2006S Bio153 Lab 4: Seedless Vascular Plants July 11 th / July 13 th

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "2006S Bio153 Lab 4: Seedless Vascular Plants July 11 th / July 13 th"

Transcription

1 1 2006S Bio153 Lab 4: Seedless Vascular Plants July 11 th / July 13 th After the appearance of land plants, the next big evolutionary step was the development of vascular tissue. Vascular tissue allows for the movement of water and nutrients around the plant body, meaning that plants could be larger. Vascular tissue also provides support, which means that plants could grow upright. This is important, because upright growth allows a plant to escape competition for space and light by overtopping its competitors. Plants that could keep part of their body in contact with moist soil and have access to sunlight would have a great advantage over those with a sprawling growth form (such as is seen in the bryophytes). To colonize land and compete with other plants, it was necessary for plants to be able to grow into large structures that could anchor themselves in the ground, capture light efficiently, and extract water and nutrients from the soil and transport it around the body. This has involved the evolution of leaves, stems, (collectively called the shoot), and roots. Thus, in the seedless vascular plants, we see the evolution of vascular tissue, true roots, and tracheids. The earliest known vascular plants appeared in the late Silurian period about 420 million years ago. These were simple plants with a dichotomously branched horizontal stem system bearing erect dichotomously branched stems. Fossil evidence shows that these early plants contained elongated cells organized into tissues. These cells had walls thickened with an extremely strong substance called lignin. These lignin rings would have allowed these plants to support erect stems and conduct water throughout the plant. By about 380 million years ago, fossil

2 2 plants show an elaboration of these elongated cells into more complex tissues known as tracheids. Tracheid cells die after maturing, leaving no cytoplasm and only cell walls. This increased the efficiency of water transport in these primitive plants. The aboveground and belowground parts of early vascular plants showed little differentiation; in later groups we see the evolution of highly differentiated plant parts. It appears that these structures have evolved independently in different plant lineages current evidence suggests that roots evolved at least twice and leaves perhaps six times. Leaves: Simple vascular plants such as Psilotum do not have true leaves, but instead possess small projections called prophylls. Prophylls differ from true leaves in that they lack vascular tissue. The two types of true leaves found vascular plants microphylls and megaphylls are thought to have independent evolutionary origins. Microphylls are found in Lycophyta and contain a single unbranched strand of vascular tissue. It is hypothesized that microphylls arose from sporangia (spore-bearing structures). Most other vascular plants have leaves with an elaborately branched vascular system. These leaves are known as megaphylls. The currently accepted hypothesis is that megaphylls evolved from branched stems. Originally, most plants branched dichotomously (the stem apex divided to produce two equal branches). In some Devonian plants the two branches became unequal, so only one continued the growth of the main axis of the plant, while the other remained short and spread horizontally. This photosynthetic tissue eventually joined the parts of the short branch. Primitive megaphylls often show dichotomous branching of the vascular tissue. Reproduction: In early vascular plants we see the shift from the dominance of the gametophyte generation to that of the sporophyte generation. Rather than being a temporary structure permanently dependent on the gametophyte, the

3 3 sporophyte eventually emerges as a separate, independent entity. However, the early vascular plants are still dependent on water to complete their life cycle sperm must swim through water to reach the egg and produce the diploid embryo. Most early vascular plants are homosporous. In homosporous plants, the sporophyte produces a single type of spore that gives rise to a bisexual gametophyte. This structure bears both the female (archegonia) and male (antheridia) sex organs, which produce female (egg) and male (sperm) gametes. A later evolutionary trend is the emergence of heterosporous plants. In heterosporous plants, 2 types of sporangia (spore-bearing structures) give rise to 2 types of spore - microspores that make male gametophytes, and megaspores, that make female gametophytes.

4 4 Early vascular plants: 1. Psilophyta (whisk ferns) The living genus Psilotum is remarkably similar to early fossil land plants although there is much debate over whether there is a direct relationship. Examine a specimen of Psilotum and note that it consists only of a horizontal underground stem (called a rhizome) without roots and an erect over-ground stem. It bears small projections on the over-ground stem resembling small leaves. However there is no vascular tissue in these projections so they are named prophylls to distinguish them from the leaves of other vascular plants. Examine a cross-section of the stem of Psilotum. Find the xylem tissue in the centre (stained red) and locate the tip of the stars. The small blue cells between these tips are the phloem tissue. Xylem transports water from the roots, while phloem transports the products of photosynthesis form the leaves. 2. Lycophyta (club mosses) Lycophyta is a division of vascular plants that originated early in the Devonian period, about 390 m. y. ago. Plants very similar to modern Lycopodium occur in the late Devonian period about 350 m. y. ago. Many fossil lycopods were enormous plants up to 40m tall, but living lycopods are all small. This group of plants shows two important advances; they have leaves with a strand of vascular tissue and they produce rather small relatively simple roots. Roots differ from rhizoids in that they contain vascular tissue. In the Lycophyta the leaves are spirally arranged and branching is dichotomous. The leaves are usually long and narrow and do not have branching vascular tissue. Simple leaves of this type are known as microphylls. Lycopodium is homosporous, meaning that meiosis in the sporangium forms spores that give rise to bisexual gametophytes bearing both archegonia and antheridia. The bi-flagellated sperm swim to the egg, and early development

