nature of Light Light and other forms of radiation carry information to us from distance astronomical objects Visible light is a subset of a huge spectrum of electromagnetic radiation Maxwell pioneered

### Astro 130, Fall 2011, Homework, Chapter 17, Due Sep 29, 2011 Name: Date:

Astro 130, Fall 2011, Homework, Chapter 17, Due Sep 29, 2011 Name: Date: 1. If stellar parallax can be measured to a precision of about 0.01 arcsec using telescopes on Earth to observe stars, to what distance

### Atoms Absorb & Emit Light

Atoms Absorb & Emit Light Spectra The wavelength of the light that an element emits or absorbs is its fingerprint. Atoms emit and absorb light First Test is Thurs, Feb 1 st About 30 multiple choice questions

### Full window version (looks a little nicer). Click button to get back to small framed version with content indexes.

Production of Light Full window version (looks a little nicer). Click button to get back to small framed version with content indexes. This material (and images) is copyrighted!. See my copyright

### How Matter Emits Light: 1. the Blackbody Radiation

How Matter Emits Light: 1. the Blackbody Radiation Announcements n Quiz # 3 will take place on Thursday, October 20 th ; more infos in the link `quizzes of the website: Please, remember to bring a pencil.

Lecture 8: Radiation Spectrum The information contained in the light we receive is unaffected by distance The information remains intact so long as the light doesn t run into something along the way Since

### 5.111 Principles of Chemical Science

MIT OpenCourseWare http://ocw.mit.edu 5.111 Principles of Chemical Science Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 5.111 Lecture Summary

### Chemistry 102 Summary June 24 th. Properties of Light

Chemistry 102 Summary June 24 th Properties of Light - Energy travels through space in the form of electromagnetic radiation (EMR). - Examples of types of EMR: radio waves, x-rays, microwaves, visible

### Investigating electromagnetic radiation

Investigating electromagnetic radiation Announcements: First midterm is 7:30pm on 2/17/09 Problem solving sessions M3-5 and T3-4,5-6. Homework due at 12:50pm on Wednesday. We are covering Chapter 4 this

### Modeling the Expanding Universe

H9 Modeling the Expanding Universe Activity H9 Grade Level: 8 12 Source: This activity is produced by the Universe Forum at NASA s Office of Space Science, along with their Structure and Evolution of the

### 11.2 THE DOPPLER EFFECT Notes

11.2 THE DOPPLER EFFECT Notes III. HOW THE DOPPLER EFFECT WORKS WITH SOUND A. SOUND FREQUENCY AND PITCH The frequency of sound waves is proportional to the pitch that we hear. DEMO Tuning Forks f = higher

### Light. Light. Overview. In-class activity. What are waves? In this section: PSC 203. What is it? Your thoughts?

Light PSC 203 Overview In this section: What is light? What is the EM Spectrum? How is light created? What can we learn from light? In-class activity Discuss your answers in groups of 2 Think of as many

### Lecture 7: Light Waves. Newton s Laws of Motion (1666) Newton s First Law of Motion

Lecture 7: Light Waves Isaac Newton (1643-1727) was born in the year Galileo died He discovered the Law of Gravitation in 1665 He developed the Laws of Mechanics that govern all motions In order to solve

### Ay 122 - Fall 2004 Electromagnetic Radiation And Its Interactions With Matter

Ay 122 - Fall 2004 Electromagnetic Radiation And Its Interactions With Matter (This version has many of the figures missing, in order to keep the pdf file reasonably small) Radiation Processes: An Overview

### Introduction to spectroscopy

Introduction to spectroscopy How do we know what the stars or the Sun are made of? The light of celestial objects contains much information hidden in its detailed color structure. In this lab we will separate

### ILLUSTRATIVE EXAMPLE: Given: A = 3 and B = 4 if we now want the value of C=? C = 3 + 4 = 9 + 16 = 25 or 2

Forensic Spectral Anaylysis: Warm up! The study of triangles has been done since ancient times. Many of the early discoveries about triangles are still used today. We will only be concerned with the "right

### ATOMIC SPECTRA. Apparatus: Optical spectrometer, spectral tubes, power supply, incandescent lamp, bottles of dyed water, elevating jack or block.

