About 445 million years ago (mya), the ocean was filled with

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "About 445 million years ago (mya), the ocean was filled with"

Transcription

1 27 The Plant Kingdom: Seedless Plants Moss-covered rocks. Shown is Elowa Falls, Columbia River Gorge, Oregon. Darrell Gulin /Getty Images KEY CONCEPTS Biologists infer that plants evolved from aquatic green algal ancestors known as a charophytes. Adaptations to life on land that have evolved in plants include a waxy cuticle to prevent water loss; multicellular gametangia; stomata; and for most plants, vascular tissues containing lignin. Plants undergo an alternation of generations between multicellular gametophyte and sporophyte generations. Mosses and other bryophytes lack vascular tissues and do not form true roots, stems, or leaves. In club mosses and ferns, lignin-hardened vascular tissues that transport water and dissolved substances throughout the plant body have evolved. About 445 million years ago (mya), the ocean was filled with vast numbers of fishes, mollusks, and crustaceans as well as countless microscopic algae, and the water along rocky coastlines was home to large seaweeds. Occasionally, perhaps, an animal would crawl out of the water onto land, but it never stayed there permanently because there was little to eat on land not a single blade of grass, no fruit, and no seeds. During the next 30 million years, a time corresponding roughly to the Silurian period (see Table 21-1), plants appeared in abundance and colonized the land. Where did they come from? Although plants living today exhibit great diversity in size, form, and habitat (see photograph), biologists hypothesize that they all evolved from a common ancestor that was an ancient green alga. Recall from Chapter 25 that red algae, green algae, and land plants are collectively classified as plants. Biologists infer this common ancestor because modern green algae share many biochemical and metabolic traits with modern plants. Both green algae and plants contain the same photosynthetic pigments: chlorophylls a and b and carotenoids, including xanthophylls (yellow pigments) and carotenes (orange pigments). Both store excess carbohydrates as starch and have cellulose as a major component of their cell walls. In addition, plants and some green algae share certain details of cell division, including formation of a cell plate during cytokinesis (see Chapter 10). 581

2 Land plants are complex multicellular organisms that range in size from minute, almost microscopic duckweeds to massive giant sequoias, some of the largest organisms that have ever lived. The plant kingdom consists of hundreds of thousands of species that live in varied habitats, from frozen arctic tundra to lush tropical rain forests to harsh deserts to moist stream banks. ADAPTATIONS OF PLANTS Learning Objectives 1 Discuss some environmental challenges of living on land, and describe how several plant adaptations meet these challenges. 2 Name the green algal group from which plants are hypothesized to have descended, and describe supporting evidence. What are some features of plants that have let them colonize so many types of environments? One important difference (a) between plants and algae is that a waxy cuticle covers the aerial portion of a plant. Essential for existence on land, the cuticle helps prevent desiccation, or drying out, of plant tissues by evaporation. Plants that are adapted to moister habitats may have a very thin layer of wax, whereas those adapted to drier environments often have a thick, crusty cuticle. (Many desert plants also have a reduced surface area, particularly of leaves, which minimizes water loss.) Plants obtain the carbon they need for photosynthesis from the atmosphere as carbon dioxide (CO 2 ). To be fixed into organic molecules such as sugar, CO 2 must first diffuse into the chloroplasts that are inside green plant cells. Because a waxy cuticle covers the external surfaces of leaves and stems, however, gas exchange through the cuticle between the atmosphere and the interior of cells is negligible. Tiny pores called stomata (sing., stoma), which dot the surfaces of leaves and stems of almost all plants, facilitate gas exchange; algae lack stomata. The sex organs, or gametangia (sing., gametangium), of most plants are multicellular, whereas the gametangia of algae are unicellular ( Fig. 27-1). Each plant gametangium has a layer of sterile (nonreproductive) cells that surrounds and protects the delicate gametes (eggs and sperm cells). In plants, the fertilized egg develops into a multicellular embryo (young plant) within the female gametangium. Thus, the embryo is protected during its development. In algae, the fertilized egg develops away from its gametangium; in some algae, the gametes are released before fertilization, whereas in others the fertilized egg is released. The plant life cycle alternates haploid and diploid generations Plants have a clearly defined alternation of generations in which they spend part of their lives in a multicellular haploid stage and part in a multicellular diploid stage ( Fig. 27-2). 1 The haploid portion of the life cycle is called the gametophyte generation because it gives rise to haploid gametes by mitosis. When two gam- 1 For convenience we limit our discussion to plants that are not polyploid, although polyploidy is very common in the plant kingdom. We therefore use the terms diploid and 2n (and haploid and n) interchangeably, although these terms are not actually synonymous. (b) Unicellular gametangium Developing gametes (c) (d) Sterile cells Multicellular gametangium Figure 27-1 Generalized reproductive structures of algae and plants (a, b) In algae, gametangia are generally unicellular. When the gametes are released, only the wall of the original cell remains. (c, d) In plants, the gametangia are multicellular, but only the inner cells become gametes. The gametes are surrounded by a protective layer of sterile (nonreproductive) cells. Spore Meiosis Gametophyte HAPLOID (n) GAMETOPHYTE GENERATION DIPLOID (2n) SPOROPHYTE GENERATION Sporophyte Sperm Egg Fertilization Embryo Zygote Figure 27-2 The basic plant life cycle Plants have an alternation of generations, spending part of the cycle in a haploid gametophyte stage and part in a diploid sporophyte stage. Depending on the plant group, the haploid or the diploid stage may be greatly reduced. etes fuse, the diploid portion of the life cycle, called the sporophyte generation, begins. The sporophyte generation produces haploid spores by the process of meiosis; these spores represent the first stage in the gametophyte generation. 582 Chapter 27

