Module 3. Analysis of Statically Indeterminate Structures by the Displacement Method. Version 2 CE IIT, Kharagpur

Save this PDF as:

Size: px
Start display at page:

Download "Module 3. Analysis of Statically Indeterminate Structures by the Displacement Method. Version 2 CE IIT, Kharagpur"

Transcription

1 odule 3 Analysis of Statically Indeterminate Structures by the Displacement ethod

2 Lesson 21 The oment- Distribution ethod: rames with Sidesway

3 Instructional Objectives After reading this chapter the student will be able to 1. Extend moment-distribution method for frames undergoing sidesway. 2. Draw free-body diagrams of plane frame. 3. Analyse plane frames undergoing sidesway by the moment-distribution method. 4. Draw shear force and bending moment diagrams. 5. Sketch deflected shape of the plane frame not restrained against sidesway Introduction In the previous lesson, rigid frames restrained against sidesway are analyzed using moment-distribution method. It has been pointed in lesson 17, that frames which are unsymmetrical or frames which are loaded unsymmetrically usually get displaced either to the right or to the left. In other words, in such frames apart from evaluating joint rotations, one also needs to evaluate joint translations (sidesway). or example in frame shown in ig 21.1, the loading is symmetrical but the geometry of frame is unsymmetrical and hence sidesway needs to be considered in the analysis. The number of unknowns is this case are: joint rotations θ B and θ C and member rotationψ. Joint B and C get translated by the same amount as axial deformations are not considered and hence only one independent member rotation need to be considered. The procedure to analyze rigid frames undergoing lateral displacement using moment-distribution method is explained in section 21.2 using an example.

4 21.2 Procedure A special procedure is required to analyze frames with sidesway using momentdistribution method. In the first step, identify the number of independent rotations (ψ ) in the structure. The procedure to calculate independent rotations is explained in lesson 22. or analyzing frames with sidesway, the method of superposition is used. The structure shown in ig. 21.2a is expressed as the sum of two systems: ig. 21.2b and ig. 21.2c. The systems shown in figures 21.2b and 21.2c are analyzed separately and superposed to obtain the final answer. In system 21.2b, sidesway is prevented by artificial support atc. Apply all the external loads on frame shown in ig. 21.2b. Since for the frame, sidesway is prevented, moment-distribution method as discussed in the previous lesson is applied and beam end moments are calculated. ' ' ' ' ' ' Let,,, CB, and DC be the balanced moments obtained by distributing fixed end moments due to applied loads while allowing only joint rotations ( θ B and θ C ) and preventing sidesway. Now, calculate reactions and (ref. ig 21.3a).they are, H A1 H D 1

5 H + ' ' A 1 + h2 Pa h 2 H D1 ' ' + DC (21.1) h 1 again, R P H A + H ) (21.2) ( 1 D1

6 In ig 21.2c apply a horizontal force in the opposite direction of R. Now k R, then the superposition of beam end moments of system (b) and k times (c) gives the results for the original structure. However, there is no way one could analyze the frame for horizontal force, by moment-distribution method as sway comes in to picture. Instead of applying, apply arbitrary known displacement / sidesway Δ' as shown in the figure. Calculate the fixed end beam moments in the column and for the imposed horizontal displacement. Since joint displacement is known beforehand, one could use moment-distribution method to analyse this frame. In this case, member rotations ψ are related to joint '' '' '' '' '' '' translation which is known. Let,,, and are the, CB balanced moment obtained by distributing the fixed end moments due to assumed sidesway Δ' at joints B and C. Now, from statics calculate horizontal force due to arbitrary sidesway Δ '. DC

7 H A2 '' + h 2 '' H D2 '' '' + DC (21.3) h 1 H A + H ) (21.4) ( 2 D2 In ig 21.2, by method of superposition k R or k R / Substituting the values of R and from equations (21.2) and (21.4), P ( H A1 + H D1) k (21.5) ( H + H ) A2 Now substituting the values of,, and in 21.5, D2 H A1 H A2 H D1 H D 2 k ' + ' ' + ' Pa P + + h2 h2 h1 '' + '' '' + '' DC + h2 h1 DC (21.6) Hence, beam end moment in the original structure is obtained as, + k original system( b) system( c) If there is more than one independent member rotation, then the above procedure needs to be modified and is discussed in the next lesson.

