Fall 2016 Due November 22. Bi/Ch110 Problem Set 4

Size: px
Start display at page:

Download "Fall 2016 Due November 22. Bi/Ch110 Problem Set 4"

Transcription

1 Bi/Ch110 Problem Set 4 Problem 1: Overview of metabolism (33 points) a. (12 points) Metabolic pathways often reuse reaction motifs to perform the necessary transformations required. List six major reaction types and the generalized outcome achieved by each reaction/their reactive purpose. - Oxidation-reduction reactions: Derives energy from the oxidation of carbon compounds. - Ligation reactions: form bonds by using free energy from ATP cleavage; necessary for anabolism. - Isomerization reactions: rearrange atoms necessary for subsequent reactions such as oxidation-reduction. - Group transfer reactions: activate compounds for subsequent reactions or modify compounds for regulatory purposes (trap glucose in the cell for further catabolism) - Hydrolytic reactions: Hydrolysis for the degradation of large molecules for metabolism or to reuse some of the components for biosynthetic purposes - Carbon-carbon bond cleavage: release of CO2 or H2O during metabolic pathways that help drive reactions forward. b. (6 points) To ensure proper homeostasis, describe three principle ways that cells control metabolic processes. - Control the amounts of enzymes: Occurs at the level of transcription - Control catalytic activity: Allosteric control; feedback loops; covalent modifications; energy levels of the cell - Control the accessibility of substrates: Compartmentalization of substrates; substrate sequestration c. (5 points) Sometimes, the substrate (or sites on the substrate) for a metabolic pathway are structurally similar: A sample of deuterated reduced NAD was prepared by incubating CH3CD2OH and NAD+ with alcohol dehydrogenase. This reduced coenzyme was added to a solution of 1,3-DPG and glyceraldehyde 3-phosphate dehydrogenase. The NAD+ formed by this second reaction contained one atom of deuterium, whereas the glyceraldehyde 3-phosphate, the other product, contained none. What does this experiment reveal about the nature of the two enzymes?

2 The Alcohol Dehydrogenase and glyceraldehyde dehydrogenase have opposite selectivities as to which H is taken from/replaced to NADH. d. (5 points) Suppose you discovered a mutant yeast whose glycolytic pathway was shorter because of the presence of a new enzyme catalyzing the reaction glyceraldehyde-3-phosphate + NAD + 3-phosphoglycerate + NADH + H +. Would shortening the glycolytic pathway in this way benefit the cell? Explain. No. There would be no anaerobic productions of ATP; aerobic ATP production would be diminished only slightly. e. (5 points) By choosing glycolysis over the citric acid cycle, what tradeoffs do cancer cells choose? Cancer cells will produce less ATP but will produce many more important metabolites such as nucleic acids, amino acids, and fatty acids for their proliferation. Glycolysis also provides energy at a much quicker rate. Problem 2: The Citric Acid Cycle (40 points) a. (5 points) The output of glycolysis is pyruvate, but the citric acid cycle uses acetyl CoA. Briefly explain how glycolysis and the citric acid cycle are linked. The pyruvate dehydrogenase complex converts pyruvate into acetyl CoA by the reaction given below: Pyruvate + CoA + NAD + acetyl CoA + CO2 + NADH + H + b. (5 points) The citric acid cycle produces only one molecule of ATP per cycle, yet it is key to producing the majority of energy used by the cell. Explain how this is possible. While the citric acid cycle itself does not produce much ATP, it also produces NADH and FADH2 by reducing NAD + and FAD. It does so by transferring 8 high-energy electrons from acetyl CoA to three molecules of NAD + (6 e - ) and one molecule of FAD (2 e - ). When NADH and FADH2 are then oxidized during oxidative phosphorylation, those electrons then are used to produce nine ATP. c. (5 points) Explain how the citric acid cycle is a cycle. The 4-carbon molecule oxaloacetate is a reactant and then a product of the cycle such that there is no net gain or loss of oxaloacetate over one cycle. In the first step of the citric acid cycle, oxaloacetate and the acetyl group of

3 acetyl CoA are condensed to form a 6-carbon molecule. Over the citric acid cycle, that 6-carbon molecule loses two carbons in the form of CO2 such that the last reaction in the citric acid cycle, catalyzed by malate dehydrogenase, regenerates oxaloacetate. d. (15 points) The citric acid cycle is tightly regulated. Explain how each of the following molecules affect the activity of isocitrate dehydrogenase and why each of these outcomes are logical for the regulation of the citric acid cycle. i. ADP ADP is an allosteric activator of the enzyme. A high [ADP] in the cell indicates the cell is energy-poor; therefore the activation of the citric acid cycle to produce more energy is in the best interest of the cell. ii. ATP ATP is an allosteric inhibitor of the enzyme. A high [ATP] in the cell indicates that the cell is energy-rich; therefore, it is in the best interest of the cell to shut down the citric acid cycle since no more energy is required. iii. NADH NADH is a product/competitive inhibitor of the enzyme. A high [NADH] in the cell indicates that the cell is energy-rich; therefore, it is in the best interest of the cell to shut down the citric acid cycle since no more energy is required. e. (10 points) Pyruvate, labeled with 14 C as shown below in red, was added to cell extracts that contain functioning metabolic enzymes. Where does the 14 C label end up after one turn of the citric acid cycle? Show your work by tracing the atom through the relevant metabolic reactions.