3 Let us examine alternation of generations more closely. The haploid gametophytes produce male gametangia, known as antheridia (sing., antheridium), in which sperm cells form, and/or female gametangia, known as archegonia (sing., archegonium), each bearing a single egg ( Fig. 27-3). Sperm cells reach the female gametangium in a variety of ways, and one sperm cell fertilizes the egg to form a zygote, or fertilized egg. The diploid zygote is the first stage in the sporophyte generation. The zygote divides by mitosis and develops into a multicellular embryo, the young sporophyte plant. Embryo development takes place within the archegonium; thus, the embryo is protected as it develops. Eventually the embryo grows into a mature sporophyte plant. The mature sporophyte has special cells called sporogenous cells (spore-producing cells, also called spore mother cells) that divide by meiosis to form haploid spores. Fertilization of egg by sperm cell zygote embryo mature sporophyte plant sporogenous cells meiosis spores Antheridium Developing sperm cells Sterile cells All plants produce spores by meiosis, in contrast with algae and fungi, which may produce spores by meiosis or mitosis. The spores represent the first stage in the gametophyte generation. Each spore divides by mitosis to produce a multicellular gametophyte, and the cycle continues. Plants therefore alternate between a haploid gametophyte generation and a diploid sporophyte generation. Spores mature gametophyte plants archegonia eggs antheridia sperm cells Four major groups of plants evolved Recent ultrastructural and molecular data indicate that land plants probably descended from a group of green algae called charophytes or stoneworts (see Fig d). Molecular comparisons, particularly of DNA and RNA sequences, provide compelling evidence that charophytes are closely allied to plants. These comparisons among plants and various green algae include sequences of chloroplast DNA, certain nuclear genes, and ribosomal RNA. In each case, the closest match occurs between charophytes and plants, indicating that modern charophytes and plants probably share a recent common ancestor. The plant kingdom consists of four major groups: bryophytes, seedless vascular plants, and two groups of seeded vascular plants: gymnosperms and angiosperms (flowering plants) ( Fig. 27-4; see also Table 27-1, which is an overview of plant phyla). The mosses and other bryophytes are small nonvascular plants that lack a specialized vascular, or conducting, system to transport nutrients, water, and essential minerals (inorganic nutrients) throughout the plant body. In the absence of such a system, bryophytes rely on diffusion and osmosis to obtain needed TABLE 27-1 The Plant Kingdom (a) Each antheridium, the male gametangium, produces numerous sperm cells. Egg Sterile cells Archegonium (b) Each archegonium, the female gametangium, produces a single egg. Figure 27-3 Plant gametangia Shown are generalized moss gametangia. Nonvascular plants with a dominant gametophyte generation (bryophytes) Phylum Bryophyta (mosses) Phylum Hepatophyta (liverworts) Phylum Anthocerophyta (hornworts) Vascular plants with a dominant sporophyte generation Seedless plants Phylum Lycopodiophyta (club mosses) Phylum Pteridophyta (ferns and their allies, the whisk ferns and horsetails) Seed plants Plants with naked seeds (gymnosperms) Phylum Coniferophyta (conifers) Phylum Cycadophyta (cycads) Phylum Ginkgophyta (ginkgoes) Phylum Gnetophyta (gnetophytes) Seeds enclosed within a fruit Phylum Anthophyta (angiosperms or flowering plants) Class Eudicotyledones (eudicots) Class Monocotyledones (monocots) The Plant Kingdom: Seedless Plants 583

4 Key Point This cladogram shows hypothetical evolutionary relationships among living plants, based on current evidence. The four major groups of plants are bryophytes, seedless vascular plants, and two groups of seed plants gymnosperms and angiosperms. NONVASCULAR BRYOPHYTES Hornworts Liverworts Green algal ancestor Figure 27-4 Animated Mosses VASCULAR SEEDLESS PLANTS Club mosses Evolution of dominant sporophyte, vascular tissue Evolution of cuticle, multicellular gametangia, multicellular embryos Plant evolution VASCULAR SEED PLANTS Evolution of seeds Cladograms such as this one represent an emerging consensus that is open to change as new discoveries are made. Although the arrangement of nonvascular, seedless vascular, and seed plant groupings is widely recognized, the order in which the hornworts, liverworts, and mosses evolved is not yet resolved. Ferns Gymnosperms Angiosperms plant cell wall chemistry, including lignin). The stiffening property of lignin enabled plants to grow tall (which let them maximize light interception). The successful occupation of the land by plants, in turn, made the evolution of terrestrial animals possible by providing them with both habitat and food. Club mosses and ferns (which include whisk ferns and horsetails) are seedless vascular plants that, like the bryophytes, reproduce and disperse primarily via spores. Seedless vascular plants arose and diversified during the Silurian and Devonian periods of the Paleozoic era, between 444 mya and 359 mya. Club mosses and ferns extend back more than 420 million years and were of considerable importance as Earth s dominant plants in past ages. Fossil evidence indicates that many species of these plants were the size of immense trees. Most living representatives of club mosses and ferns are small. The gymnosperms are vascular plants that reproduce by forming seeds. Gymnosperms produce seeds borne exposed (unprotected) on a stem or in a cone. Plants with seeds as their primary means of reproduction and dispersal first appeared about 359 mya, at the end of the Devonian period. These early seed plants diversified into many varied species of gymnosperms. The most recent plant group to appear is the flowering plants, or angiosperms, which arose during the early Cretaceous period of the Mesozoic era, about 130 mya. Like gymnosperms, flowering plants reproduce by forming seeds. Flowering plants, however, produce seeds enclosed within a fruit. Review What are the most important environmental challenges that plants face living on land? What adaptations do plants have to meet these environmental challenges? From which group of green algae are plants hypothesized to have descended? What is alternation of generations in plants? materials. This reliance means that bryophytes are restricted in size; if they were much larger, some of their cells could not obtain enough necessary materials. Bryophytes do not form seeds, the reproductive structures discussed in Chapter 28. Bryophytes reproduce and disperse primarily via haploid spores. Recent molecular and fossil evidence, discussed later in the chapter, suggests that bryophytes may have been the earliest plants to colonize land. The other three groups of plants seedless vascular plants, gymnosperms, and flowering plants have vascular tissues and are thus known as vascular plants. The two vascular tissues are xylem, for conducting water and dissolved minerals, and phloem, for conducting dissolved organic molecules such as sugar. A key step in the evolution of vascular plants was the ability to produce lignin, a strengthening polymer in the walls of cells that function for support and conduction (see Chapter 32 for a discussion of BRYOPHYTES Learning Objectives 3 Summarize the features that distinguish bryophytes from other plants. 4 Name and briefly describe the three phyla of bryophytes. 5 Describe the life cycle of mosses, and compare their gametophyte and sporophyte generations. The bryophytes (from the Greek words meaning moss plant ) consist of about 16,000 species of mosses, liverworts, and hornworts; bryophytes are the only living nonvascular plants ( Table 27-2). Because they have no means for extensive internal transport of water, sugar, and essential minerals, bryophytes are typically quite small. They generally require a moist environment for 584 Chapter 27

5 Figure Reconstruction of Rhynia gwynne-vaughanii This leafless plant, one of Earth s earliest vascular plants, is now extinct. It grew about 18 cm (7 in) tall. (Redrawn from D. Edwards, Evidence for the Sporophytic Status of the Lower Devonian Plant Rhynia gwynnevaughanii, Review of Palaeobotany and Palynology, Vol. 29, 1980.) Figure Reconstruction of Aglaophyton major Recent evidence indicates that this plant, although superficially simi- lar to other early vascular plants, lacked conducting tissues that are characteristic of vascular plants. For this reason, it has been reclassified into a new genus and is no longer considered a rhyniophyte. (Redrawn from J. D. Mauseth, Botany: An Introduction to Plant Biology, 2nd ed., Saunders College Publishing, Philadelphia, 1995.) is an ongoing enterprise, and over time, existing knowledge is re-evaluated in light of newly discovered evidence. Aglaophyton major is an excellent example of the self-correcting nature of science, which is in a perpetually dynamic state and changes in response to newly available techniques and data. Review What adaptations do ferns have that both algae and bryophytes lack? How does one distinguish between megaphylls and microphylls? Which of the following are parts of the sporophyte generation in ferns: frond, sperm cells, egg cell, roots, sorus, sporangium, spores, prothallus, rhizome, antheridium, archegonium, and zygote? Why are whisk ferns and horsetails now classified as ferns? How does heterospory modify the life cycle? SUMMARY WITH KEY TERMS Learning Objectives 1 Discuss some environmental challenges of living on land, and describe how several plant adaptations meet these challenges (page 582). The colonization of land by plants required the evolution of many anatomical, physiological, and reproductive adaptations. Plants have a waxy cuticle to protect against water loss and stomata for gas exchange needed for photosynthesis. Plant life cycles have an alternation of generations in which they spend part of their life cycle in a haploid gametophyte generation and part in a diploid sporophyte generation. The gametophyte plant produces gametes by mitosis. During fertilization these gametes fuse to form a zygote, the first stage of the sporophyte generation. The zygote develops into a multicellular embryo that the gametophyte protects and nourishes. The mature sporophyte plant develops from the embryo and produces sporogenous cells (spore mother cells). These undergo meiosis to form spores, the first stage in the gametophyte generation. The Plant Kingdom: Seedless Plants 597