8 Example 21.1 Analyse the rigid frame shown in ig 21.4a. Assume EI to be constant for all members. Also sketch elastic curve. Solution In the given problem, joint C can also rotate and also translate by an unknown amount Δ. This problem has to be solved in two steps. In the first step, evaluate the beam-end moment by preventing the sidesway. In the second step calculate beam end moments by moment-distribution method for known translation (see ig 21.4b). By appropriately superposing the two results, the beam end moment of the original structure is obtained. a) Calculate stiffness and distribution factors K EI ; K 0. 25EI ; K CB 0. 25EI ; K EI Joint B : K EI D 0.571; D Joint C : K EI

9 D ; D (1) b) Calculate fixed end moment due to applied loading. CB 0 ; 0 kn.m +10 kn.m ; CB 10 kn.m 0 kn.m ; 0 kn.m. (2) DC Now the frame is prevented from sidesway by providing a support at C as shown in ig 21.4b (ii). The moment-distribution for this frame is shown in ig 21.4c. Let ', ', ' and ' be the balanced end moments. Now calculate DC horizontal reactions at A and D from equations of statics. H A1 ' + ' KN ( ) H D kn( ). 3

10 R 10 ( ) 10 kn( ) (3) d) oment-distribution for arbitrary known sidesway Δ '. Since Δ ' is arbitrary, Choose any convenient value. Let 150 Δ ' EI Now calculate fixed end beam moments for this arbitrary sidesway. 6EIψ 6 EI 150 ( ) 100 kn.m L 3 3EI 100 kn.m +100 kn.m (4) DC

11 The moment-distribution for this case is shown in ig 24.4d. Now calculate horizontal reactions and. H A2 H D H A kn( ) H D kn( ) kn( )

12 Let k be a factor by which the solution of case ( iii ) needs to be multiplied. Now actual moments in the frame is obtained by superposing the solution ( ii ) on the solution obtained by multiplying case ( iii ) by k. Thus k cancel out the holding force R such that final result is for the frame without holding force. Thus, k R. 10 k (5) Now the actual end moments in the frame are, ' + k '' ( ) kn.m ( ) kn.m ( 52.98) kn.m ( 52.97) kn.m CB ( ) kn.m ( ) kn.m DC The actual sway is computed as, 150 Δ kδ' EI EI The joint rotations can be calculated using slope-deflection equations. 2EI where ψ L + [ 2θ A + θ B 3ψ ] Δ L 2EI + L [ 2θ + θ 3ψ ] B A

13 In the above equation, except θ A and θ B all other quantities are known. Solving for θ A and θ B, 9.55 θ A 0 ; θ B. EI The elastic curve is shown in ig. 21.4e.

14 Example 21.2 Analyse the rigid frame shown in ig. 21.5a by moment-distribution method. The moment of inertia of all the members is shown in the figure. Neglect axial deformations. Solution: In this frame joint rotations B and evaluated. C and translation of joint B and C need to be a) Calculate stiffness and distribution factors. At joint B : K 0.333EI ; K 0. 25EI K CB 0.25EI ; K EI K EI D ; D At joint C : K EI

15 D CB ; D b) Calculate fixed end moments due to applied loading kn.m ; 9.0 kn.m kn.m; 0 kn.m CB 0 kn.m; 0 kn.m DC c) Prevent sidesway by providing artificial support at C. Carry out momentdistribution ( i.e. Case shown in ig. 21.5c. A in ig. 21.5b). The moment-distribution for this case is

16 Now calculate horizontal reaction at A and D from equations of statics H A kn ( ) H D kn ( ) 3 R 12 ( ) 5.23 kn( ) d) oment-distribution for arbitrary sidesway Δ '(case B, ig. 21.5c) Calculate fixed end moments for the arbitrary sidesway of 150 Δ '. EI 6 E(2 I) 12EI 150 ψ ( ) + 50 kn.m ; + 50 kn.m ; L 6 6EI

17 6 EI ( ) 6EI 150 ψ ( ) kn.m ; DC kn.m ; L 3 3EI The moment-distribution for this case is shown in ig. 21.5d. Using equations of H A2 H D 2 static equilibrium, calculate reactions and kn( kn( 3 H A 2 H D 2 ) ) ( ) kn ( ) e) inal results Now, the shear condition for the frame is (vide ig. 21.5b)

18 ( H A1 + H D1) + k( H A2 + H D2 ) 12 ( ) + k( ) 12 k Now the actual end moments in the frame are, ' + k '' ( ) kn.m ( ) kn.m ( ) kn.m ( ) kn.m CB ( ) kn.m ( ) kn.m DC The actual sway 150 Δ k Δ' EI EI The joint rotations can be calculated using slope-deflection equations. or 2E(2I ) + L [ 2θ + θ 3ψ ] A L 12EIψ L 12EIψ [ 2 θ + θ ] + A B 4EI L B 4EI L L 12EIψ L 12EIψ [ 2 θ + θ ] + B A 4EI L 4EI L kn.m

19 0.629 kn.m ( ) (50) kn.m ( ) (50) 2.55 kn.m 1 change in near end + - change in far end 2 θ A 3EI L 1 ( ) + ( ) EI θ B EI Example 21.3 Analyse the rigid frame shown in ig. 21.6a. The moment of inertia of all the members are shown in the figure.

20 Solution: a) Calculate stiffness and distribution factors 2EI K 0.392EI ; K 0. 50EI 5.1 K CB 0.50EI ; K EI At joint B : K EI D ; D At joint C : K EI D ; D (1) CB b) Calculate fixed end moments due to applied loading. 0 kn.m DC 2.50 kn.m 2.50 kn.m (2) CB c) Prevent sidesway by providing artificial support atc. Carry out momentdistribution for this case as shown in ig. 21.6b.