5 5 of the embryo occurs in the archegonium. The sporophyte in club mosses grows a root and becomes an entity separate from the gametophyte. Another member of the Lycophyta is Sellaginella. is the only genus in this group, but includes 700 known species. Most live in moist places, but a few are desert plants that lie dormant during the driest parts of the year (such as the resurrection plant ). Selaginella is heterosporous; its megaspores and microspores germinate to form separate male and female gametophytes. Heterosporous reproduction in Selaginella represents an evolutionary step forward. Selaginella needs water for reproduction, as its sperm must swim to the egg in the archegonium. The young embryo is nourished by the megagametophyte, but eventually emerges from the gametophyte and becomes independent. The sporangium is able to produce microor megaspores depending on its nutritional status. The slides of Selaginella cones that you will examine will show the random distribution of micro- and megaspores within a cone. Examine a longitudinal section of a Selaginella cone (known as a strobilus). Note the presence of microspores and megaspores, the micro- and megasporangia, and the sporophylls (the modified leaves that bear the sporangia). 3. Sphenophyta (horsetails) Sphenophyta is another division of plants originating in the Devonian period. Basically similar to the Lycophyta in organization, but in the Sphenophyta the stem is organized into nodes and internodes. In the Sphenophyta the leaves are arranged in rings (whorls) at each node and branches arise at the same

6 6 point. The branches arise alternately with the leaves, an arrangement unique to this division. Observe a stem of the horsetail, Equisetum and note the arrangement of the tiny leaves and the origin of the branches at the nodes. 4. Pteridophyta (ferns) Ferns are an enormously successful group with over 12,000 species. They are the largest and most diverse group of seedless vascular plants. Many of them are epiphytes, growing on other plants (particularly in the tropics). The have large well developed megaphylls called fronds. Most ferns are homosporous, bearing spores in sporangia that are often clustered in sori on the edges or undersides of leaves. The gametophyte resembles a liverwort, while the sporophyte is usually structurally complex and large. In ferns, the sporophyte depends upon the gametophyte during the early phases of its development, and in some species the gametophyte is capable of supporting several young sporophytes. Reproduction again requires water, because the motile sperm must swim to the egg. Examine a fern and note the sori, which contain the sporangia and the spores. Make sure that you see gametophytes. You may see young sporophytes growing on them.

7 Fig. 4. Life cycle of a homosporous fern. 7

BIOL 1030 TOPIC 5 LECTURE NOTES TOPIC 5: SEEDLESS VASCULAR PLANTS (CH. 29)

BIOL 1030 TOPIC 5 LECTURE NOTES TOPIC 5: SEEDLESS VASCULAR PLANTS (CH. 29) TOPIC 5: SEEDLESS VASCULAR PLANTS (CH. 29) I. Vascular Plants (overview) plants with xylem and phloem 7 or 9 living phyla, depending on who you talk to able to dominate most terrestrial habitats because

More information

The Nonvascular Plants & Seedless Vascular Plants

The Nonvascular Plants & Seedless Vascular Plants The Nonvascular Plants & Seedless Vascular Plants Laboratory 4 Introduction Members of kingdom Plantae are all multicellular organisms exhibiting cellulose cell walls, an alternation of generations life

More information

Reproductive Life Cycles of Vascular Plants. Plant life cycles are characterized by alternate sporophytic and gametophytic generations.