6 Most plants have multicellular gametangia with a protective jacket of sterile cells surrounding the gametes. Antheridia are gametangia that produce sperm cells, and archegonia are gametangia that produce eggs. Ferns and other vascular plants have xylem to conduct water and dissolved minerals and phloem to conduct dissolved sugar. 2 Name the green algal group from which plants are hypothesized to have descended, and describe supporting evidence (page 582). Plants probably arose from a group of green algae called charophytes. This conclusion is based in part on molecular comparisons of DNA and RNA sequences, which show the closest match between charophytes and plants. Explore plant evolution by clicking on the figure in ThomsonNOW. 3 Summarize the features that distinguish bryophytes from other plants (page 584). Unlike other land plants, bryophytes are nonvascular and lack xylem and phloem. Bryophytes are the only plants with a dominant gametophyte generation. Their sporophytes remain permanently attached and nutritionally dependent on the gametophytes. 4 Name and briefly describe the three phyla of bryophytes (page 584). Mosses (phylum Bryophyta) have gametophytes that are green plants that grow from a filamentous protonema. Many liverworts (phylum Hepatophyta) have gametophytes that are flattened, lobelike thalli; others are leafy. Hornworts (phylum Anthocerophyta) have thalloid gametophytes. 5 Describe the life cycle of mosses, and compare their gametophyte and sporophyte generations (page 584). The green moss gametophyte bears archegonia and/or antheridia at the top of the plant. During fertilization, a sperm cell fuses with an egg cell in the archegonium. The zygote grows into an embryo that develops into a moss sporophyte, which is attached to the gametophyte. Meiosis occurs within the capsule of the sporophyte to produce spores. When a spore germinates, it grows into a protonema that forms buds that develop into gametophytes. Watch the life cycles of the mosses and liverworts by clicking on the figures in ThomsonNOW. 6 Discuss the features that distinguish seedless vascular plants from algae and bryophytes (page 589). Seedless vascular plants have several adaptations that algae and bryophytes lack, including vascular tissues and a dominant sporophyte generation. As in bryophytes, reproduction in seedless vascular plants depends on water as a transport medium for motile sperm cells. 7 Name and briefly describe the two phyla of seedless vascular plants (page 589). Sporophytes of club mosses (phylum Lycopodiophyta) consist of roots, rhizomes, erect branches, and leaves that are microphylls. Ferns (phylum Pteridophyta) are the largest and most diverse group of seedless vascular plants. The fern sporophyte consists of a rhizome that bears fronds and true roots. Phylum Pteridophyta also includes whisk ferns and horsetails. Sporophytes of whisk ferns have dichotomously branching rhizomes and erect stems; they lack true roots and leaves. Horsetail sporophytes have roots, rhizomes, aerial stems that are hollow and jointed, and leaves that are reduced megaphylls. 8 Describe the life cycle of ferns, and compare their sporophyte and gametophyte generations (page 589). Fern sporophytes have roots, rhizomes, and leaves that are megaphylls. Their leaves, or fronds, bear sporangia in clusters called sori. Meiosis in sporangia produces haploid spores. The fern gametophyte, called a prothallus, develops from a haploid spore and bears both archegonia and antheridia. Watch the life cycle of the ferns by clicking on the figure in ThomsonNOW. 9 Compare the generalized life cycles of homosporous and heterosporous plants (page 589). Homospory, the production of one kind of spore, is characteristic of bryophytes, most club mosses, and most ferns, including whisk ferns and horsetails. In homospory, spores give rise to gametophyte plants that produce both egg cells and sperm cells. Heterospory, the production of two kinds of spores (microspores and megaspores), occurs in certain club mosses, certain ferns, and all seed plants. Microspores give rise to male gametophytes that produce sperm cells. Megaspores give rise to female gametophytes that produce eggs. The evolution of heterospory was an essential step in the evolution of seeds. TEST YOUR UNDERSTANDING 1. The bryophytes (a) include mosses, liverworts, and hornworts (b) include whisk ferns, horsetails, and club mosses (c) are small plants that lack a vascular system (d) a and c (e) b and c 2. The waxy layer that covers aerial parts of plants is the (a) cuticle (b) archegonium (c) protonema (d) stoma (e) thallus 3. A strengthening compound found in cell walls of vascular plants is (a) xanthophyll (b) lignin (c) cutin (d) cellulose (e) carotenoid 4. Stomata (a) help prevent desiccation of plant tissues (b) transport water and minerals through plant tissues (c) allow gas exchange for photosynthesis (d) strengthen cell walls (e) produce male gametes 5. The female gametangium, or, produces an egg; the male gametangium, or, produces sperm cells. (a) antheridium; archegonium (b) archegonium; megaphyll (c) megasporangium; antheridium (d) archegonium; antheridium (e) megasporangium; megaphyll 6. Liverworts and hornworts share life-cycle similarities with (a) ferns (b) mosses (c) horsetails (d) club mosses (e) whisk ferns 598 Chapter 27

7 7. The green, gametangia-bearing moss plant (a) is the haploid gametophyte generation (b) is the diploid sporophyte generation (c) is called a protonema (d) contains cells with single large chloroplasts (e) b and c 8. Seedless vascular plants have to conduct water and minerals and to conduct sugar. (a) cuticle; xylem (b) phloem; stomata (c) phloem; xylem (d) stomata; cuticle (e) xylem; phloem 9. A(an) is a leaf that arose from a branch system. (a) antheridium (b) microphyll (c) megaphyll (d) sorus (e) microspore 10. These plants have vascularized stems but lack true roots and leaves. (a) mosses (b) club mosses (c) horsetails (d) whisk ferns (e) hornworts 11. These plants have hollow, jointed stems that are impregnated with silica. (a) mosses (b) club mosses (c) horsetails (d) whisk ferns (e) hornworts 12. Which of the following statements about ferns is not true? (a) ferns have motile sperm cells that swim through water to the egg-containing archegonium (b) ferns are vascular plants (c) ferns are the most economically important group of bryophytes (d) the fern sporophyte consists of a rhizome, roots, and fronds (e) the diversity of ferns is greatest in the tropics 13. Plants probably descended from a group of green algae called (a) rhyniophytes (b) Calamites (c) epiphytes (d) charophytes (e) club mosses 14. Which of the following is not a characteristic of plants? (a) cuticle (b) unicellular gametangia (c) stomata (d) multicellular embryo (e) alternation of generations 15. In plant life cycles (a) the first products of meiosis are gametes (b) spores are part of the diploid sporophyte generation (c) the embryo gives rise to a zygote (d) the first stage in the diploid sporophyte generation is the zygote (e) the first stage in the haploid gametophyte generation is the prothallus CRITICAL THINKING 1. Which group probably colonized the land first, plants or animals? Explain. 2. What adaptations do bryophytes have that algae lack? 3. Evolution Link. How may the following trends in plant evolution be adaptive to living on land? a. dependence on water for fertilization no need for water as a transport medium b. homospory heterospory 4. Analyzing Data. According to the cladogram in Figure 27-4, which plants evolved first: nonvascular bryophytes, seedless vascular plants, or seed plants? Which clade would be considered the outgroup: hornworts, liverworts, or mosses? Additional questions are available in ThomsonNOW at login The Plant Kingdom: Seedless Plants 599