1 ATOMIC SPECTRA Objective: To measure the wavelengths of visible light emitted by atomic hydrogen and verify the measured wavelengths against those predicted by quantum theory. To identify an unknown

### The Electromagnetic Spectrum

The Electromagnetic Spectrum 1 Look around you. What do you see? You might say "people, desks, and papers." What you really see is light bouncing off people, desks, and papers. You can only see objects

### Rate Equations and Detailed Balance

Rate Equations and Detailed Balance Initial question: Last time we mentioned astrophysical masers. Why can they exist spontaneously? Could there be astrophysical lasers, i.e., ones that emit in the optical?

### In studying the Milky Way, we have a classic problem of not being able to see the forest for the trees.

In studying the Milky Way, we have a classic problem of not being able to see the forest for the trees. A panoramic painting of the Milky Way as seen from Earth, done by Knut Lundmark in the 1940 s. The

### Astronomy 114 Summary of Important Concepts #1 1

Astronomy 114 Summary of Important Concepts #1 1 1 Kepler s Third Law Kepler discovered that the size of a planet s orbit (the semi-major axis of the ellipse) is simply related to sidereal period of the

### Experiment #5: Qualitative Absorption Spectroscopy

Experiment #5: Qualitative Absorption Spectroscopy One of the most important areas in the field of analytical chemistry is that of spectroscopy. In general terms, spectroscopy deals with the interactions

### 8.1 Radio Emission from Solar System objects

8.1 Radio Emission from Solar System objects 8.1.1 Moon and Terrestrial planets At visible wavelengths all the emission seen from these objects is due to light reflected from the sun. However at radio

### WELCOME to Aurorae In the Solar System. J.E. Klemaszewski

WELCOME to Aurorae In the Solar System Aurorae in the Solar System Sponsoring Projects Galileo Europa Mission Jupiter System Data Analysis Program ACRIMSAT Supporting Projects Ulysses Project Outer Planets

### Phys 2310 Wed. Sept. 21, 2016 Today s Topics

Phys 2310 Wed. Sept. 21, 2016 Today s Topics - Brief History of Light & Optics Electromagnetic Spectrum Electromagnetic Spectrum Visible, infrared & ultraviolet Wave/Particle Duality (waves vs. photons)

### nm cm meters VISIBLE UVB UVA Near IR 200 300 400 500 600 700 800 900 nm

Unit 5 Chapter 13 Electrons in the Atom Electrons in the Atom (Chapter 13) & The Periodic Table/Trends (Chapter 14) Niels Bohr s Model Recall the Evolution of the Atom He had a question: Why don t the

### Electron Energy and Light

Why? Electron Energy and Light How does light reveal the behavior of electrons in an atom? From fireworks to stars, the color of light is useful in finding out what s in matter. The emission of light by

### Chapter 18: The Structure of the Atom

Chapter 18: The Structure of the Atom 1. For most elements, an atom has A. no neutrons in the nucleus. B. more protons than electrons. C. less neutrons than electrons. D. just as many electrons as protons.

### Emission of Light & Atomic Models 1

Emission of Light & Atomic Models 1 Objective At the end of this activity you should be able to: o Explain what photons are, and be able to calculate their energies given either their frequency or wavelength.

### Cosmic Journey: Teacher Packet

Cosmic Journey: Teacher Packet Compiled by: Morehead State University Star Theatre with help from Bethany DeMoss Table of Contents Table of Contents 1 Corresponding Standards 2 Vocabulary 4 Sizing up the

### Astro 102 Test 5 Review Spring 2016. See Old Test 4 #16-23, Test 5 #1-3, Old Final #1-14

Astro 102 Test 5 Review Spring 2016 See Old Test 4 #16-23, Test 5 #1-3, Old Final #1-14 Sec 14.5 Expanding Universe Know: Doppler shift, redshift, Hubble s Law, cosmic distance ladder, standard candles,

### Assembly & Use Instructions -- Stanford Spectrographs

Assembly & Use Instructions -- Stanford Spectrographs Instructions You ll need: Spectrograph poster, diffraction grating, adhesive tape NOTE: Try not to touch the grating material, since the oils on your