21 Now calculate reactions from free body diagram shown in ig. 21.5d.

22 Column 0 5H V 0 A A1 1 5H + V 2.29 (3) A1 1 Column H V D D H V D1 2 (4) Beam C 0 2V V kn ( ) 1 V kn ( ) (5) Thus from (3) H A kn( ) from (4) H D kn( ) (6)

23 0 H + H + R 50 X A1 D1 ( ) R kn (7) d) oment-distribution for arbitrary sidesway Δ '. Calculate fixed end beam moments for arbitrary sidesway of Δ ' EI The member rotations for this arbitrary sidesway is shown in ig. 21.6e.

24 BB" Δ1 Δ ' 5.1 Δ ' ψ ; Δ 1 L L cosα 5 2 Δ ' Δ Δ ' 5 Δ ' Δ ' ψ ( clockwise ) ; ψ ( clockwise ) 5 5 ψ Δ2 2 Δ 'tan α Δ ' ( counterclockwise ) EI 6 E(2 I) ψ kn.m L 5.1 5EI kn.m 6EI 6 EI ( ) ψ 7.65 kn.m L 2 5EI 7.65 kn.m CB 6EI 6 E(2 I) ψ kn.m L 5.1 5EI kn.m DC The moment-distribution for the arbitrary sway is shown in ig. 21.6f. Now reactions can be calculated from statics.

25 Column 0 5H V 0 A A1 1 A2 1 5H + V (3) Column 0 5H V 0 D D1 2 D2 2 5H V (4) Beam C 0 2V V kn ( ) V kn( ) ; + (5) Thus from 3 H A kn( ) from 4 H D kn( ) (6)

26 7.766 kn( ) (7) e) inal results k R k Now the actual end moments in the frame are, ' + k '' ( ) kn.m ( ) kn.m ( 6.567) kn.m ( 6.567) kn.m CB (6.567) kn.m (6.283) kn.m DC The actual sway Δ k Δ' EI EI Summary In this lesson, the frames which are not restrained against sidesway are identified and solved by the moment-distribution method. The moment-distribution method is applied in two steps: in the first step, the frame prevented from sidesway but subjected to external loads is analysed and subsequently, the frame which is undergoing an arbitrary but known sidesway is analysed. Using shear equation for the frame, the moments in the frame is obtained. The numerical examples are explained with the help of free-body diagrams. The deflected shape of the frame is sketched to understand its deformation under external loads.

Module 2. Analysis of Statically Indeterminate Structures by the Matrix Force Method. Version 2 CE IIT, Kharagpur

Module Analysis of Statically Indeterminate Structures by the Matrix Force Method esson 11 The Force Method of Analysis: Frames Instructional Objectives After reading this chapter the student will be able

Structural Axial, Shear and Bending Moments

Structural Axial, Shear and Bending Moments Positive Internal Forces Acting Recall from mechanics of materials that the internal forces P (generic axial), V (shear) and M (moment) represent resultants

Indeterminate Analysis Force Method 1

Indeterminate Analysis Force Method 1 The force (flexibility) method expresses the relationships between displacements and forces that exist in a structure. Primary objective of the force method is to

Chapter 5: Indeterminate Structures Force Method

Chapter 5: Indeterminate Structures Force Method 1. Introduction Statically indeterminate structures are the ones where the independent reaction components, and/or internal forces cannot be obtained by

Module 4. Analysis of Statically Indeterminate Structures by the Direct Stiffness Method. Version 2 CE IIT, Kharagpur

Module Analysis of Statically Indeterminate Structures by the Direct Stiffness Method Version CE IIT, haragpur esson 7 The Direct Stiffness Method: Beams Version CE IIT, haragpur Instructional Objectives

Chapter 5: Indeterminate Structures Slope-Deflection Method

Chapter 5: Indeterminate Structures Slope-Deflection Method 1. Introduction Slope-deflection method is the second of the two classical methods presented in this course. This method considers the deflection

Deflections. Question: What are Structural Deflections?

Question: What are Structural Deflections? Answer: The deformations or movements of a structure and its components, such as beams and trusses, from their original positions. It is as important for the

Unit 21 Influence Coefficients

Unit 21 Influence Coefficients Readings: Rivello 6.6, 6.13 (again), 10.5 Paul A. Lagace, Ph.D. Professor of Aeronautics & Astronautics and Engineering Systems Have considered the vibrational behavior of

Shear Forces and Bending Moments

Chapter 4 Shear Forces and Bending Moments 4.1 Introduction Consider a beam subjected to transverse loads as shown in figure, the deflections occur in the plane same as the loading plane, is called the

STRUCTURAL ANALYSIS II (A60131)

LECTURE NOTES ON STRUCTURAL ANALYSIS II (A60131) III B. Tech - II Semester (JNTUH-R13) Dr. Akshay S. K. Naidu Professor, Civil Engineering Department CIVIL ENGINEERING INSTITUTE OF AERONAUTICAL ENGINEERING