The Plant Kingdom: Seedless & Seed Plants

The Plant Kingdom: Seedless & Seed Plants The Plant Kingdom: Seedless & Seed Plants Gen Bio 2 Chapters 27/28 Dr. S 1 Colonization of Land by Plants Required anatomical, physiological, and reproductive adaptations Waxy cuticle protects against

More information

Introduction to Plants

Introduction to Plants Introduction to Plants Unity and Diversity of Life Q: What are the five main groups of plants, and how have four of these groups adapted to life on land? 22.1 What are of plants? WHAT I KNOW SAMPLE ANSWER:

More information

The Nonvascular Plants & Seedless Vascular Plants

The Nonvascular Plants & Seedless Vascular Plants The Nonvascular Plants & Seedless Vascular Plants Laboratory 4 Introduction Members of kingdom Plantae are all multicellular organisms exhibiting cellulose cell walls, an alternation of generations life

More information

BIOL 1030 TOPIC 5 LECTURE NOTES TOPIC 5: SEEDLESS VASCULAR PLANTS (CH. 29)

BIOL 1030 TOPIC 5 LECTURE NOTES TOPIC 5: SEEDLESS VASCULAR PLANTS (CH. 29) TOPIC 5: SEEDLESS VASCULAR PLANTS (CH. 29) I. Vascular Plants (overview) plants with xylem and phloem 7 or 9 living phyla, depending on who you talk to able to dominate most terrestrial habitats because

More information

Flowers; Seeds enclosed in fruit

Flowers; Seeds enclosed in fruit Name Class Date Chapter 22 Plant Diversity Section Review 22-1 Reviewing Key Concepts Short Answer On the lines provided, answer the following questions. 1. Describe the main characteristics of plants.

More information

Figure One. Proposed relationships between plants and plant-like groups

Figure One. Proposed relationships between plants and plant-like groups Biology 3B Laboratory Nonvascular and Seedless Vascular Plants Objectives To understand the general systematic relationships of the Bryophytes and Pteridophytes Learn the basic plant life cycle, alternation

More information

PLANTS: NONVASCULAR, VASCULAR, SEED AND SEEDLESS LAB 1 of 3

PLANTS: NONVASCULAR, VASCULAR, SEED AND SEEDLESS LAB 1 of 3 PLANTS: NONVASCULAR, VASCULAR, SEED AND SEEDLESS LAB 1 of 3 Objective: After completing this series of labs, you should be able to do the following: Describe adaptations that allowed Plants to colonize

More information

Kingdom Plantae Plant Diversity II

Kingdom Plantae Plant Diversity II Kingdom Plantae Plant Diversity II Professor Andrea Garrison Biology 3A Illustrations 2014 Cengage Learning unless otherwise noted Text 2014 Andrea Garrison Plant Diversity II 2 Plant Classification Bryophytes

More information

Reproductive Life Cycles of Vascular Plants. Plant life cycles are characterized by alternate sporophytic and gametophytic generations.

Reproductive Life Cycles of Vascular Plants. Plant life cycles are characterized by alternate sporophytic and gametophytic generations. Reproductive Life Cycles of Vascular Plants Plant life cycles are characterized by alternate sporophytic and gametophytic generations. Reproductive Life Cycles of Vascular Plants From the National Botanic

More information

this group is P. Gnetophyta - gnetophyta called the P. Ginkophyta - ginkgo gymnosperms P. Anthophyta - flowering plants - angiosperms

this group is P. Gnetophyta - gnetophyta called the P. Ginkophyta - ginkgo gymnosperms P. Anthophyta - flowering plants - angiosperms Kingdom Plantae Characteristics chloroplasts with chlorophyll a & b, and carotenoids cellulose cell walls formation of cell plate during cell division starch used for carbohydrate storage Life cycle -

More information

STATION 1: Gymnosperm Survey

STATION 1: Gymnosperm Survey The Seed Plants: Laboratory Gymnosperms & Angiospserms 5 Introduction Gymnosperms and angiosperms are vascular, sporophyte-dominant plants that produce seeds. Although these heterosporous plants still

More information

PLANT DIVERSITY. EVOLUTION OF LAND PLANTS KINGDOM: Plantae

PLANT DIVERSITY. EVOLUTION OF LAND PLANTS KINGDOM: Plantae PLANT DIVERSITY 1 EVOLUTION OF LAND PLANTS KINGDOM: Plantae Spores Leaf Ancestral green algae Flagellated sperm for reproduction Plenty of water Nutrients and CO 2 diffuse into tissues Holdfast Flagellated

More information

8. Study the cladogram underline the derived characteristics and circle the organisms that developed from them.

8. Study the cladogram underline the derived characteristics and circle the organisms that developed from them. Seed Plants: Gymnosperms and Angiosperms Answer the questions as you go through the power point, there are also paragraphs to read where you will need to hi-lite or underline as you read. 1. What are the

More information

ALTERNATION OF GENERATIONS

ALTERNATION OF GENERATIONS Name Date Period ALTERNATION OF GENERATIONS Alternation of generations is one of those plant biology buzzwords that we biology teachers like for students to know really well. The two "parts" of the generation

More information

Fungi and plants practice

Fungi and plants practice Name: Period: Date: Fungi and plants practice Multiple Choice Identify the choice that best completes the statement or answers the question. Indicate your answer choice with an UPPER CASE letter in the

More information

10B Plant Systems Guided Practice

10B Plant Systems Guided Practice 10B Plant Systems Guided Practice Reproduction Station 1 1. Observe Plant A. Locate the following parts of the flower: stamen, stigma, style, ovary. 2. Draw and label the parts of a flower (listed above)

More information

And the Green Grass Grew All Around and Around, the Green Grass Grew All. Evolution of Plants

And the Green Grass Grew All Around and Around, the Green Grass Grew All. Evolution of Plants And the Green Grass Grew All Around and Around, the Green Grass Grew All Around Evolution of Plants Adapting to Terrestrial Living Plants are complex multicellular organisms that are autotrophs they feed

More information

Unit 1: What is Biology? Unit 2: Ecology Unit 3: The Life of a Cell Unit 4: Genetics Unit 5: Change Through Time Unit 6: Viruses, Bacteria, Protists,

Unit 1: What is Biology? Unit 2: Ecology Unit 3: The Life of a Cell Unit 4: Genetics Unit 5: Change Through Time Unit 6: Viruses, Bacteria, Protists, Unit 1: What is Biology? Unit 2: Ecology Unit 3: The Life of a Cell Unit 4: Genetics Unit 5: Change Through Time Unit 6: Viruses, Bacteria, Protists, and Fungi Unit 7: Plants Unit 8: Invertebrates Unit

More information

PLANT EVOLUTION DISPLAY Handout

PLANT EVOLUTION DISPLAY Handout PLANT EVOLUTION DISPLAY Handout Name: TA and Section time Welcome to UCSC Greenhouses. This sheet explains a few botanical facts about plant reproduction that will help you through the display and handout.