4 After one turn of the citric acid cycle, the label ends up on the internal carbon atoms of oxaloacetate. Because succinate is a symmetric molecule, you cannot trace the label specifically after that step. Instead, 50% will be on one internal carbon (carbonyl) while the other 50% of the label will be on the other internal carbon (aliphatic). Problem 3: Gluconeogenesis (27 points)

5 a. (7 points) As you have learned, glycolysis has several irreversible steps. Yet, gluconeogenesis is essentially a reversal of the process of glycolysis. How is that possible, given that some of the reactions of glycolysis are so energetically favorable? While most of the reactions in gluconeogenesis are the reverse of those found in glycolysis, the three irreversible steps, which are very energetically favorable in the glycolysis direction, are replaced by more kinetically favorable reactions. Hexokinase, phosphofructokinase, and pyruvate kinase enzymes of glycolysis are replaced with glucose-6-phosphatase, fructose-1,6- bisphosphatase, and phosphoenolpyruvate carboxykinase. These enzymes are able to perform the same function as the original enzymes in a way that is favorable during gluconeogenesis. b. Consider the enzyme phosphoenolpyruvate carboxykinase (PEPCK), which is involved in gluconeogenesis, but not glycolysis. i. (10 points) What is its role, metabolically speaking? Which hormones regulate its expression and why? PEPCK is an essential enzyme in gluconeogenesis which catalyzes the conversion of oxaloacetate into phosphoenolpyruvate. It is one of the enzymes that circumvents the irreversible steps of glycolysis. Its gene expression is regulated by camp, insulin, cortisol and glucagon in order to maintain glucose homeostasis. ii. (5 points) What would happen if PEPCK was overexpressed? Name a disease that could occur as a result of this overexpression. Increasing gene levels of PEPCK would result in more conversion of oxaloacetate into phosphoenolpyruvate, which ultimately results in more production of glucose. The increased level of glucose could result in the development of Type II diabetes mellitus from the persistent high circulating blood glucose levels. iii. (5 points) What would happen if there were a deficiency in PEPCK? A lower level of PEPCK would result in less conversion of oxaloacetate into phosphoenolpyruvate, which means that less production of glucose would occur. This would result in hypoglycemia. Lactic acidemia can result from the increased acid in the bloodstream, the liver can become enlarged and impaired, and normal growth could be inhibited.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Ch23_PT MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) All of the following statements concerning digestion are correct except A) The major physical

More information

Cellular Respiration and Fermentation

Cellular Respiration and Fermentation LECTURE PRESENTATIONS For CAMPBELL BIOLOGY, NINTH EDITION Jane B. Reece, Lisa A. Urry, Michael L. Cain, Steven A. Wasserman, Peter V. Minorsky, Robert B. Jackson Chapter 9 Cellular Respiration and Fermentation

More information

Chapter 16 The Citric Acid Cycle

Chapter 16 The Citric Acid Cycle Chapter 16 The Citric Acid Cycle Multiple Choice Questions 1. Which of the following is not true of the reaction catalyzed by the pyruvate dehydrogenase complex? A) Biotin participates in the decarboxylation.

More information

What affects an enzyme s activity? General environmental factors, such as temperature and ph. Chemicals that specifically influence the enzyme.

What affects an enzyme s activity? General environmental factors, such as temperature and ph. Chemicals that specifically influence the enzyme. CH s 8-9 Respiration & Metabolism Metabolism A catalyst is a chemical agent that speeds up a reaction without being consumed by the reaction. An enzyme is a catalytic protein. Hydrolysis of sucrose by

More information

Chapter 16 The Citric Acid Cycle

Chapter 16 The Citric Acid Cycle Chapter 16 The Citric Acid Cycle Multiple Choice Questions 1. Production of acetyl-coa (activated acetate) Page: 603 Difficulty: 2 Ans: A Which of the following is not true of the reaction catalyzed by

More information

The diagram below summarizes the effects of the compounds that cells use to regulate their own metabolism.

The diagram below summarizes the effects of the compounds that cells use to regulate their own metabolism. Regulation of carbohydrate metabolism Intracellular metabolic regulators Each of the control point steps in the carbohydrate metabolic pathways in effect regulates itself by responding to molecules that

More information

Chapter 7 Active Reading Guide Cellular Respiration and Fermentation

Chapter 7 Active Reading Guide Cellular Respiration and Fermentation Name: AP Biology Mr. Croft Chapter 7 Active Reading Guide Cellular Respiration and Fermentation Overview: Before getting involved with the details of cellular respiration and photosynthesis, take a second

More information

Copyright 2010 Pearson Education, Inc. Chapter Twenty Three 1

Copyright 2010 Pearson Education, Inc. Chapter Twenty Three 1 23.2 Glucose Metabolism: An Overview When glucose enters a cell from the bloodstream, it is immediately converted to glucose 6- phosphate. Once this phosphate is formed, glucose is trapped within the cell

More information

Chapter 14 Glycolysis. Glucose. 2 Pyruvate 2 Lactate (sent to liver to be converted back to glucose) TCA Cycle

Chapter 14 Glycolysis. Glucose. 2 Pyruvate 2 Lactate (sent to liver to be converted back to glucose) TCA Cycle Chapter 14 Glycolysis Requires mitochondria and O 2 Glucose glycolysis anaerobic respiration 2 Pyruvate 2 Lactate (sent to liver to be converted back to glucose) pyruvate dehydrogenase acetyl-coa TCA Cycle

More information

1. Enzymes. Biochemical Reactions. Chapter 5: Microbial Metabolism. 1. Enzymes. 2. ATP Production. 3. Autotrophic Processes