Structural Analysis - II Prof. P. Banerjee Department of Civil Engineering Indian Institute of Technology, Bombay. Lecture - 02

Structural Analysis - II Prof. P. Banerjee Department of Civil Engineering Indian Institute of Technology, Bombay Lecture - 02 Good morning. Today is the second lecture in the series of lectures on structural

Problem 1: Computation of Reactions. Problem 2: Computation of Reactions. Problem 3: Computation of Reactions

Problem 1: Computation of Reactions Problem 2: Computation of Reactions Problem 3: Computation of Reactions Problem 4: Computation of forces and moments Problem 5: Bending Moment and Shear force Problem

The elements used in commercial codes can be classified in two basic categories:

CHAPTER 3 Truss Element 3.1 Introduction The single most important concept in understanding FEA, is the basic understanding of various finite elements that we employ in an analysis. Elements are used for

8.2 Elastic Strain Energy

Section 8. 8. Elastic Strain Energy The strain energy stored in an elastic material upon deformation is calculated below for a number of different geometries and loading conditions. These expressions for

Approximate Analysis of Statically Indeterminate Structures

Approximate Analysis of Statically Indeterminate Structures Every successful structure must be capable of reaching stable equilibrium under its applied loads, regardless of structural behavior. Exact analysis

Statics of Structural Supports

Statics of Structural Supports TYPES OF FORCES External Forces actions of other bodies on the structure under consideration. Internal Forces forces and couples exerted on a member or portion of the structure

DESIGN OF BEAM-COLUMNS - I

13 DESIGN OF BEA-COLUNS - I INTRODUCTION Columns in practice rarely experience concentric axial compression alone. Since columns are usually parts of a frame, they experience both bending moment and axial

2. Axial Force, Shear Force, Torque and Bending Moment Diagrams

2. Axial Force, Shear Force, Torque and Bending Moment Diagrams In this section, we learn how to summarize the internal actions (shear force and bending moment) that occur throughout an axial member, shaft,

Analysis of Statically Determinate Trusses

Analysis of Statically Determinate Trusses THEORY OF STRUCTURES Asst. Prof. Dr. Cenk Üstündağ Common Types of Trusses A truss is one of the major types of engineering structures which provides a practical

Shear and Moment Diagrams. Shear and Moment Diagrams. Shear and Moment Diagrams. Shear and Moment Diagrams. Shear and Moment Diagrams

CI 3 Shear Force and Bending oment Diagrams /8 If the variation of and are written as functions of position,, and plotted, the resulting graphs are called the shear diagram and the moment diagram. Developing

Advanced Structural Analysis Prof. Devdas Menon Department of Civil Engineering Indian Institute of Technology, Madras. Module

Advanced Structural Analysis Prof. Devdas Menon Department of Civil Engineering Indian Institute of Technology, Madras Module - 2.2 Lecture - 08 Review of Basic Structural Analysis-2 Good morning to you.

CLASSICAL STRUCTURAL ANALYSIS

Table of Contents CASSCA STRUCTURA ANAYSS... Conjugate beam method... External work and internal work... 3 Method of virtual force (unit load method)... 5 Castigliano s second theorem... Method of consistent

CHAPTER 3. INTRODUCTION TO MATRIX METHODS FOR STRUCTURAL ANALYSIS

1 CHAPTER 3. INTRODUCTION TO MATRIX METHODS FOR STRUCTURAL ANALYSIS Written by: Sophia Hassiotis, January, 2003 Last revision: February, 2015 Modern methods of structural analysis overcome some of the

Bending Stress in Beams

936-73-600 Bending Stress in Beams Derive a relationship for bending stress in a beam: Basic Assumptions:. Deflections are very small with respect to the depth of the beam. Plane sections before bending

Nonlinear analysis and form-finding in GSA Training Course

Nonlinear analysis and form-finding in GSA Training Course Non-linear analysis and form-finding in GSA 1 of 47 Oasys Ltd Non-linear analysis and form-finding in GSA 2 of 47 Using the GSA GsRelax Solver

Mechanics of Materials. Chapter 4 Shear and Moment In Beams

Mechanics of Materials Chapter 4 Shear and Moment In Beams 4.1 Introduction The term beam refers to a slender bar that carries transverse loading; that is, the applied force are perpendicular to the bar.

4.2 Free Body Diagrams

CE297-FA09-Ch4 Page 1 Friday, September 18, 2009 12:11 AM Chapter 4: Equilibrium of Rigid Bodies A (rigid) body is said to in equilibrium if the vector sum of ALL forces and all their moments taken about

Stress and Deformation Analysis. Representing Stresses on a Stress Element. Representing Stresses on a Stress Element con t

Stress and Deformation Analysis Material in this lecture was taken from chapter 3 of Representing Stresses on a Stress Element One main goals of stress analysis is to determine the point within a load-carrying

4 Shear Forces and Bending Moments

4 Shear Forces and ending oments Shear Forces and ending oments 8 lb 16 lb roblem 4.3-1 alculate the shear force and bending moment at a cross section just to the left of the 16-lb load acting on the simple