More information

Biology 172L General Biology Lab II Lab 03: Plant Life Cycles and Adaptations II: Gymnosperms and Angiosperms

Biology 172L General Biology Lab II Lab 03: Plant Life Cycles and Adaptations II: Gymnosperms and Angiosperms Biology 172L General Biology Lab II Lab 03: Plant Life Cycles and Adaptations II: Gymnosperms and Angiosperms Introduction Vascular seed-bearing plants, such as gymnosperms (cone-bearing plants) and angiosperms

More information

All About Plants. What are plants?

All About Plants. What are plants? All About Plants What are plants? Plants are living things that are made up of cells. They need air, water, soil, and sunlight to live. They cannot move from place to place, but their leaves move to catch

More information

Unit 10- Plants /Study Guide KEY

Unit 10- Plants /Study Guide KEY Plant Diversity Unit 10- Plants /Study Guide KEY Answer Key SECTION 20.1. ORIGINS OF PLANT LIFE 1. eukaryotic, photosynthetic, same types of chlorophyll, starch as storage product, cellulose in cell walls

More information

Pre-lab homework Lab 2: Reproduction in Protists, Fungi, Moss and Ferns

Pre-lab homework Lab 2: Reproduction in Protists, Fungi, Moss and Ferns Pre-lab homework Lab 2: Reproduction in Protists, Fungi, Moss and Ferns Lab Section: Name: 1. Last week in lab you looked at the reproductive cycle of the animals. This week s lab examines the cycles of

More information

Expt. How do flowering plants do it without flagella? The journey to find an egg. What causes pollen grain germination and tube growth?

Expt. How do flowering plants do it without flagella? The journey to find an egg. What causes pollen grain germination and tube growth? 1 Expt. How do flowering plants do it without flagella? The journey to find an egg. What causes pollen grain germination and tube growth? File: F12-07_pollen Modified from E. Moctezuma & others for BSCI

More information

Life Cycle Patterns. 1. First some basics: Fertilization, Mitosis and Meiosis

Life Cycle Patterns. 1. First some basics: Fertilization, Mitosis and Meiosis Life Cycle Patterns We ll take a look at the basics of life cycles. We will NOT focus on gametic life cycles as these are primarily for animals (Bio 1B with John!). We ll look at Fungus (zygotic life cycle),

More information

Plant Form and Function

Plant Form and Function Part X Plant Form and Function Part Opener Title Text to come. Part opener figure 1 title. Figure legend. 733 Part opener figure 2 title. Figure legend. 734 Part X Plant Form and Function 37 Evolutionary

More information

Section 24 1 Reproduction With Cones and Flowers (pages 609 616)

Section 24 1 Reproduction With Cones and Flowers (pages 609 616) Chapter 24 Reproduction of Seed Plants Section 24 1 Reproduction With Cones and Flowers (pages 609 616) This section describes the reproductive structures of gymnosperms and angiosperms. It also explains

More information

Section 24 1 Reproduction With Cones and Flowers (pages 609 616)

Section 24 1 Reproduction With Cones and Flowers (pages 609 616) Chapter 24 Reproduction of Seed Plants Section 24 1 Reproduction With Cones and Flowers (pages 609 616) Key Concepts What are the reproductive structures of gymnosperms and angiosperms? How does pollination

More information

Plant Classification, Structure, Growth and Hormones

Plant Classification, Structure, Growth and Hormones Biology SAT II Review Sheet Plants Plant Classification, Structure, Growth and Hormones Multicellular autotrophs (organisms that use the energy of inorganic materials to produce organic materials) Utilize

More information

FIFTH GRADE PLANT LIFE

FIFTH GRADE PLANT LIFE FIFTH GRADE PLANT LIFE 2 weeks LESSON PLANS AND ACTIVITIES LIFE CYCLE OVERVIEW OF FIFTH GRADE ORGANISMS WEEK 1. PRE: Identifying animal and plant cell parts. LAB: Exploring the different organelles of

More information

Chapter 18. Land environment: plant and fungi 生醫系劉秉慧老師分機 /03

Chapter 18. Land environment: plant and fungi 生醫系劉秉慧老師分機 /03 Chapter 18 Land environment: plant and fungi 生醫系劉秉慧老師分機 11815 2010/03 Alteration of generation - sporophyte and gametophyte - the dominant generation Diversity of plant - nonvascular plant : moss and its

More information

Vascular Plants Bryophytes. Seedless Plants

Vascular Plants Bryophytes. Seedless Plants plant reproduction The Plants Vascular Plants Bryophytes Liverworts, Hornworts, Mosses lack roots and specialized tissues grow in moist, shady areas All have sieve cells and tracheids Seedless Plants Ferns

More information

14 DIVERSITY OF PLANTS

14 DIVERSITY OF PLANTS CHAPTER 14 DIVERSITY OF PLANTS 327 14 DIVERSITY OF PLANTS Figure 14.1 Plants dominate the landscape and play an integral role in human societies. (a) Palm trees grow in tropical or subtropical climates;

More information

Question Bank Five Kingdom Classification

Question Bank Five Kingdom Classification Question Bank Five Kingdom Classification 1. Who proposed Five Kingdom Classification? Give the bases of classification. Ans. Whittaker in 1969 proposed five kingdom classification based on :- (i) Cell

More information

Dichotomous Keys. KEY A: Key to the DOMAINS of LIVING THINGS. KEY B: KEY to the KINGDOMS in the DOMAIN EUKARYA

Dichotomous Keys. KEY A: Key to the DOMAINS of LIVING THINGS. KEY B: KEY to the KINGDOMS in the DOMAIN EUKARYA 1 Dichotomous Keys Dichotomous keys are used to assist in the identification and classification of specimens of living things. To use a key, start at the top. At each decision point within a key, there

More information

2. Fill in the blank. The of a cell is like a leader, directing and telling the different parts of the cell what to do.

2. Fill in the blank. The of a cell is like a leader, directing and telling the different parts of the cell what to do. 1. Plant and animal cells have some similarities as well as differences. What is one thing that plant and animal cells have in common? A. cell wall B. chlorophyll C. nucleus D. chloroplasts 2. Fill in

More information

2.3: Eukaryotic Evolution and Diversity pg. 67. For about 1.5 billion years Prokaryotes were on the only living organism on Earth.

2.3: Eukaryotic Evolution and Diversity pg. 67. For about 1.5 billion years Prokaryotes were on the only living organism on Earth. 2.3: Eukaryotic Evolution and Diversity pg. 67 For about 1.5 billion years Prokaryotes were on the only living organism on Earth. 3.5 to 2 billion years ago Prokaryotes thrive in many different environments.

More information

Exercise 7 Angiosperm Reproduction: Flowers and Fruits Biol 1012, S2008, Lee, Etterson, and Little

Exercise 7 Angiosperm Reproduction: Flowers and Fruits Biol 1012, S2008, Lee, Etterson, and Little Exercise 7 Angiosperm Reproduction: Flowers and Fruits Biol 1012, S2008, Lee, Etterson, and Little Goals Relate structures in a flower to the plant life cycle: alternation of generations. Identify floral,

More information

Anatomy and Physiology of Leaves

Anatomy and Physiology of Leaves I. Leaf Structure and Anatomy Anatomy and Physiology of Leaves A. Structural Features of the Leaf Question: How do plants respire? Plants must take in CO 2 from the atmosphere in order to photosynthesize.