1. Enzymes. Biochemical Reactions. Chapter 5: Microbial Metabolism. 1. Enzymes. 2. ATP Production. 3. Autotrophic Processes Chapter 5: Microbial Metabolism 1. Enzymes 2. ATP Production 3. Autotrophic Processes 1. Enzymes Biochemical Reactions All living cells depend on biochemical reactions to maintain homeostasis. All of the

More information

Anabolic and Catabolic Reactions are Linked by ATP in Living Organisms

Anabolic and Catabolic Reactions are Linked by ATP in Living Organisms Chapter 5: Microbial Metabolism Microbial Metabolism Metabolism refers to all chemical reactions that occur within a living a living organism. These chemical reactions are generally of two types: Catabolic:

More information

The 3 stages of Glycolysis

The 3 stages of Glycolysis The Glycolytic pathway describes the oxidation of glucose to pyruvate with the generation of ATP and NADH It is also called as the Embden-Meyerhof Pathway is a universal pathway; present in all organisms:

More information

AP BIOLOGY CHAPTER 7 Cellular Respiration Outline

AP BIOLOGY CHAPTER 7 Cellular Respiration Outline AP BIOLOGY CHAPTER 7 Cellular Respiration Outline I. How cells get energy. A. Cellular Respiration 1. Cellular respiration includes the various metabolic pathways that break down carbohydrates and other

More information

Regulation of the Citric Acid Cycle

Regulation of the Citric Acid Cycle Regulation of the itric Acid ycle I. hanges in Free Energy February 17, 2003 Bryant Miles kj/mol 40 20 0 20 40 60 80 Reaction DGo' DG TA Free Energy hanges 1 2 3 4 5 6 7 8 9 1.) itrate Synthase 2.) Aconitase

More information

Bioenergetics. Free Energy Change

Bioenergetics. Free Energy Change Bioenergetics Energy is the capacity or ability to do work All organisms need a constant supply of energy for functions such as motion, transport across membrane barriers, synthesis of biomolecules, information

More information

Overview of Glycolysis Under anaerobic conditions, the glycolytic pathway present in most species results in a balanced reaction:

Overview of Glycolysis Under anaerobic conditions, the glycolytic pathway present in most species results in a balanced reaction: Glycolysis Glucose is a valuable molecule. It can be used to generate energy (in red blood cells and in brain under normal conditions, glucose is the sole energy source), and it can be used to generate

More information

Copyright 2000-2003 Mark Brandt, Ph.D. 54

Copyright 2000-2003 Mark Brandt, Ph.D. 54 Pyruvate Oxidation Overview of pyruvate metabolism Pyruvate can be produced in a variety of ways. It is an end product of glycolysis, and can be derived from lactate taken up from the environment (or,

More information

Citric Acid Cycle. Cycle Overview. Metabolic Sources of Acetyl-Coenzyme A. Enzymes of the Citric Acid Cycle. Regulation of the Citric Acid Cycle

Citric Acid Cycle. Cycle Overview. Metabolic Sources of Acetyl-Coenzyme A. Enzymes of the Citric Acid Cycle. Regulation of the Citric Acid Cycle Citric Acid Cycle Cycle Overview Metabolic Sources of Acetyl-Coenzyme A Enzymes of the Citric Acid Cycle Regulation of the Citric Acid Cycle The Amphibolic Nature of the Citric Acid Cycle Cycle Overview

More information

1. Explain the difference between fermentation and cellular respiration.

1. Explain the difference between fermentation and cellular respiration. : Harvesting Chemical Energy Name Period Overview: Before getting involved with the details of cellular respiration and photosynthesis, take a second to look at the big picture. Photosynthesis and cellular

More information

Chapter 7 Cellular Respiration

Chapter 7 Cellular Respiration Phases of aerobic cellular respiration 1. Glycolysis 2. Transition or Acetyl-CoA reaction 3. Krebs cycle 4. Electron transport system Chapter 7 Cellular Respiration These phases are nothing more than metabolic

More information

CELLULAR RESPIRATION. Chapter 19 & 20. Biochemistry by Campbell and Farell (7 th Edition) By Prof M A Mogale

CELLULAR RESPIRATION. Chapter 19 & 20. Biochemistry by Campbell and Farell (7 th Edition) By Prof M A Mogale CELLULAR RESPIRATION Chapter 19 & 20 Biochemistry by Campbell and Farell (7 th Edition) By Prof M A Mogale 1. Cellular respiration (energy capture) The enzymatic breakdown of food stuffs in the presence

More information

Harvesting Energy: Glycolysis and Cellular Respiration. Chapter 8

Harvesting Energy: Glycolysis and Cellular Respiration. Chapter 8 Harvesting Energy: Glycolysis and Cellular Respiration Chapter 8 Overview of Glucose Breakdown The overall equation for the complete breakdown of glucose is: C 6 H 12 O 6 + 6O 2 6CO 2 + 6H 2 O + ATP The

More information

Energy Production In A Cell (Chapter 25 Metabolism)

Energy Production In A Cell (Chapter 25 Metabolism) Energy Production In A Cell (Chapter 25 Metabolism) Large food molecules contain a lot of potential energy in the form of chemical bonds but it requires a lot of work to liberate the energy. Cells need

More information

Copyright 2000-2003 Mark Brandt, Ph.D. 59

Copyright 2000-2003 Mark Brandt, Ph.D. 59 The Tricarboxylic Acid Cycle Background (why are eight enzymes necessary?) In principle, acetyl-coa could be converted to carbon dioxide very simply. However, doing so has three potential problems: 1)