MODULE E: BEAM-COLUMNS

MODULE E: BEAM-COLUMNS This module of CIE 428 covers the following subjects P-M interaction formulas Moment amplification Web local buckling Braced and unbraced frames Members in braced frames Members

STRESS AND DEFORMATION ANALYSIS OF LINEAR ELASTIC BARS IN TENSION

Chapter 11 STRESS AND DEFORMATION ANALYSIS OF LINEAR ELASTIC BARS IN TENSION Figure 11.1: In Chapter10, the equilibrium, kinematic and constitutive equations for a general three-dimensional solid deformable

The Mathematics of Simple Beam Deflection

The Mathematics of Simple Beam Laing O Rourke Civil Engineering INTRODUCTION Laing O Rourke plc is the largest privately owned construction firm in the UK. It has offices in the UK, Germany, India, Australia

Advanced Structural Analysis. Prof. Devdas Menon. Department of Civil Engineering. Indian Institute of Technology, Madras. Module - 5.3.

Advanced Structural Analysis Prof. Devdas Menon Department of Civil Engineering Indian Institute of Technology, Madras Module - 5.3 Lecture - 29 Matrix Analysis of Beams and Grids Good morning. This is

Optimum proportions for the design of suspension bridge

Journal of Civil Engineering (IEB), 34 (1) (26) 1-14 Optimum proportions for the design of suspension bridge Tanvir Manzur and Alamgir Habib Department of Civil Engineering Bangladesh University of Engineering

The Mathematics of Beam Deflection

The athematics of eam Deflection Scenario s a structural engineer you are part of a team working on the design of a prestigious new hotel comple in a developing city in the iddle East. It has been decided

BEAMS: SHEAR AND MOMENT DIAGRAMS (GRAPHICAL)

LECTURE Third Edition BES: SHER ND OENT DIGRS (GRPHICL). J. Clark School of Engineering Department of Civil and Environmental Engineering 3 Chapter 5.3 by Dr. Ibrahim. ssakkaf SPRING 003 ENES 0 echanics

ENGINEERING MECHANICS STATIC

EX 16 Using the method of joints, determine the force in each member of the truss shown. State whether each member in tension or in compression. Sol Free-body diagram of the pin at B X = 0 500- BC sin

P4 Stress and Strain Dr. A.B. Zavatsky MT07 Lecture 3 Statically Indeterminate Structures

4 Stress and Strain Dr... Zavatsky MT07 ecture 3 Statically Indeterminate Structures Statically determinate structures. Statically indeterminate structures (equations of equilibrium, compatibility, and

Statically determinate structures

Statically determinate structures A statically determinate structure is the one in which reactions and internal forces can be determined solely from free-body diagrams and equations of equilibrium. These

Distribution of Forces in Lateral Load Resisting Systems

Distribution of Forces in Lateral Load Resisting Systems Part 2. Horizontal Distribution and Torsion IITGN Short Course Gregory MacRae Many slides from 2009 Myanmar Slides of Profs Jain and Rai 1 Reinforced

Stability Of Structures: Basic Concepts

23 Stability Of Structures: Basic Concepts ASEN 3112 Lecture 23 Slide 1 Objective This Lecture (1) presents basic concepts & terminology on structural stability (2) describes conceptual procedures for

METHODS FOR ACHIEVEMENT UNIFORM STRESSES DISTRIBUTION UNDER THE FOUNDATION

International Journal of Civil Engineering and Technology (IJCIET) Volume 7, Issue 2, March-April 2016, pp. 45-66, Article ID: IJCIET_07_02_004 Available online at http://www.iaeme.com/ijciet/issues.asp?jtype=ijciet&vtype=7&itype=2

Recitation #5. Understanding Shear Force and Bending Moment Diagrams

Recitation #5 Understanding Shear Force and Bending Moment Diagrams Shear force and bending moment are examples of interanl forces that are induced in a structure when loads are applied to that structure.

MECHANICS OF SOLIDS - BEAMS TUTORIAL 3 THE DEFLECTION OF BEAMS

MECHANICS OF SOLIDS - BEAMS TUTORIAL THE DEECTION OF BEAMS This is the third tutorial on the bending of beams. You should judge your progress by completing the self assessment exercises. On completion

Analysis of Stresses and Strains

Chapter 7 Analysis of Stresses and Strains 7.1 Introduction axial load = P / A torsional load in circular shaft = T / I p bending moment and shear force in beam = M y / I = V Q / I b in this chapter, we

Rigid and Braced Frames

Rigid Frames Rigid and raced Frames Rigid frames are identified b the lack of pinned joints within the frame. The joints are rigid and resist rotation. The ma be supported b pins or fied supports. The

Plane Trusses. Section 7: Flexibility Method - Trusses. A plane truss is defined as a twodimensional

lane Trusses A plane truss is defined as a twodiensional fraework of straight prisatic ebers connected at their ends by frictionless hinged joints, and subjected to loads and reactions that act only at