Reproductive Life Cycles of Vascular Plants. Plant life cycles are characterized by alternate sporophytic and gametophytic generations. Reproductive Life Cycles of Vascular Plants Plant life cycles are characterized by alternate sporophytic and gametophytic generations. Reproductive Life Cycles of Vascular Plants From the National Botanic

More information

The Plant Kingdom: Seedless & Seed Plants

The Plant Kingdom: Seedless & Seed Plants The Plant Kingdom: Seedless & Seed Plants Gen Bio 2 Chapters 27/28 Dr. S 1 Colonization of Land by Plants Required anatomical, physiological, and reproductive adaptations Waxy cuticle protects against

More information

Figure One. Proposed relationships between plants and plant-like groups

Figure One. Proposed relationships between plants and plant-like groups Biology 3B Laboratory Nonvascular and Seedless Vascular Plants Objectives To understand the general systematic relationships of the Bryophytes and Pteridophytes Learn the basic plant life cycle, alternation

More information

Introduction to Plants

Introduction to Plants Introduction to Plants Unity and Diversity of Life Q: What are the five main groups of plants, and how have four of these groups adapted to life on land? 22.1 What are of plants? WHAT I KNOW SAMPLE ANSWER:

More information

PLANTS: NONVASCULAR, VASCULAR, SEED AND SEEDLESS LAB 1 of 3

PLANTS: NONVASCULAR, VASCULAR, SEED AND SEEDLESS LAB 1 of 3 PLANTS: NONVASCULAR, VASCULAR, SEED AND SEEDLESS LAB 1 of 3 Objective: After completing this series of labs, you should be able to do the following: Describe adaptations that allowed Plants to colonize

More information

Flowers; Seeds enclosed in fruit

Flowers; Seeds enclosed in fruit Name Class Date Chapter 22 Plant Diversity Section Review 22-1 Reviewing Key Concepts Short Answer On the lines provided, answer the following questions. 1. Describe the main characteristics of plants.

More information

PLANT EVOLUTION DISPLAY Handout

PLANT EVOLUTION DISPLAY Handout PLANT EVOLUTION DISPLAY Handout Name: TA and Section time Welcome to UCSC Greenhouses. This sheet explains a few botanical facts about plant reproduction that will help you through the display and handout.

More information

this group is P. Gnetophyta - gnetophyta called the P. Ginkophyta - ginkgo gymnosperms P. Anthophyta - flowering plants - angiosperms

this group is P. Gnetophyta - gnetophyta called the P. Ginkophyta - ginkgo gymnosperms P. Anthophyta - flowering plants - angiosperms Kingdom Plantae Characteristics chloroplasts with chlorophyll a & b, and carotenoids cellulose cell walls formation of cell plate during cell division starch used for carbohydrate storage Life cycle -

More information

Kingdom Plantae Plant Diversity II

Kingdom Plantae Plant Diversity II Kingdom Plantae Plant Diversity II Professor Andrea Garrison Biology 3A Illustrations 2014 Cengage Learning unless otherwise noted Text 2014 Andrea Garrison Plant Diversity II 2 Plant Classification Bryophytes

More information

ALTERNATION OF GENERATIONS

ALTERNATION OF GENERATIONS Name Date Period ALTERNATION OF GENERATIONS Alternation of generations is one of those plant biology buzzwords that we biology teachers like for students to know really well. The two "parts" of the generation

More information

Pre-lab homework Lab 2: Reproduction in Protists, Fungi, Moss and Ferns

Pre-lab homework Lab 2: Reproduction in Protists, Fungi, Moss and Ferns Pre-lab homework Lab 2: Reproduction in Protists, Fungi, Moss and Ferns Lab Section: Name: 1. Last week in lab you looked at the reproductive cycle of the animals. This week s lab examines the cycles of

More information

Fungi and plants practice

Fungi and plants practice Name: Period: Date: Fungi and plants practice Multiple Choice Identify the choice that best completes the statement or answers the question. Indicate your answer choice with an UPPER CASE letter in the

More information

8. Study the cladogram underline the derived characteristics and circle the organisms that developed from them.

8. Study the cladogram underline the derived characteristics and circle the organisms that developed from them. Seed Plants: Gymnosperms and Angiosperms Answer the questions as you go through the power point, there are also paragraphs to read where you will need to hi-lite or underline as you read. 1. What are the

More information

Life Cycle Patterns. 1. First some basics: Fertilization, Mitosis and Meiosis

Life Cycle Patterns. 1. First some basics: Fertilization, Mitosis and Meiosis Life Cycle Patterns We ll take a look at the basics of life cycles. We will NOT focus on gametic life cycles as these are primarily for animals (Bio 1B with John!). We ll look at Fungus (zygotic life cycle),

More information

Biology 172L General Biology Lab II Lab 03: Plant Life Cycles and Adaptations II: Gymnosperms and Angiosperms

Biology 172L General Biology Lab II Lab 03: Plant Life Cycles and Adaptations II: Gymnosperms and Angiosperms Biology 172L General Biology Lab II Lab 03: Plant Life Cycles and Adaptations II: Gymnosperms and Angiosperms Introduction Vascular seed-bearing plants, such as gymnosperms (cone-bearing plants) and angiosperms

More information

Expt. How do flowering plants do it without flagella? The journey to find an egg. What causes pollen grain germination and tube growth?