### WAVES AND ELECTROMAGNETIC RADIATION

WAVES AND ELECTROMAGNETIC RADIATION All waves are characterized by their wavelength, frequency and speed. Wavelength (lambda, ): the distance between any 2 successive crests or troughs. Frequency (nu,):

### PTYS/ASTR 206 Section 2 Spring 2007 Homework #2 (Page 1/5) NAME: KEY

PTYS/ASTR 206 Section 2 Spring 2007 Homework #2 (Page 1/5) NAME: KEY Due Date: start of class 2/6/2007 5 pts extra credit if turned in before 9:00AM (early!) (To get the extra credit, the assignment must

### Emission Spectra of Elements

Fall 2003 Emission Spectra of Elements Purpose: To compare and contrast the emission spectra of various gases. Investigate quantitatively the emission spectrum of hydrogen and relate it to Bohr's theory

### MODULE P7: FURTHER PHYSICS OBSERVING THE UNIVERSE OVERVIEW

OVERVIEW More than ever before, Physics in the Twenty First Century has become an example of international cooperation, particularly in the areas of astronomy and cosmology. Astronomers work in a number

### Name Date Class ELECTRONS IN ATOMS. Standard Curriculum Core content Extension topics

13 ELECTRONS IN ATOMS Conceptual Curriculum Concrete concepts More abstract concepts or math/problem-solving Standard Curriculum Core content Extension topics Honors Curriculum Core honors content Options

### Light, Light Bulbs and the Electromagnetic Spectrum

Light, Light Bulbs and the Electromagnetic Spectrum Spectrum The different wavelengths of electromagnetic waves present in visible light correspond to what we see as different colours. Electromagnetic

### Blackbody Radiation References INTRODUCTION

Blackbody Radiation References 1) R.A. Serway, R.J. Beichner: Physics for Scientists and Engineers with Modern Physics, 5 th Edition, Vol. 2, Ch.40, Saunders College Publishing (A Division of Harcourt

Activity 17 Electromagnetic Radiation Why? Electromagnetic radiation, which also is called light, is an amazing phenomenon. It carries energy and has characteristics of both particles and waves. We can

### Heating the Atmosphere. Dr. Michael J Passow

Heating the Atmosphere Dr. Michael J Passow Heat vs. Temperature Heat refers to energy transferred from one object to another Temperature measures the average kinetic energy in a substance. When heat energy

### STAAR Science Tutorial 30 TEK 8.8C: Electromagnetic Waves

Name: Teacher: Pd. Date: STAAR Science Tutorial 30 TEK 8.8C: Electromagnetic Waves TEK 8.8C: Explore how different wavelengths of the electromagnetic spectrum such as light and radio waves are used to

### TOPIC 5 (cont.) RADIATION LAWS - Part 2

TOPIC 5 (cont.) RADIATION LAWS - Part 2 Quick review ELECTROMAGNETIC SPECTRUM Our focus in this class is on: UV VIS lr = micrometers (aka microns) = nanometers (also commonly used) Q1. The first thing

### The Electromagnetic Spectrum

INTRODUCTION The Electromagnetic Spectrum I. What is electromagnetic radiation and the electromagnetic spectrum? What do light, X-rays, heat radiation, microwaves, radio waves, and gamma radiation have

### Colorado State Standards Mathematics Standards 3.4 Science Standard 1, 2. Teaching Time: One 40-minute period

Lesson Summary Students use the spectrograph from the Building a Fancy Spectrograph lesson to gather data about light sources. Using the data they ve collected, students are able to make comparisons between

### Solar Energy. Outline. Solar radiation. What is light?-- Electromagnetic Radiation. Light - Electromagnetic wave spectrum. Electromagnetic Radiation

Outline MAE 493R/593V- Renewable Energy Devices Solar Energy Electromagnetic wave Solar spectrum Solar global radiation Solar thermal energy Solar thermal collectors Solar thermal power plants Photovoltaics

### Chapter 7: The Quantum-Mechanical Model of the Atom

C h e m i s t r y 1 A : C h a p t e r 7 P a g e 1 Chapter 7: The Quantum-Mechanical Model of the Atom Homework: Read Chapter 7. Work out sample/practice exercises Suggested Chapter 7 Problems: 37, 39,