More information

Unit 9.2: The Evolution of Multicellular Life

Unit 9.2: The Evolution of Multicellular Life Unit 9.2: The Evolution of Multicellular Life Lesson Objectives Describe important events of the late Precambrian. Give an overview of evolution during the Paleozoic Era. Explain why the Mesozoic Era is

More information

Biology 213 Angiosperms. Introduction

Biology 213 Angiosperms. Introduction Biology 213 Angiosperms Introduction The flowering plants, the angiosperms, are the most recent plants to evolve and quickly became the dominant plant life on this planet. They are also the most diverse

More information

WHAT ARE THE DIFFERENCES BETWEEN VASCULAR AND NON- VASCULAR PLANTS?

WHAT ARE THE DIFFERENCES BETWEEN VASCULAR AND NON- VASCULAR PLANTS? WHAT ARE THE DIFFERENCES BETWEEN VASCULAR AND NON- VASCULAR PLANTS? Let s take a closer look. What makes them different on the outside and inside? Learning Intentions To understand how vascular plant cells

More information

Plants have organs composed of different tissues, which in turn are composed of different cell types

Plants have organs composed of different tissues, which in turn are composed of different cell types Plant Structure, Growth, & Development Ch. 35 Plants have organs composed of different tissues, which in turn are composed of different cell types A tissue is a group of cells consisting of one or more

More information

Chapter 38: Angiosperm Reproduction and Biotechnology

Chapter 38: Angiosperm Reproduction and Biotechnology Name Period Concept 38.1 Flowers, double fertilization, and fruits are unique features of the angiosperm life cycle This may be a good time for you to go back to Chapter 29 and review alternation of generation

More information

Domain: Archaea Group: Methanogens methane releasing Group: Halophiles lives in high salt areas Group: Thermophiles lives in extreme temperatures

Domain: Archaea Group: Methanogens methane releasing Group: Halophiles lives in high salt areas Group: Thermophiles lives in extreme temperatures Domain: Archaea Group: Methanogens methane releasing Group: Halophiles lives in high salt areas Group: Thermophiles lives in extreme temperatures Viruses b Virus Structure Virus Structure Capsid Protein

More information

MONDAY MORNING SCIENCE BLAST CD Beans - Plant Growth - Life Science

MONDAY MORNING SCIENCE BLAST CD Beans - Plant Growth - Life Science MONDAY MORNING SCIENCE BLAST CD Beans - Plant Growth - Life Science What we call a plant, is any member of the kingdom Plantae. Plants are multicellular organisms which usually produce their own food from

More information

IGCSE and GCSE Biology. Answers to questions. Section 2. Flowering Plants. Chapters 6-9. Chapter 6 Plant structure and function

IGCSE and GCSE Biology. Answers to questions. Section 2. Flowering Plants. Chapters 6-9. Chapter 6 Plant structure and function 1 IGCSE and GCSE Biology. Answers to questions Section 2. Flowering Plants. Chapters 6-9 Chapter 6 Plant structure and function Page 54 1. a Epidermis. Helps maintain shape, reduces evaporation, resists

More information

Angiosperms: Phylum Anthophyta, the flowering plants

Angiosperms: Phylum Anthophyta, the flowering plants Angiosperms: Phylum Anthophyta, the flowering plants 1. Overview of seed plant evolution Figure 29.7 Land plant evolution. 2. Traits of flowering plants a) Flowers b) Fruits/Seeds c) Monocots vrs. dicots

More information

Problem Set 5 BILD10 / Winter 2014 Chapters 8, 10-12

Problem Set 5 BILD10 / Winter 2014 Chapters 8, 10-12 Chapter 8: Evolution and Natural Selection 1) A population is: a) a group of species that shares the same habitat. b) a group of individuals of the same species that lives in the same general location

More information

Plant Reproduction. 2. Evolutionarily, floral parts are modified A. stems B. leaves C. roots D. stolons E. suberins

Plant Reproduction. 2. Evolutionarily, floral parts are modified A. stems B. leaves C. roots D. stolons E. suberins Plant Reproduction 1. Angiosperms use temporary reproductive structures that are not present in any other group of plants. These structures are called A. cones B. carpels C. receptacles D. flowers E. seeds

More information

B4 Learning Outcome Questions

B4 Learning Outcome Questions Question Name 4 collection methods: What is the formula used to estimate the population size of an organism: What assumptions need to be made when using capture-recapture data? What could affect the distribution

More information

COWLEY COLLEGE & Area Vocational Technical School

COWLEY COLLEGE & Area Vocational Technical School COWLEY COLLEGE & Area Vocational Technical School COURSE PROCEDURE FOR GENERAL BIOLOGY II BIO4135 5 Credit Hours Student Level: This course is open to students on the college level in either the freshman

More information

Transport in plants. Unit 1

Transport in plants. Unit 1 Unit 1 Transport in plants A knowledge of how plants take in and transport substances is vitally important to agriculture. Using this knowledge, scientists are able to develop more effective ways of applying

More information

Unit 2: Cell processes: transport, energy and division

Unit 2: Cell processes: transport, energy and division Unit 2: Cell processes: transport, energy and division 1. The cell in its environment. Cellular transport All cells are surrounded by a cell membrane that separates the cell from the outside environment.

More information

Plants, like all other living organisms have basic needs: a source of nutrition (food),

Plants, like all other living organisms have basic needs: a source of nutrition (food), LEARNING FROM LEAVES: A LOOK AT LEAF SIZE Grades 3 6 I. Introduction Plants, like all other living organisms have basic needs: a source of nutrition (food), water, space in which to live, air, and optimal

More information

1. Why is mitosis alone insufficient for the life cycle of sexually reproducing eukaryotes?

1. Why is mitosis alone insufficient for the life cycle of sexually reproducing eukaryotes? Chapter 13: Meiosis and Sexual Life Cycles 1. Why is mitosis alone insufficient for the life cycle of sexually reproducing eukaryotes? 2. Define: gamete zygote meiosis homologous chromosomes diploid haploid

More information

Protists and Fungi. What color are the cells in the living culture?

Protists and Fungi. What color are the cells in the living culture? Protists and Fungi Objectives 1. Recognize and identify (to genus) the organisms covered in lab. 2. Describe the characteristics of each organism. 3. Correctly classify the organisms. I. Protists The protists

More information

Sexual and Asexual Reproduction

Sexual and Asexual Reproduction Program Support Notes by: Janine Haeusler M. Sc (Ed), B. Ed Produced by: VEA Pty Ltd Commissioning Editor: Sandra Frerichs B.Ed, M.Ed. Executive Producers: Edwina Baden-Powell B.A, CVP. Sandra Frerichs

More information

LAB. LEAF STRUCTURE. light energy. light energy

LAB. LEAF STRUCTURE. light energy. light energy Period Date LAB. LEAF STRUCTURE Plants are incredible organisms! They can make all their own food from the simple inputs of: sunlight air (carbon dioxide) water minerals This biological wizardry is accomplished

More information

Meiosis and Sexual Life Cycles

Meiosis and Sexual Life Cycles Meiosis and Sexual Life Cycles Chapter 13 1 Ojectives Distinguish between the following terms: somatic cell and gamete; autosome and sex chromosomes; haploid and diploid. List the phases of meiosis I and

More information

Chapter 3. Biology of Flowering Plants: Reproduction. Gametophytes, Fruits, Seeds, and Embryos

Chapter 3. Biology of Flowering Plants: Reproduction. Gametophytes, Fruits, Seeds, and Embryos BOT 3015L (Sherdan/Outlaw/Aghoram); Page 1 of 13 Chapter 3 Biology of Flowering Plants: Reproduction Gametophytes, Fruits, Seeds, and Embryos Objectives Angiosperms. Understand alternation of generations.