More information

Lactic Acid Dehydrogenase

Lactic Acid Dehydrogenase Lactic Acid Dehydrogenase Pyruvic Acid Dehydrogenase Complex Pyruvate to ACETYL coa CC CoA + CO 2 Mitochondria 3 carbon Pyruvate to 2 carbon ACETYL Coenzyme A Pyruvate Acetyl CoA + CO 2 + NADH + H + CO2

More information

Metabolism Lecture 7 METABOLIC_REGULATION Restricted for students enrolled in MCB102, UC Berkeley, Spring 2008 ONLY

Metabolism Lecture 7 METABOLIC_REGULATION Restricted for students enrolled in MCB102, UC Berkeley, Spring 2008 ONLY Bryan Krantz: University of California, Berkeley MCB 102, Spring 2008, Metabolism Lecture 7 Reading: Ch. 15 of Principles of Biochemistry, Principles of Metabolic Regulation, Illustrated with Glucose and

More information

AP Bio Photosynthesis & Respiration

AP Bio Photosynthesis & Respiration AP Bio Photosynthesis & Respiration Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. 1. What is the term used for the metabolic pathway in which

More information

1. A covalent bond between two atoms represents what kind of energy? a. Kinetic energy b. Potential energy c. Mechanical energy d.

1. A covalent bond between two atoms represents what kind of energy? a. Kinetic energy b. Potential energy c. Mechanical energy d. 1. A covalent bond between two atoms represents what kind of energy? a. Kinetic energy b. Potential energy c. Mechanical energy d. Solar energy A. Answer a is incorrect. Kinetic energy is the energy of

More information

Summary of Metabolism. Mechanism of Enzyme Action

Summary of Metabolism. Mechanism of Enzyme Action Summary of Metabolism Mechanism of Enzyme Action 1. The substrate contacts the active site 2. The enzyme-substrate complex is formed. 3. The substrate molecule is altered (atoms are rearranged, or the

More information

The correct answer is d C. Answer c is incorrect. Reliance on the energy produced by others is a characteristic of heterotrophs.

The correct answer is d C. Answer c is incorrect. Reliance on the energy produced by others is a characteristic of heterotrophs. 1. An autotroph is an organism that a. extracts energy from organic sources b. converts energy from sunlight into chemical energy c. relies on the energy produced by other organisms as an energy source

More information

Chapter 8: Energy and Metabolism

Chapter 8: Energy and Metabolism Chapter 8: Energy and Metabolism 1. Discuss energy conversions and the 1 st and 2 nd law of thermodynamics. Be sure to use the terms work, potential energy, kinetic energy, and entropy. 2. What are Joules

More information

MULTIPLE CHOICE QUESTIONS

MULTIPLE CHOICE QUESTIONS MULTIPLE CHOICE QUESTIONS 1. Most components of energy conversion systems evolved very early; thus, the most fundamental aspects of energy metabolism tend to be: A. quite different among a diverse group

More information

SOME Important Points About Cellular Energetics by Dr. Ty C.M. Hoffman

SOME Important Points About Cellular Energetics by Dr. Ty C.M. Hoffman SOME Important Points About Cellular Energetics by Dr. Ty C.M. Hoffman An Introduction to Metabolism Most biochemical processes occur as biochemical pathways, each individual reaction of which is catalyzed

More information

Chapter 14- RESPIRATION IN PLANTS

Chapter 14- RESPIRATION IN PLANTS Chapter 14- RESPIRATION IN PLANTS Living cells require a continuous supply of energy for maintaining various life activities. This energy is obtained by oxidizing the organic compounds (carbohydrates,

More information

CHAPTER 15: ANSWERS TO SELECTED PROBLEMS

CHAPTER 15: ANSWERS TO SELECTED PROBLEMS CHAPTER 15: ANSWERS T SELECTED PRBLEMS SAMPLE PRBLEMS ( Try it yourself ) 15.1 ur bodies can carry out the second reaction, because it requires less energy than we get from breaking down a molecule of

More information

Cellular Respiration An Overview

Cellular Respiration An Overview Why? Cellular Respiration An Overview What are the phases of cellular respiration? All cells need energy all the time, and their primary source of energy is ATP. The methods cells use to make ATP vary

More information

RESPIRATION AND FERMENTATION: AEROBIC AND ANAEROBIC OXIDATION OF ORGANIC MOLECULES. Bio 171 Week 6

RESPIRATION AND FERMENTATION: AEROBIC AND ANAEROBIC OXIDATION OF ORGANIC MOLECULES. Bio 171 Week 6 RESPIRATION AND FERMENTATION: AEROBIC AND ANAEROBIC OXIDATION OF ORGANIC MOLECULES Bio 171 Week 6 Procedure Label test tubes well, including group name 1) Add solutions listed to small test tubes 2) For

More information

CITRIC ACID (KREB S, TCA) CYCLE

CITRIC ACID (KREB S, TCA) CYCLE ITRI AID (KREB S, TA) YLE Date: September 2, 2005 * Time: 10:40 am 11:30 am * Room: G202 Biomolecular Building Lecturer: Steve haney 515A Mary Ellen Jones Building stephen_chaney@med.unc.edu 9663286 *Please

More information

Biology 20 Cellular Respiration Review NG Know the process of Cellular Respiration (use this picture if it helps):

Biology 20 Cellular Respiration Review NG Know the process of Cellular Respiration (use this picture if it helps): Biology 20 Cellular Respiration Review NG Know the process of Cellular Respiration (use this picture if it helps): 1) How many ATP molecules are produced for each glucose molecule used in fermentation?