### Light and Spectra. COLOR λ, nm COLOR λ, nm violet 405 yellow 579 blue 436 orange 623 green 492 red 689

Light and Spectra INTRODUCTION Light and color have intrigued humans since antiquity. In this experiment, you will consider several aspects of light including: a. The visible spectrum of colors (red to

### AP CHEMISTRY CHAPTER REVIEW CHAPTER 6: ELECTRONIC STRUCTURE AND THE PERIODIC TABLE

AP CHEMISTRY CHAPTER REVIEW CHAPTER 6: ELECTRONIC STRUCTURE AND THE PERIODIC TABLE You should be familiar with the wavelike properties of light: frequency ( ), wavelength ( ), and energy (E) as well as

### Electromagnetic Radiation (EMR) and Remote Sensing

Electromagnetic Radiation (EMR) and Remote Sensing 1 Atmosphere Anything missing in between? Electromagnetic Radiation (EMR) is radiated by atomic particles at the source (the Sun), propagates through

### Class 2 Solar System Characteristics Formation Exosolar Planets

Class 1 Introduction, Background History of Modern Astronomy The Night Sky, Eclipses and the Seasons Kepler's Laws Newtonian Gravity General Relativity Matter and Light Telescopes Class 2 Solar System

### The Expanding Universe

Stars, Galaxies, Guided Reading and Study This section explains how astronomers think the universe and the solar system formed. Use Target Reading Skills As you read about the evidence that supports the

### Electron Orbits. Binding Energy. centrifugal force: electrostatic force: stability criterion: kinetic energy of the electron on its orbit:

Electron Orbits In an atom model in which negatively charged electrons move around a small positively charged nucleus stable orbits are possible. Consider the simple example of an atom with a nucleus of

### Determining the Structure of an Organic Compound

Determining the Structure of an Organic Compound The analysis of the outcome of a reaction requires that we know the full structure of the products as well as the reactants In the 19 th and early 20 th

### MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Exam Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) A photo cathode whose work function is 2.4 ev, is illuminated with white light that has

### 2. Molecular stucture/basic

2. Molecular stucture/basic spectroscopy The electromagnetic spectrum Spectral region for atomic and molecular spectroscopy E. Hecht (2nd Ed.) Optics, Addison-Wesley Publishing Company,1987 Spectral regions

### The Doppler Effect & Hubble

The Doppler Effect & Hubble Objectives Explain the Doppler Effect. Describe Hubble s discoveries. Explain Hubble s Law. The Doppler Effect The Doppler Effect is named after Austrian physicist Christian

### Absorption by atmospheric gases in the IR, visible and UV spectral regions.

Lecture 6. Absorption by atmospheric gases in the IR, visible and UV spectral regions. Objectives: 1. Gaseous absorption in thermal IR. 2. Gaseous absorption in the visible and near infrared. 3. Gaseous

### Symmetric Stretch: allows molecule to move through space

BACKGROUND INFORMATION Infrared Spectroscopy Before introducing the subject of IR spectroscopy, we must first review some aspects of the electromagnetic spectrum. The electromagnetic spectrum is composed

### Principle of Thermal Imaging

Section 8 All materials, which are above 0 degrees Kelvin (-273 degrees C), emit infrared energy. The infrared energy emitted from the measured object is converted into an electrical signal by the imaging

### Measuring the Doppler Shift of a Kepler Star with a Planet

Measuring the Doppler Shift of a Kepler Star with a Planet 1 Introduction The Doppler shift of a spectrum reveals the line of sight component of the velocity vector ( radial velocity ) of the object. Doppler

### Photons. ConcepTest 27.1. 1) red light 2) yellow light 3) green light 4) blue light 5) all have the same energy. Which has more energy, a photon of:

ConcepTest 27.1 Photons Which has more energy, a photon of: 1) red light 2) yellow light 3) green light 4) blue light 5) all have the same energy 400 nm 500 nm 600 nm 700 nm ConcepTest 27.1 Photons Which

### Evolution of the Universe from 13 to 4 Billion Years Ago

Evolution of the Universe from 13 to 4 Billion Years Ago Prof. Dr. Harold Geller hgeller@gmu.edu http://physics.gmu.edu/~hgeller/ Department of Physics and Astronomy George Mason University Unity in the