Bending of Beams with Unsymmetrical Sections

Bending of Beams with Unsmmetrical Sections Assume that CZ is a neutral ais. C = centroid of section Hence, if > 0, da has negative stress. From the diagram below, we have: δ = α and s = αρ and δ ε = =

EDEXCEL NATIONAL CERTIFICATE/DIPLOMA MECHANICAL PRINCIPLES AND APPLICATIONS NQF LEVEL 3 OUTCOME 1 - LOADING SYSTEMS

EDEXCEL NATIONAL CERTIFICATE/DIPLOMA MECHANICAL PRINCIPLES AND APPLICATIONS NQF LEVEL 3 OUTCOME 1 - LOADING SYSTEMS TUTORIAL 1 NON-CONCURRENT COPLANAR FORCE SYSTEMS 1. Be able to determine the effects

Introduction, Method of Sections

Lecture #1 Introduction, Method of Sections Reading: 1:1-2 Mechanics of Materials is the study of the relationship between external, applied forces and internal effects (stress & deformation). An understanding

MECHANICS OF MATERIALS

T dition CHTR MCHNICS OF MTRIS Ferdinand. Beer. Russell Johnston, Jr. John T. DeWolf ecture Notes: J. Walt Oler Texas Tech University Stress and Strain xial oading - Contents Stress & Strain: xial oading

ENGINEERING SCIENCE H1 OUTCOME 1 - TUTORIAL 3 BENDING MOMENTS EDEXCEL HNC/D ENGINEERING SCIENCE LEVEL 4 H1 FORMERLY UNIT 21718P

ENGINEERING SCIENCE H1 OUTCOME 1 - TUTORIAL 3 BENDING MOMENTS EDEXCEL HNC/D ENGINEERING SCIENCE LEVEL 4 H1 FORMERLY UNIT 21718P This material is duplicated in the Mechanical Principles module H2 and those

MECHANICS OF SOLIDS - BEAMS TUTORIAL 2 SHEAR FORCE AND BENDING MOMENTS IN BEAMS

MECHANICS OF SOLIDS - BEAMS TUTORIAL 2 SHEAR FORCE AND BENDING MOMENTS IN BEAMS This is the second tutorial on bending of beams. You should judge your progress by completing the self assessment exercises.

MECHANICS OF SOLIDS - BEAMS TUTORIAL 1 STRESSES IN BEAMS DUE TO BENDING. On completion of this tutorial you should be able to do the following.

MECHANICS OF SOLIDS - BEAMS TUTOIAL 1 STESSES IN BEAMS DUE TO BENDING This is the first tutorial on bending of beams designed for anyone wishing to study it at a fairly advanced level. You should judge

Shear Force and Moment Diagrams

C h a p t e r 9 Shear Force and Moment Diagrams In this chapter, you will learn the following to World Class standards: Making a Shear Force Diagram Simple Shear Force Diagram Practice Problems More Complex

The Basics of FEA Procedure

CHAPTER 2 The Basics of FEA Procedure 2.1 Introduction This chapter discusses the spring element, especially for the purpose of introducing various concepts involved in use of the FEA technique. A spring

Introduction to Beam. Area Moments of Inertia, Deflection, and Volumes of Beams

Introduction to Beam Theory Area Moments of Inertia, Deflection, and Volumes of Beams Horizontal structural member used to support horizontal loads such as floors, roofs, and decks. Types of beam loads

Chapter 24 Physical Pendulum

Chapter 4 Physical Pendulum 4.1 Introduction... 1 4.1.1 Simple Pendulum: Torque Approach... 1 4. Physical Pendulum... 4.3 Worked Examples... 4 Example 4.1 Oscillating Rod... 4 Example 4.3 Torsional Oscillator...

PLANE TRUSSES. Definitions

Definitions PLANE TRUSSES A truss is one of the major types of engineering structures which provides a practical and economical solution for many engineering constructions, especially in the design of

New approaches in Eurocode 3 efficient global structural design

New approaches in Eurocode 3 efficient global structural design Part 1: 3D model based analysis using general beam-column FEM Ferenc Papp* and József Szalai ** * Associate Professor, Department of Structural

Non-linear behavior and seismic safety of reinforced concrete structures

Non-linear behavior and seismic safety of reinforced concrete structures K. Girgin & E. Oer Istanbul Technical University, Faculty of Civil Engineering, Istanbul, Turkey Keywords: Reinforced concrete structures,

INTRODUCTION TO LIMIT STATES

4 INTRODUCTION TO LIMIT STATES 1.0 INTRODUCTION A Civil Engineering Designer has to ensure that the structures and facilities he designs are (i) fit for their purpose (ii) safe and (iii) economical and

Design Example 1 Reinforced Concrete Wall

Design Example 1 Reinforced Concrete Wall OVERVIEW The structure in this design example is an eight-story office with load-bearing reinforced concrete walls as its seismic-force-resisting system. This

Problem of the gyroscopic stabilizer damping

Applied and Computational Mechanics 3 (2009) 205 212 Problem of the gyroscopic stabilizer damping J. Šklíba a, a Faculty of Mechanical Engineering, Technical University in Liberec, Studentská 2, 461 17,