More information

The Eukaryotic cell probably originated as a community of prokaryotes

The Eukaryotic cell probably originated as a community of prokaryotes The Eukaryotic cell probably originated as a community of prokaryotes The fossil record indicates that they first evolved more than 1.7 bya. The endomembrane system is thought to have evolved by membrane

More information

STRUCTURAL ORGANIZATION OF VASCULAR PLANTS

STRUCTURAL ORGANIZATION OF VASCULAR PLANTS STRUCTURAL ORGANIZATION OF VASCULAR PLANTS STRUCTURAL ORGANIZATION OF VASCULAR PLANTS The vascular plant body plan Root system Shoot system Stems Leaves Flowers 2 PLANT TISSUES Tissue = collection of similar

More information

2. is a process of nuclear division in which the number of chromosomes in certain cells is halved during gamete formation.

2. is a process of nuclear division in which the number of chromosomes in certain cells is halved during gamete formation. Meiosis 1. P. J. van Beneden proposed that an egg and a sperm, each containing half the complement of chromosomes found in somatic cells, fuse to produce a single cell called a. 2. is a process of nuclear

More information

Name: Class: Date: Multiple Choice Identify the choice that best completes the statement or answers the question.

Name: Class: Date: Multiple Choice Identify the choice that best completes the statement or answers the question. Name: Class: Date: Chapter 17 Practice Multiple Choice Identify the choice that best completes the statement or answers the question. 1. The correct order for the levels of Linnaeus's classification system,

More information

UNIT 7: ANGIOSPERMS 2 (Embryogenesis, Seeds. and Fruits)

UNIT 7: ANGIOSPERMS 2 (Embryogenesis, Seeds. and Fruits) 55 UNIT 7: ANGIOSPERMS 2 (Embryogenesis, Seeds. and Fruits) Textbook Chapter 19 OBJECTIVES By the end of this unit, you should understand the development of the gametophyte generation of the flowering

More information

Photosynthesis. Chemical Energy (e.g. glucose) - They are the ultimate source of chemical energy for all living organisms: directly or indirectly.

Photosynthesis. Chemical Energy (e.g. glucose) - They are the ultimate source of chemical energy for all living organisms: directly or indirectly. Photosynthesis Light Energy transduction Chemical Energy (e.g. glucose) - Only photosynthetic organisms can do this (e.g. plants) - They are the ultimate source of chemical energy for all living organisms:

More information

CELERY LAB - Structure and Function of a Plant

CELERY LAB - Structure and Function of a Plant CELERY LAB - Structure and Function of a Plant READ ALL INSTRUCTIONS BEFORE BEGINNING! YOU MAY WORK WITH A PARTNER ON THIS ACTIVITY, BUT YOU MUST COMPLETE YOUR OWN LAB SHEET! Plants are incredible organisms!

More information

Cells (ScienceGHSGT1) 1. Which part of the cell provides energy through the process of cellular respiration?

Cells (ScienceGHSGT1) 1. Which part of the cell provides energy through the process of cellular respiration? Name: Date: 1. Which part of the cell provides energy through the process of cellular respiration? A. cell wall B. cytoplasm C. mitochondrion D. cell membrane 2. All cells must have a A. cell membrane.

More information

The Seed Plants. We have now reached the bottom of our key to the plant kingdom:

The Seed Plants. We have now reached the bottom of our key to the plant kingdom: The Seed Plants Final Review of the Kingdom Plantae. We have now reached the bottom of our key to the plant kingdom: A Plant is nonvascular Mosses, liverworts, hornworts A' Plant has vascular tissue B

More information

Table of Contents. North Carolina Essential Standards Correlation Chart... 6

Table of Contents. North Carolina Essential Standards Correlation Chart... 6 Table of Contents North Carolina Essential Standards Correlation Chart........ 6 Objectives Chapter 1 Cell Biology................................. 9 Lesson 1 Cell Structure...............................

More information

Lecture 7: Plant Structure and Function. I. Background

Lecture 7: Plant Structure and Function. I. Background Lecture 7: Plant Structure and Function I. Background A. Challenges for terrestrial plants 1. Habitat is divided a. Air is the source of CO2 for photosynthesis i. Sunlight cannot penetrate soil b. Soil

More information

28 Exploring Redi s Experiment

28 Exploring Redi s Experiment 28 Exploring Redi s Experiment Prentice-Hall, Inc. One jar was left uncovered. The second jar was covered. SCIENCE EXPLORER Focus on Life Science Maggots appeared on the meat in the open jar. Redi concluded

More information

SECOND GRADE PLANT LIFE

SECOND GRADE PLANT LIFE SECOND GRADE PLANT LIFE 2 weeks LESSON PLANS AND ACTIVITIES LIFE CYCLE OVERVIEW OF SECOND GRADE ORGANISMS WEEK 1. PRE: Distinguishing characteristics of vertebrates. LAB: Discovering characteristics of

More information

Name Class Date WHAT I KNOW. many different body forms and ways of living. and reproduce in a similar way to bacteria.

Name Class Date WHAT I KNOW. many different body forms and ways of living. and reproduce in a similar way to bacteria. Protists and Fungi Interdependence in Nature Q: How do protists and fungi affect the homeostasis of other organisms and ecosystems? 21.1 Why are protists difficult to classify? WHAT I KNOW SAMPLE ANSWER:

More information

Human Reproduction Practice Problems #1 Use your current knowledge and critical reasoning skills to choose the best answer

Human Reproduction Practice Problems #1 Use your current knowledge and critical reasoning skills to choose the best answer Human Reproduction Practice Problems #1 Use your current knowledge and critical reasoning skills to choose the best answer Use the diagram below and your knowledge of biology to answer questions 1 through

More information

Chapter 13: Meiosis and Sexual Life Cycles

Chapter 13: Meiosis and Sexual Life Cycles Name Period Chapter 13: Meiosis and Sexual Life Cycles Concept 13.1 Offspring acquire genes from parents by inheriting chromosomes 1. Let s begin with a review of several terms that you may already know.