### Level 3 Achievement Scale

Unit 1: Atoms Level 3 Achievement Scale Can state the key results of the experiments associated with Dalton, Rutherford, Thomson, Chadwick, and Bohr and what this lead each to conclude. Can explain that

### INFRARED SPECTROSCOPY (IR)

INFRARED SPECTROSCOPY (IR) Theory and Interpretation of IR spectra ASSIGNED READINGS Introduction to technique 25 (p. 833-834 in lab textbook) Uses of the Infrared Spectrum (p. 847-853) Look over pages

### Astronomy 110 Homework #04 Assigned: 02/06/2007 Due: 02/13/2007. Name:

Astronomy 110 Homework #04 Assigned: 02/06/2007 Due: 02/13/2007 Name: Directions: Listed below are twenty (20) multiple-choice questions based on the material covered by the lectures this past week. Choose

### Widths of spectral lines

Widths of spectral lines Real spectral lines are broadened because: Energy levels are not infinitely sharp. Atoms are moving relative to observer. 3 mechanisms determine profile φ(ν) Quantum mechanical

### Chapter 19 Star Formation

Chapter 19 Star Formation 19.1 Star-Forming Regions Units of Chapter 19 Competition in Star Formation 19.2 The Formation of Stars Like the Sun 19.3 Stars of Other Masses 19.4 Observations of Cloud Fragments

### Atomic Structure: Chapter Problems

Atomic Structure: Chapter Problems Bohr Model Class Work 1. Describe the nuclear model of the atom. 2. Explain the problems with the nuclear model of the atom. 3. According to Niels Bohr, what does n stand

### Homework #4 Solutions ASTR100: Introduction to Astronomy Fall 2009: Dr. Stacy McGaugh

Homework #4 Solutions ASTR100: Introduction to Astronomy Fall 2009: Dr. Stacy McGaugh Chapter 5: #50 Hotter Sun: Suppose the surface temperature of the Sun were about 12,000K, rather than 6000K. a. How

### Light is a type of electromagnetic (EM) radiation, and light has energy. Many kinds of light exist. Ultraviolet (UV) light causes skin to tan or burn.

Light and radiation Light is a type of electromagnetic (EM) radiation, and light has energy. Many kinds of light exist. Ultraviolet (UV) light causes skin to tan or burn. Infrared (IR) light is used in

### Outline. Chapter 6 Electronic Structure and the Periodic Table. Review. Arranging Electrons in Atoms. Fireworks. Atomic Spectra

Outline William L Masterton Cecile N. Hurley Edward J. Neth cengage.com/chemistry/masterton Chapter 6 Electronic Structure and the Periodic Table Light, photon energies and atomic spectra The hydrogen

### Forms of Energy. Freshman Seminar

Forms of Energy Freshman Seminar Energy Energy The ability & capacity to do work Energy can take many different forms Energy can be quantified Law of Conservation of energy In any change from one form

### Origins of the Cosmos Summer 2016. Pre-course assessment

Origins of the Cosmos Summer 2016 Pre-course assessment In order to grant two graduate credits for the workshop, we do require you to spend some hours before arriving at Penn State. We encourage all of

### Production of X-rays. Radiation Safety Training for Analytical X-Ray Devices Module 9

Module 9 This module presents information on what X-rays are and how they are produced. Introduction Module 9, Page 2 X-rays are a type of electromagnetic radiation. Other types of electromagnetic radiation

### SSO Transmission Grating Spectrograph (TGS) User s Guide

SSO Transmission Grating Spectrograph (TGS) User s Guide The Rigel TGS User s Guide available online explains how a transmission grating spectrograph (TGS) works and how efficient they are. Please refer

### Physics Open House. Faraday's Law and EM Waves Change in the magnetic field strength in coils generates a current. Electromagnetic Radiation

Electromagnetic Radiation (How we get most of our information about the cosmos) Examples of electromagnetic radiation: Light Infrared Ultraviolet Microwaves AM radio FM radio TV signals Cell phone signals

### COLLATED QUESTIONS: ELECTROMAGNETIC RADIATION

COLLATED QUESTIONS: ELECTROMAGNETIC RADIATION 2011(2): WAVES Doppler radar can determine the speed and direction of a moving car. Pulses of extremely high frequency radio waves are sent out in a narrow

### astronomy 2008 1. A planet was viewed from Earth for several hours. The diagrams below represent the appearance of the planet at four different times.