Physics 9e/Cutnell. correlated to the. College Board AP Physics 1 Course Objectives

Physics 9e/Cutnell correlated to the College Board AP Physics 1 Course Objectives Big Idea 1: Objects and systems have properties such as mass and charge. Systems may have internal structure. Enduring

ENGI 8673 Subsea Pipeline Engineering Faculty of Engineering and Applied Science

GUIDANCE NOTE LECTURE 12 THERMAL EXPANSION ANALYSIS OVERVIEW The calculation procedure for determining the longitudinal pipeline response can be formulated on the basis of strain. The longitudinal strain

CLASSIFICATION BOUNDARIES FOR STIFFNESS OF BEAM-TO- COLUMN JOINTS AND COLUMN BASES

Nordic Steel Construction Conference 2012 Hotel Bristol, Oslo, Norway 5-7 September 2012 CLASSIFICATION BOUNDARIES FOR STIFFNESS OF BEAM-TO- COLUMN JOINTS AND COLUMN BASES Ina Birkeland a,*, Arne Aalberg

Chapter 18 Static Equilibrium

Chapter 8 Static Equilibrium 8. Introduction Static Equilibrium... 8. Lever Law... Example 8. Lever Law... 4 8.3 Generalized Lever Law... 5 8.4 Worked Examples... 7 Example 8. Suspended Rod... 7 Example

MCE380: Measurements and Instrumentation Lab. Chapter 9: Force, Torque and Strain Measurements

MCE380: Measurements and Instrumentation Lab Chapter 9: Force, Torque and Strain Measurements Topics: Elastic Elements for Force Measurement Dynamometers and Brakes Resistance Strain Gages Holman, Ch.

Stresses in Beam (Basic Topics)

Chapter 5 Stresses in Beam (Basic Topics) 5.1 Introduction Beam : loads acting transversely to the longitudinal axis the loads create shear forces and bending moments, stresses and strains due to V and

When the fluid velocity is zero, called the hydrostatic condition, the pressure variation is due only to the weight of the fluid.

Fluid Statics When the fluid velocity is zero, called the hydrostatic condition, the pressure variation is due only to the weight of the fluid. Consider a small wedge of fluid at rest of size Δx, Δz, Δs

Fric-3. force F k and the equation (4.2) may be used. The sense of F k is opposite

4. FRICTION 4.1 Laws of friction. We know from experience that when two bodies tend to slide on each other a resisting force appears at their surface of contact which opposes their relative motion. The

Mathematical Modeling and response analysis of mechanical systems are the subjects of this chapter.

Chapter 3 Mechanical Systems Dr. A.Aziz. Bazoune 3.1 INTRODUCTION Mathematical Modeling and response analysis of mechanical systems are the subjects of this chapter. 3. MECHANICAL ELEMENTS Any mechanical

Section 16: Neutral Axis and Parallel Axis Theorem 16-1

Section 16: Neutral Axis and Parallel Axis Theorem 16-1 Geometry of deformation We will consider the deformation of an ideal, isotropic prismatic beam the cross section is symmetric about y-axis All parts

Aluminium systems profile selection

Aluminium systems profile selection The purpose of this document is to summarise the way that aluminium profile selection should be made, based on the strength requirements for each application. Curtain

Truss Structures. See also pages in the supplemental notes. Truss: Mimic Beam Behavior. Truss Definitions and Details

Truss Structures Truss: Mimic Beam Behavior Truss Definitions and Details 1 2 Framing of a Roof Supported Truss Bridge Truss Details 3 4 See also pages 12-15 in the supplemental notes. 1 Common Roof Trusses

Mechanics lecture 7 Moment of a force, torque, equilibrium of a body

G.1 EE1.el3 (EEE1023): Electronics III Mechanics lecture 7 Moment of a force, torque, equilibrium of a body Dr Philip Jackson http://www.ee.surrey.ac.uk/teaching/courses/ee1.el3/ G.2 Moments, torque and

C H A P T E R 7 DISTRIBUTION OF LOADSON PILE GROUPS Section I. DESIGN LOADS 7-1. Basic design. The load carried by an individual pile or group of piles in a foundation depends upon the structure concerned

Interconnected Rigid Bodies with Multi-force Members Rigid Non-collapsible

Frames and Machines Interconnected Rigid Bodies with Multi-force Members Rigid Non-collapsible structure constitutes a rigid unit by itself when removed from its supports first find all forces external

SLAB DESIGN. Introduction ACI318 Code provides two design procedures for slab systems:

Reading Assignment SLAB DESIGN Chapter 9 of Text and, Chapter 13 of ACI318-02 Introduction ACI318 Code provides two design procedures for slab systems: 13.6.1 Direct Design Method (DDM) For slab systems

Design of reinforced concrete columns. Type of columns. Failure of reinforced concrete columns. Short column. Long column

Design of reinforced concrete columns Type of columns Failure of reinforced concrete columns Short column Column fails in concrete crushed and bursting. Outward pressure break horizontal ties and bend