More information

Integration of Metabolism

Integration of Metabolism I. Central Themes of Metabolism 1. ATP is the universal energy carrier. Integration of Metabolism Bryant Miles 2. ATP is generated by the oxidation of metabolic fuels Glucose Fatty Acids Amino Acids 3.

More information

Chapter 9 Mitochondrial Structure and Function

Chapter 9 Mitochondrial Structure and Function Chapter 9 Mitochondrial Structure and Function 1 2 3 Structure and function Oxidative phosphorylation and ATP Synthesis Peroxisome Overview 2 Mitochondria have characteristic morphologies despite variable

More information

How Cells Release Chemical Energy Cellular Respiration

How Cells Release Chemical Energy Cellular Respiration How Cells Release Chemical Energy Cellular Respiration Overview of Carbohydrate Breakdown Pathways Photoautotrophs make ATP during photosynthesis and use it to synthesize glucose and other carbohydrates

More information

Figure 5. Energy of activation with and without an enzyme.

Figure 5. Energy of activation with and without an enzyme. Biology 20 Laboratory ENZYMES & CELLULAR RESPIRATION OBJECTIVE To be able to list the general characteristics of enzymes. To study the effects of enzymes on the rate of chemical reactions. To demonstrate

More information

008 Chapter 8. Student:

008 Chapter 8. Student: 008 Chapter 8 Student: 1. Some bacteria are strict aerobes and others are strict anaerobes. Some bacteria, however, are facultative anaerobes and can live with or without oxygen. If given the choice of

More information

Regulation of enzyme activity

Regulation of enzyme activity 1 Regulation of enzyme activity Regulation of enzyme activity is important to coordinate the different metabolic processes. It is also important for homeostasis i.e. to maintain the internal environment

More information

Energy & Enzymes. Life requires energy for maintenance of order, growth, and reproduction. The energy living things use is chemical energy.

Energy & Enzymes. Life requires energy for maintenance of order, growth, and reproduction. The energy living things use is chemical energy. Energy & Enzymes Life requires energy for maintenance of order, growth, and reproduction. The energy living things use is chemical energy. 1 Energy exists in two forms - potential and kinetic. Potential

More information

carbon-carbon bond formation dehydration hydration decarboxylation oxidation reduction substrate level phosphorylation isomerization

carbon-carbon bond formation dehydration hydration decarboxylation oxidation reduction substrate level phosphorylation isomerization 1. A. Name each enzyme present in the citric acid cycle and specify which of the following describes the reaction that is catalyzed when the cycle functions in the physiological direction: carbon-carbon

More information

Todays Outline. Metabolism. Why do cells need energy? How do cells acquire energy? Metabolism. Concepts & Processes. The cells capacity to:

Todays Outline. Metabolism. Why do cells need energy? How do cells acquire energy? Metabolism. Concepts & Processes. The cells capacity to: and Work Metabolic Pathways Enzymes Features Factors Affecting Enzyme Activity Membrane Transport Diffusion Osmosis Passive Transport Active Transport Bulk Transport Todays Outline -Releasing Pathways

More information

I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í ENZYMES

I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í ENZYMES = substances that... biological reactions 1. Provide an alternative reaction route which has a lower... energy 2. Reactions catalysed by enzymes occur under mild conditions + good yield + fast 3. Enzymes

More information

The Citric Acid Cycle

The Citric Acid Cycle The itric Acid ycle February 14, 2003 Bryant Miles I. itrate Synthase + 3 SoA The first reaction of the citric acid cycle is the condensation of acetyloa and oxaloacetate to form citrate and oas. The enzyme

More information

Cellular Respiration & Metabolism. Metabolism. Coupled Reactions: Bioenergetics. Cellular Respiration: ATP is the cell s rechargable battery

Cellular Respiration & Metabolism. Metabolism. Coupled Reactions: Bioenergetics. Cellular Respiration: ATP is the cell s rechargable battery Cellular Respiration & Metabolism Metabolic Pathways: a summary Metabolism Bioenergetics Flow of energy in living systems obeys: 1 st law of thermodynamics: Energy can be transformed, but it cannot be

More information

PRACTICE SET 1. Free energy changes and equilibrium constants

PRACTICE SET 1. Free energy changes and equilibrium constants PRACTICE SET 1 Free energy changes and equilibrium constants 1. Calculate the standard free-energy changes of the following metabolically important enzyme-catalyzed reactions at 25 C and ph 7.0 from the

More information

How To Understand The Chemistry Of An Enzyme

How To Understand The Chemistry Of An Enzyme Chapt. 8 Enzymes as catalysts Ch. 8 Enzymes as catalysts Student Learning Outcomes: Explain general features of enzymes as catalysts: Substrate -> Product Describe nature of catalytic sites general mechanisms

More information

BCOR 011 Exam 2, 2004

BCOR 011 Exam 2, 2004 BCOR 011 Exam 2, 2004 Name: Section: MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1. According to the first law of thermodynamics, A. the universe

More information

The Aerobic Fate of Pyruvate

The Aerobic Fate of Pyruvate The Aerobic Fate of yruvate February 12, 2003 Bryant Miles I could tell that some of you were not impressed by the mere 2 ATs produced per glucose by glycolysis. The 2 AT s produced are only a small fraction

More information

Chapter 9 Cellular Respiration

Chapter 9 Cellular Respiration Chapter 9 Cellular Respiration Electrons carried in NADH Mitochondrion Glucose Glycolysis Pyruvic acid Krebs Cycle Electrons carried in NADH and FADH 2 Electron Transport Chain Cytoplasm Mitochondrion