1. A planet was viewed from Earth for several hours. The diagrams below represent the appearance of the planet at four different times. 5. If the distance between the Earth and the Sun were increased,

### Chapter 6 Electromagnetic Radiation and the Electronic Structure of the Atom

Chapter 6 In This Chapter Physical and chemical properties of compounds are influenced by the structure of the molecules that they consist of. Chemical structure depends, in turn, on how electrons are

### Name: Class: Date: ID: A

Name: Class: _ Date: _ Practice Quiz 4 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. What is the wavelength of the longest wavelength light that can

### Chemistry 2 Chapter 13: Electrons in Atoms Please do not write on the test Use an answer sheet! 1 point/problem 45 points total

Chemistry 2 Chapter 13: Electrons in Atoms Please do not write on the test Use an answer sheet! 1 point/problem 45 points total 1. Calculate the energy in joules of a photon of red light that has a frequency

### Electromagnetic Radiation (including visible light)

An expert is a man who has made all the mistakes, which can be made in a narrow field. Neils Bohr Electromagnetic Radiation (including visible light) Behaves like a particle. light particles are called

### UNIT: Electromagnetic Radiation and Photometric Equipment

UNIT: Electromagnetic Radiation and Photometric Equipment 3photo.wpd Task Instrumentation I To review the theory of electromagnetic radiation and the principle and use of common laboratory instruments

### The Birth of the Universe Newcomer Academy High School Visualization One

The Birth of the Universe Newcomer Academy High School Visualization One Chapter Topic Key Points of Discussion Notes & Vocabulary 1 Birth of The Big Bang Theory Activity 4A the How and when did the universe

### Overview. What is EMR? Electromagnetic Radiation (EMR) LA502 Special Studies Remote Sensing

LA502 Special Studies Remote Sensing Electromagnetic Radiation (EMR) Dr. Ragab Khalil Department of Landscape Architecture Faculty of Environmental Design King AbdulAziz University Room 103 Overview What

### AZ State Standards. Concept 3: Conservation of Energy and Increase in Disorder Understand ways that energy is conserved, stored, and transferred.

Forms of Energy AZ State Standards Concept 3: Conservation of Energy and Increase in Disorder Understand ways that energy is conserved, stored, and transferred. PO 1. Describe the following ways in which

### Big bang, red shift and doppler effect

Big bang, red shift and doppler effect 73 minutes 73 marks Page of 26 Q. (a) Scientists have observed that the wavelengths of the light from galaxies moving away from the Earth are longer than expected.

### ESCI 107/109 The Atmosphere Lesson 2 Solar and Terrestrial Radiation

ESCI 107/109 The Atmosphere Lesson 2 Solar and Terrestrial Radiation Reading: Meteorology Today, Chapters 2 and 3 EARTH-SUN GEOMETRY The Earth has an elliptical orbit around the sun The average Earth-Sun

### Photosynthesis - Exercise 6 Objectives

The purpose of this lab exercise will be to examine several factors involved in photosynthesis. -The effect of the intensity of light (# of photons per time) on the rate of photosynthesis and know how

### 1. Radiative Transfer. 2. Spectrum of Radiation. 3. Definitions

1. Radiative Transfer Virtually all the exchanges of energy between the earth-atmosphere system and the rest of the universe take place by radiative transfer. The earth and its atmosphere are constantly

### LIGHT AND ELECTROMAGNETIC RADIATION

LIGHT AND ELECTROMAGNETIC RADIATION Light is a Wave Light is a wave motion of radiation energy in space. We can characterize a wave by three numbers: - wavelength - frequency - speed Shown here is precisely

### Bohr s Model and Emission Spectra of Hydrogen and Helium

PHYS-01 LAB-03 Bohr s Model and Emission Spectra of Hydrogen and Helium 1. Objective The objective of this experiment is to study the emission spectrum of hydrogen and to understand its origin in terms