Worked Examples of mathematics used in Civil Engineering

Worked Examples of mathematics used in Civil Engineering Worked Example 1: Stage 1 Engineering Surveying (CIV_1010) Tutorial - Transition curves and vertical curves. Worked Example 1 draws from CCEA Advanced

Week 8 homework IMPORTANT NOTE ABOUT WEBASSIGN: In the WebAssign versions of these problems, various details have been changed, so that the answers will come out differently. The method to find the solution

Finite Element Method (ENGC 6321) Syllabus. Second Semester 2013-2014

Finite Element Method Finite Element Method (ENGC 6321) Syllabus Second Semester 2013-2014 Objectives Understand the basic theory of the FEM Know the behaviour and usage of each type of elements covered

Introduction to Mechanical Behavior of Biological Materials

Introduction to Mechanical Behavior of Biological Materials Ozkaya and Nordin Chapter 7, pages 127-151 Chapter 8, pages 173-194 Outline Modes of loading Internal forces and moments Stiffness of a structure

Design of Steel Structures Prof. S.R.Satish Kumar and Prof. A.R.Santha Kumar

Problem 1 Design a hand operated overhead crane, which is provided in a shed, whose details are: Capacity of crane = 50 kn Longitudinal spacing of column = 6m Center to center distance of gantry girder

Design of pile foundations following Eurocode 7-Section 7

Brussels, 18-20 February 2008 Dissemination of information workshop 1 Workshop Eurocodes: background and applications Brussels, 18-20 Februray 2008 Design of pile foundations following Eurocode 7-Section

ELEMENTS OF VECTOR ALGEBRA

ELEMENTS OF VECTOR ALGEBRA A.1. VECTORS AND SCALAR QUANTITIES We have now proposed sets of basic dimensions and secondary dimensions to describe certain aspects of nature, but more than just dimensions

Statically Indeterminate Structure. : More unknowns than equations: Statically Indeterminate

Statically Indeterminate Structure : More unknowns than equations: Statically Indeterminate 1 Plane Truss :: Determinacy No. of unknown reactions = 3 No. of equilibrium equations = 3 : Statically Determinate

THEORETICAL MECHANICS

PROF. DR. ING. VASILE SZOLGA THEORETICAL MECHANICS LECTURE NOTES AND SAMPLE PROBLEMS PART ONE STATICS OF THE PARTICLE, OF THE RIGID BODY AND OF THE SYSTEMS OF BODIES KINEMATICS OF THE PARTICLE 2010 0 Contents

Kyu-Jung Kim Mechanical Engineering Department, California State Polytechnic University, Pomona, U.S.A.

MECHANICS: STATICS AND DYNAMICS Kyu-Jung Kim Mechanical Engineering Department, California State Polytechnic University, Pomona, U.S.A. Keywords: mechanics, statics, dynamics, equilibrium, kinematics,

SEISMIC CODE EVALUATION. MEXICO Evaluation conducted by Jorge Gutiérrez

SEISMIC CODE EVALUATION MEXICO Evaluation conducted by Jorge Gutiérrez NAME OF DOCUMENT: Normas Técnicas Complementarias para Diseño por Sismo ( Complementary Technical Norms for Earthquake Resistant Design

Objective: Equilibrium Applications of Newton s Laws of Motion I

Type: Single Date: Objective: Equilibrium Applications of Newton s Laws of Motion I Homework: Assignment (1-11) Read (4.1-4.5, 4.8, 4.11); Do PROB # s (46, 47, 52, 58) Ch. 4 AP Physics B Mr. Mirro Equilibrium,

Modeling Beams on Elastic Foundations Using Plate Elements in Finite Element Method

Modeling Beams on Elastic Foundations Using Plate Elements in Finite Element Method Yun-gang Zhan School of Naval Architecture and Ocean Engineering, Jiangsu University of Science and Technology, Zhenjiang,

Finite Element Simulation of Simple Bending Problem and Code Development in C++

EUROPEAN ACADEMIC RESEARCH, VOL. I, ISSUE 6/ SEPEMBER 013 ISSN 86-48, www.euacademic.org IMPACT FACTOR: 0.485 (GIF) Finite Element Simulation of Simple Bending Problem and Code Development in C++ ABDUL

Structural Analysis: Space Truss

Structural Analysis: Space Truss Space Truss - 6 bars joined at their ends to form the edges of a tetrahedron as the basic non-collapsible unit - 3 additional concurrent bars whose ends are attached to

Use of Computers in Mechanics Education at Ohio State University*

Int. J. Engng Ed. Vol. 16, No. 5, pp. 394±400, 2000 0949-149X/91 \$3.00+0.00 Printed in Great Britain. # 2000 TEMPUS Publications. Use of Computers in Mechanics Education at Ohio State University* GEORGE

Awell-known lecture demonstration1

Acceleration of a Pulled Spool Carl E. Mungan, Physics Department, U.S. Naval Academy, Annapolis, MD 40-506; mungan@usna.edu Awell-known lecture demonstration consists of pulling a spool by the free end