More information

Microbial Metabolism. Biochemical diversity

Microbial Metabolism. Biochemical diversity Microbial Metabolism Biochemical diversity Metabolism Define Requirements Energy Enzymes Rate Limiting step Reaction time Types Anabolic Endergonic Dehydration Catabolic Exergonic Hydrolytic Metabolism

More information

-Loss of energy -Loss of hydrogen from carbons. -Gain of energy -Gain of hydrogen to carbons

-Loss of energy -Loss of hydrogen from carbons. -Gain of energy -Gain of hydrogen to carbons Cellular Respiration- Equation C6H12O6 + 6O2 6CO2 +6H20 and energy -The energy is released from the chemical bonds in the complex organic molecules -The catabolic process of releasing energy from food

More information

1. What has a higher stored energy potential per gram, glycogen or triglycerides? Explain.

1. What has a higher stored energy potential per gram, glycogen or triglycerides? Explain. Lipid Metabolism 1. What has a higher stored energy potential per gram, glycogen or triglycerides? Explain. 2. How can excess acetyl CoA trapped in the mitochondria, be utilized as a substrate for fatty

More information

* Is chemical energy potential or kinetic energy? The position of what is storing energy?

* Is chemical energy potential or kinetic energy? The position of what is storing energy? Biology 1406 Exam 2 - Metabolism Chs. 5, 6 and 7 energy - capacity to do work 5.10 kinetic energy - energy of motion : light, electrical, thermal, mechanical potential energy - energy of position or stored

More information

Microbial Metabolism. Chapter 5. Enzymes. Enzyme Components. Mechanism of Enzymatic Action

Microbial Metabolism. Chapter 5. Enzymes. Enzyme Components. Mechanism of Enzymatic Action Chapter 5 Microbial Metabolism Metabolism is the sum of all chemical reactions within a living organism, including anabolic (biosynthetic) reactions and catabolic (degradative) reactions. Anabolism is

More information

Chapter 9 Review Worksheet Cellular Respiration

Chapter 9 Review Worksheet Cellular Respiration 1 of 5 11/9/2011 8:11 PM Name: Hour: Chapter 9 Review Worksheet Cellular Respiration Energy in General 1. Differentiate an autotroph from a hetertroph as it relates to obtaining energy and the processes

More information

Problem Set 2 (multiple choice) Biochemistry 3300

Problem Set 2 (multiple choice) Biochemistry 3300 1. What classes of reactions do Lyases catalyse? a) Bond formation coupled with ATP hydrolysis b) Isomerizations c) Group elimination to form double bonds d) Transfer of functional groups e) Hydrolysis

More information

21.8 The Citric Acid Cycle

21.8 The Citric Acid Cycle 21.8 The Citric Acid Cycle The carbon atoms from the first two stages of catabolism are carried into the third stage as acetyl groups bonded to coenzyme A. Like the phosphoryl groups in ATP molecules,

More information

Metabolic Fate of Glucose. Metabolic Fate of Fatty Acids

Metabolic Fate of Glucose. Metabolic Fate of Fatty Acids Metabolic Fate of Glucose Each class of biomolecule has alternative fates depending on the metabolic state of the body. Glucose: The intracellular form of glucose is glucose-6- phosphate. Only liver cells

More information

Chapter 15 Lecture Notes: Metabolism

Chapter 15 Lecture Notes: Metabolism Chapter 15 Lecture Notes: Metabolism Educational Goals 1. Define the terms metabolism, metabolic pathway, catabolism, and anabolism. 2. Understand how ATP is formed from ADP and inorganic phosphate (P

More information

Enzymes and Metabolic Pathways

Enzymes and Metabolic Pathways Enzymes and Metabolic Pathways Enzyme characteristics Made of protein Catalysts: reactions occur 1,000,000 times faster with enzymes Not part of reaction Not changed or affected by reaction Used over and

More information

Work and Energy in Muscles

Work and Energy in Muscles Work and Energy in Muscles Why can't I sprint forever? I'll start this section with that silly question. What lies behind the undisputable observation that we must reduce speed if we want to run longer

More information

Chapter 19a Oxidative Phosphorylation and Photophosphorylation. Multiple Choice Questions

Chapter 19a Oxidative Phosphorylation and Photophosphorylation. Multiple Choice Questions Chapter 19a Oxidative Phosphorylation and Photophosphorylation Multiple Choice Questions 1. Electron-transfer reactions in mitochondria Page: 707 Difficulty: 1 Ans: E Almost all of the oxygen (O 2 ) one

More information

Electron Transport System. May 16, 2014 Hagop Atamian hatamian@ucdavis.edu

Electron Transport System. May 16, 2014 Hagop Atamian hatamian@ucdavis.edu Electron Transport System May 16, 2014 Hagop Atamian hatamian@ucdavis.edu What did We learn so far? Glucose is converted to pyruvate in glycolysis. The process generates two ATPs. Pyruvate is taken into

More information

- Oxygen is needed for cellular respiration [OVERHEAD, fig. 6.2, p. 90 / 4th: 6.1] - lungs provide oxygen to blood, blood brings oxygen to the cells.