More information

Plant Structure, Growth, and Development. Chapter 35

Plant Structure, Growth, and Development. Chapter 35 Plant Structure, Growth, and Development Chapter 35 PLANTS developmental plasticity = ability of plant to alter form to respond to environment Biological heirarchy Cell basic unit of life Tissue group

More information

Microgametophyte Example. What Makes Them Different? Megagametophyte. The Seed

Microgametophyte Example. What Makes Them Different? Megagametophyte. The Seed Wrap-up of cryptogams Introduction to Seed Plants How seeds allowed the full colonization of land by plants Free living gametophyte Gametophytes independent of parent sporophytes May be small & inconspicuous,

More information

CELERY LAB - Structure and Function of a Plant

CELERY LAB - Structure and Function of a Plant CELERY LAB - Structure and Function of a Plant READ ALL INSTRUCTIONS BEFORE BEGINNING! YOU MAY WORK WITH A PARTNER ON THIS ACTIVITY, BUT YOU MUST COMPLETE YOUR OWN LAB SHEET! Look at the back of this paper

More information

Science 10-Biology Activity 14 Worksheet on Sexual Reproduction

Science 10-Biology Activity 14 Worksheet on Sexual Reproduction Science 10-Biology Activity 14 Worksheet on Sexual Reproduction 10 Name Due Date Show Me NOTE: This worksheet is based on material from pages 367-372 in Science Probe. 1. Sexual reproduction requires parents,

More information

23-5 Transport in Plants Slide 1 of 30

23-5 Transport in Plants Slide 1 of 30 1 of 30 Xylem tissue forms a continuous set of tubes that runs from the roots through stems and out into the spongy mesophyll of leaves. Active transport and root pressure cause water to move from soil

More information

XII. Biology, Grade 10

XII. Biology, Grade 10 XII. Biology, Grade 10 Grade 10 Biology Pilot Test The spring 2004 Grade 10 MCAS Biology Test was based on learning standards in the Biology content strand of the Massachusetts Science and Technology/Engineering

More information

Geologic Time The first geologic time scale was proposed in 1913 by the British geologist Arthur Holmes (1890-1965). This was soon after the discovery

Geologic Time The first geologic time scale was proposed in 1913 by the British geologist Arthur Holmes (1890-1965). This was soon after the discovery Geologic Time Geologic Time The first geologic time scale was proposed in 1913 by the British geologist Arthur Holmes (1890-1965). This was soon after the discovery of radioactivity, and using it, Holmes

More information

4 th Grade Science Unit B: Life Sciences Chapter 3: Flow of Energy and Matter Lesson 1: How does energy flow?

4 th Grade Science Unit B: Life Sciences Chapter 3: Flow of Energy and Matter Lesson 1: How does energy flow? 4 th Grade Science Unit B: Life Sciences Chapter 3: Flow of Energy and Matter Lesson 1: How does energy flow? ecosystem Ecosystem is the living and nonliving things and the way they interact in an environment.

More information

nucleus cytoplasm membrane wall A cell is the smallest unit that makes up living and nonliving things.

nucleus cytoplasm membrane wall A cell is the smallest unit that makes up living and nonliving things. 1 In nature there are living things and nonliving things. Living things depend on three basic life processes: nutrition, sensitivity and reproduction. Living things are made up of cells. 1. Match the two

More information

BIOL 1030 TOPIC 1 LECTURE NOTES Topic 1: Classification and the Diversity of Life (Chapters 25, 26.6)

BIOL 1030 TOPIC 1 LECTURE NOTES Topic 1: Classification and the Diversity of Life (Chapters 25, 26.6) Topic 1: Classification and the Diversity of Life (Chapters 25, 26.6) I. Background review (Biology 1020 material) A. Scientific Method 1. observations 2. scientific model explains observations makes testable

More information

Chapter 3 Cell Processes and Energy

Chapter 3 Cell Processes and Energy Chapter 3 Cell Processes and Energy 1 Chapter 3 Objectives Section 1: Chemical Compounds in Cells 1. Define elements and compounds 2. Explain how water is important to the function of cells 3. Identify

More information

AS Biology Unit 2 Key Terms and Definitions. Make sure you use these terms when answering exam questions!

AS Biology Unit 2 Key Terms and Definitions. Make sure you use these terms when answering exam questions! AS Biology Unit 2 Key Terms and Definitions Make sure you use these terms when answering exam questions! Chapter 7 Variation 7.1 Random Sampling Sampling a population to eliminate bias e.g. grid square

More information

Land Plants and Algae

Land Plants and Algae Science Unit: Lesson 9: Plants Land Plants and Algae School year: 2008/2009 Developed for: Developed by: Grade level: Duration of lesson: David Lloyd George Elementary School, Vancouver School District

More information

MCAS Biology. Review Packet

MCAS Biology. Review Packet MCAS Biology Review Packet 1 Name Class Date 1. Define organic. THE CHEMISTRY OF LIFE 2. All living things are made up of 6 essential elements: SPONCH. Name the six elements of life. S N P C O H 3. Elements

More information

Name Class Date. binomial nomenclature. MAIN IDEA: Linnaeus developed the scientific naming system still used today.

Name Class Date. binomial nomenclature. MAIN IDEA: Linnaeus developed the scientific naming system still used today. Section 1: The Linnaean System of Classification 17.1 Reading Guide KEY CONCEPT Organisms can be classified based on physical similarities. VOCABULARY taxonomy taxon binomial nomenclature genus MAIN IDEA:

More information

Plant Structure and Function Notes

Plant Structure and Function Notes For plants, when they made the transition from water to land, they had to make adaptations for obtaining water and prevent loss by desiccation (drying out) -water also needed for fertilization of eggs

More information

Sexual Reproduction. and Meiosis. Sexual Reproduction

Sexual Reproduction. and Meiosis. Sexual Reproduction Sexual Reproduction and Meiosis Describe the stages of meiosis and how sex cells are produced. Explain why meiosis is needed for sexual reproduction. Name the cells that are involved in fertilization.

More information

Cell Division Mitosis and Meiosis

Cell Division Mitosis and Meiosis Cell Division Mitosis and Meiosis students will describe the processes of mitosis and meiosis o define and explain the significance of chromosome number in somatic and sex cells o explain the events of

More information

Mitosis & Meiosis Web Quest

Mitosis & Meiosis Web Quest Part 1 Mitosis Interactive Mitosis Tutorial Go to http://www.sci.sdsu.edu/multimedia/mitosis/ 1. What is mitosis? 2. Cells that are non-reproductive undergo mitosis. Which are the reproductive cells? _

More information

Sexual reproduction in Angiosperms

Sexual reproduction in Angiosperms Sexual reproduction in Angiosperms Name: ANGIOSPERMS Angiosperms are plants that have their seeds enclosed in an ovule inside their flower. About 80% of the plants we see and know are angiosperms. The

More information

Beth Campbell Western Michigan University Senior, College of Education. April, 2006

Beth Campbell Western Michigan University Senior, College of Education. April, 2006 Beth Campbell Western Michigan University Senior, College of Education April, 2006 Participant in Research Experience for Teachers (RET) Workshop at Western Michigan University 2005-06 Academic Year But

More information

4.1 Chemical Energy and ATP. KEY CONCEPT All cells need chemical energy.

4.1 Chemical Energy and ATP. KEY CONCEPT All cells need chemical energy. 4.1 Chemical Energy and ATP KEY CONCEPT All cells need chemical energy. 4.1 Chemical Energy and ATP Molecules in food store chemical energy in their bonds. Starch molecule Glucose molecule The chemical

More information

Lesson 11: Reproduce - Part 2

Lesson 11: Reproduce - Part 2 Lesson 11: Reproduce - Part 2 Slide 1: Introduction Slide 2: Human chromosomes Fascinating Education Script Fascinating Biology Lessons Every human cell has 46 chromosomes, 23 from the father and 23 matching

More information