- Oxygen is needed for cellular respiration [OVERHEAD, fig. 6.2, p. 90 / 4th: 6.1] - lungs provide oxygen to blood, blood brings oxygen to the cells. Cellular respiration - how cells make energy - Oxygen is needed for cellular respiration [OVERHEAD, fig. 6.2, p. 90 / 4th: 6.1] - ATP - this is provided by the lungs - lungs provide oxygen to blood, blood

More information

Introduction to Metabolism

Introduction to Metabolism Introduction to Metabolism If the ΔG' of the reaction A B is 40 kj/mol, under standard conditions the reaction: A) is at equilibrium. B) will never reach equilibrium. C) will not occur spontaneously. D)

More information

Cellular Respiration Worksheet 1. 1. What are the 3 phases of the cellular respiration process? Glycolysis, Krebs Cycle, Electron Transport Chain.

Cellular Respiration Worksheet 1. 1. What are the 3 phases of the cellular respiration process? Glycolysis, Krebs Cycle, Electron Transport Chain. Cellular Respiration Worksheet 1 1. What are the 3 phases of the cellular respiration process? Glycolysis, Krebs Cycle, Electron Transport Chain. 2. Where in the cell does the glycolysis part of cellular

More information

Photosynthesis (CO 2 + H 2 O C 6 H 12 O 6 + O 2 )

Photosynthesis (CO 2 + H 2 O C 6 H 12 O 6 + O 2 ) The vital role of A This is the energy-rich compound that is the source of energy for all living things. It is a nucleotide, comprising a 5C sugar (ribose); an organic base (adenosine); and 3 phosphate

More information

1- Fatty acids are activated to acyl-coas and the acyl group is further transferred to carnitine because:

1- Fatty acids are activated to acyl-coas and the acyl group is further transferred to carnitine because: Section 10 Multiple Choice 1- Fatty acids are activated to acyl-coas and the acyl group is further transferred to carnitine because: A) acyl-carnitines readily cross the mitochondrial inner membrane, but

More information

Enzymes and Metabolism

Enzymes and Metabolism Enzymes and Metabolism Enzymes and Metabolism Metabolism: Exergonic and Endergonic Reactions Chemical Reactions: Activation Every chemical reaction involves bond breaking and bond forming A chemical reaction

More information

Name Date Class. energy phosphate adenine charged ATP chemical bonds work ribose

Name Date Class. energy phosphate adenine charged ATP chemical bonds work ribose Energy in a Cell Reinforcement and Study Guide Section.1 The Need for Energy In your textbook, read about cell energy. Use each of the terms below just once to complete the passage. energy phosphate adenine

More information

Methods of Grading S/N Style of grading Percentage Score 1 Attendance, class work and assignment 10 2 Test 20 3 Examination 70 Total 100

Methods of Grading S/N Style of grading Percentage Score 1 Attendance, class work and assignment 10 2 Test 20 3 Examination 70 Total 100 COURSE: MIB 303 Microbial Physiology and Metabolism (3 Units- Compulsory) Course Duration: Three hours per week for 15 weeks (45 hours). Lecturer: Jimoh, S.O. B.Sc., M.Sc, Ph.D Microbiology (ABU, Zaria)

More information

Chapter 8: An Introduction to Metabolism

Chapter 8: An Introduction to Metabolism Chapter 8: An Introduction to Metabolism Name Period Concept 8.1 An organism s metabolism transforms matter and energy, subject to the laws of thermodynamics 1. Define metabolism. The totality of an organism

More information

Chemistry 20 Chapters 15 Enzymes

Chemistry 20 Chapters 15 Enzymes Chemistry 20 Chapters 15 Enzymes Enzymes: as a catalyst, an enzyme increases the rate of a reaction by changing the way a reaction takes place, but is itself not changed at the end of the reaction. An

More information

Photosynthesis takes place in three stages:

Photosynthesis takes place in three stages: Photosynthesis takes place in three stages: Light-dependent reactions Light-independent reactions The Calvin cycle 1. Capturing energy from sunlight 2. Using energy to make ATP and NADPH 3. Using ATP and

More information

Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Two Forms of Energy

Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Two Forms of Energy Module 2D - Energy and Metabolism Objective # 19 All living organisms require energy for survival. In this module we will examine some general principles about chemical reactions and energy usage within

More information

Cellular Energy: ATP & Enzymes. What is it? Where do organism s get it? How do they use it?

Cellular Energy: ATP & Enzymes. What is it? Where do organism s get it? How do they use it? Cellular Energy: ATP & Enzymes What is it? Where do organism s get it? How do they use it? Where does Energy come from? Ultimately, from the sun. It is transferred between organisms in the earth s lithosphere,

More information

AP BIOLOGY 2015 SCORING GUIDELINES

AP BIOLOGY 2015 SCORING GUIDELINES AP BIOLOGY 2015 SCORING GUIDELINES Question 2 Figure 1. Glycolysis and pyruvate oxidation Figure 2. Krebs cycle Figure 3. Electron transport chain Cellular respiration includes the metabolic pathways of

More information

Chem 306 Chapter 21 Bioenergetics Lecture Outline III

Chem 306 Chapter 21 Bioenergetics Lecture Outline III Chem 306 Chapter 21 Bioenergetics Lecture Outline III I. HOW IS ATP GENERATED IN THE FINAL STAGE CATABOLISM? A. OVERVIEW 1. At the end of the citric acid cycle, all six carbons of glucose have been oxidized

More information

Multiple Choice Identify the choice that best completes the statement or answers the question.

Multiple Choice Identify the choice that best completes the statement or answers the question. AP bio fall 2014 final exam prep Multiple Choice Identify the choice that best completes the statement or answers the question. 1. According to the first law of thermodynamics, a. the energy of a system

More information

Chapter 25: Metabolism and Nutrition

Chapter 25: Metabolism and Nutrition Chapter 25: Metabolism and Nutrition Chapter Objectives INTRODUCTION 1. Generalize the way in which nutrients are processed through the three major metabolic fates in order to perform various energetic

More information

glycolysis is the major metabolic route responsible for the breakdown of glucose to pyruvate

glycolysis is the major metabolic route responsible for the breakdown of glucose to pyruvate Note Set 11 1 GLYCOLYSIS (also known as: EMBDEN-MEYERHOFF PATHWAY) Topics include: main reactions leading to the formation of pyruvate control mechanisms terminal reactions for the regeneration of NAD

More information

Electron transport chain, oxidative phosphorylation & mitochondrial transport systems. Joško Ivica

Electron transport chain, oxidative phosphorylation & mitochondrial transport systems. Joško Ivica Electron transport chain, oxidative phosphorylation & mitochondrial transport systems Joško Ivica Electron transport chain & oxidative phosphorylation collects e - & -H Oxidation of foodstuffs oxidizes

More information

Unsaturated and Odd-Chain Fatty Acid Catabolism

Unsaturated and Odd-Chain Fatty Acid Catabolism Unsaturated and dd-hain Fatty Acid atabolism March 24, 2003 Bryant Miles The complete oxidation of saturated fatty acids containing an even number of carbon atoms is accomplished by the β-oxidation pathway.

More information

What happens to the food we eat? It gets broken down!

What happens to the food we eat? It gets broken down! Enzymes Essential Questions: What is an enzyme? How do enzymes work? What are the properties of enzymes? How do they maintain homeostasis for the body? What happens to the food we eat? It gets broken down!

More information

PRACTICE SET 6. A. Questions on Lipid Metabolism and Glyoxylate Cycle

PRACTICE SET 6. A. Questions on Lipid Metabolism and Glyoxylate Cycle PRATIE SET 6 A. Questions on Lipid Metabolism and Glyoxylate ycle 1. The hydroxy acid given below can be completely oxidized to acetyl-oa by betaoxidation. Write the series of individual reactions that

More information

by a hydration reaction to form isocitrate. The standard free energy change for this reaction is +6.3 kj/mol; At equilibrium, the ratio of

by a hydration reaction to form isocitrate. The standard free energy change for this reaction is +6.3 kj/mol; At equilibrium, the ratio of CHAPTER 14 - TRICARBOXYLIC ACID CYCLE AND PENTOSE PHOSPHATE PATHWAY We have now gotten to the point in glucose metabolism where one glucose molecule has been cleaved into two molecules of pyruvate, with

More information

Enzymes. Enzyme Structure. Enzyme Classification. CHEM464/Medh, J.D. Reaction Rate and Enzyme Activity

Enzymes. Enzyme Structure. Enzyme Classification. CHEM464/Medh, J.D. Reaction Rate and Enzyme Activity Enzymes Enzymes are biological catalysts They are not consumed or altered during the reaction They do not change the equilibrium, just reduce the time required to reach equilibrium. They increase the rate

More information

Lecture 4 Enzymes Catalytic proteins. Enzymes. Enzymes 10/21/10. What enzymes do therefore is:

Lecture 4 Enzymes Catalytic proteins. Enzymes. Enzymes 10/21/10. What enzymes do therefore is: Lecture 4 Catalytic proteins Are a type of protein that acts as a catalyst-speeding up chemical reactions A catalyst is defined as a chemical agent that changes the rate of a reaction without being consumed

More information

4. Power: Pathways that make ATP

4. Power: Pathways that make ATP Page 1 of 40 4. Power: Pathways that make ATP 4.1 The human body has a duel power system In hybrid cars, such as a Prius TM, power is supplied by two systems. For long-term travel, gasoline is used to

More information

Syllabus Chemistry 431B Biochemistry Winter 2013. Course Prerequisite: Grade of C- or better in Biochemistry I (Chem 431A)

Syllabus Chemistry 431B Biochemistry Winter 2013. Course Prerequisite: Grade of C- or better in Biochemistry I (Chem 431A) Syllabus Chemistry 431B Biochemistry Winter 2013 Instructor: Jamil Momand, Ph.D. Class location and time: Salazar Hall, C-265 MWF 11:40-12:30 Office Hours: La Kretz Hall, Room 270 M 10-11, T 10-11 Email:

More information

Enzymes. Enzymes are characterized by: Specificity - highly specific for substrates

Enzymes. Enzymes are characterized by: Specificity - highly specific for substrates Enzymes Enzymes are characterized by: Catalytic Power - rates are 10 6-10 12 greater than corresponding uncatalyzed reactions Specificity - highly specific for substrates Regulation - acheived in many

More information

PHOTOSYNTHESIS AND CELLULAR RESPIRATION

PHOTOSYNTHESIS AND CELLULAR RESPIRATION reflect Wind turbines shown in the photo on the right are large structures with blades that move in response to air movement. When the wind blows, the blades rotate. This motion generates energy that is

More information

Management of Fibromyalgia: Rationale for the use of Magnesium and Malic Acid. Journal of Nutritional Medicine

Management of Fibromyalgia: Rationale for the use of Magnesium and Malic Acid. Journal of Nutritional Medicine Management of Fibromyalgia: Rationale for the use of Magnesium and Malic Acid 1 Journal of Nutritional Medicine Guy E. Abraham MD and Jorge D. Flechas MD, MPH FROM ABSTRACT: Primary Fibromyalgia (FM) is

More information