Expt. How do flowering plants do it without flagella? The journey to find an egg. What causes pollen grain germination and tube growth? 1 Expt. How do flowering plants do it without flagella? The journey to find an egg. What causes pollen grain germination and tube growth? File: F12-07_pollen Modified from E. Moctezuma & others for BSCI

More information

PLANT DIVERSITY. EVOLUTION OF LAND PLANTS KINGDOM: Plantae

PLANT DIVERSITY. EVOLUTION OF LAND PLANTS KINGDOM: Plantae PLANT DIVERSITY 1 EVOLUTION OF LAND PLANTS KINGDOM: Plantae Spores Leaf Ancestral green algae Flagellated sperm for reproduction Plenty of water Nutrients and CO 2 diffuse into tissues Holdfast Flagellated

More information

Plant Form and Function

Plant Form and Function Part X Plant Form and Function Part Opener Title Text to come. Part opener figure 1 title. Figure legend. 733 Part opener figure 2 title. Figure legend. 734 Part X Plant Form and Function 37 Evolutionary

More information

STATION 1: Gymnosperm Survey

STATION 1: Gymnosperm Survey The Seed Plants: Laboratory Gymnosperms & Angiospserms 5 Introduction Gymnosperms and angiosperms are vascular, sporophyte-dominant plants that produce seeds. Although these heterosporous plants still

More information

Club Mosses, Ferns & Horsetails: the Seed-free Vascular Plants

Club Mosses, Ferns & Horsetails: the Seed-free Vascular Plants Club Mosses, Ferns & Horsetails: the Seed-free Vascular Plants Vascular Plants - a quick review Two unrelated groups within cryptogams seed free vascular plants are recognized as phyla: 1. Lycopodiophyta

More information

10B Plant Systems Guided Practice

10B Plant Systems Guided Practice 10B Plant Systems Guided Practice Reproduction Station 1 1. Observe Plant A. Locate the following parts of the flower: stamen, stigma, style, ovary. 2. Draw and label the parts of a flower (listed above)

More information

Biology 213 Angiosperms. Introduction

Biology 213 Angiosperms. Introduction Biology 213 Angiosperms Introduction The flowering plants, the angiosperms, are the most recent plants to evolve and quickly became the dominant plant life on this planet. They are also the most diverse

More information

Plantae: Bryophytes & Vascular Plants

Plantae: Bryophytes & Vascular Plants EXERCISE 9 Plantae: Bryophytes & Vascular Plants The Kingdom Plantae represents an extremely large group of mostly terrestrial organisms that are photosynthetic. Hence they provide the base of the food

More information

14 DIVERSITY OF PLANTS

14 DIVERSITY OF PLANTS CHAPTER 14 DIVERSITY OF PLANTS 327 14 DIVERSITY OF PLANTS Figure 14.1 Plants dominate the landscape and play an integral role in human societies. (a) Palm trees grow in tropical or subtropical climates;

More information

Unit 10- Plants /Study Guide KEY

Unit 10- Plants /Study Guide KEY Plant Diversity Unit 10- Plants /Study Guide KEY Answer Key SECTION 20.1. ORIGINS OF PLANT LIFE 1. eukaryotic, photosynthetic, same types of chlorophyll, starch as storage product, cellulose in cell walls

More information

Vascular Plants Bryophytes. Seedless Plants

Vascular Plants Bryophytes. Seedless Plants plant reproduction The Plants Vascular Plants Bryophytes Liverworts, Hornworts, Mosses lack roots and specialized tissues grow in moist, shady areas All have sieve cells and tracheids Seedless Plants Ferns

More information

Transport in Plants. Lab Exercise 25. Introduction. Objectives

Transport in Plants. Lab Exercise 25. Introduction. Objectives Lab Exercise Transport in Plants Objectives - Become familiar and be able to recognize the different types of cells found in the plant s vascular tissue. - Be able to describe root pressure and transpiration

More information

23-5 Transport in Plants Slide 1 of 30

23-5 Transport in Plants Slide 1 of 30 1 of 30 Xylem tissue forms a continuous set of tubes that runs from the roots through stems and out into the spongy mesophyll of leaves. Active transport and root pressure cause water to move from soil

More information

Unit 1: What is Biology? Unit 2: Ecology Unit 3: The Life of a Cell Unit 4: Genetics Unit 5: Change Through Time Unit 6: Viruses, Bacteria, Protists,

Unit 1: What is Biology? Unit 2: Ecology Unit 3: The Life of a Cell Unit 4: Genetics Unit 5: Change Through Time Unit 6: Viruses, Bacteria, Protists, Unit 1: What is Biology? Unit 2: Ecology Unit 3: The Life of a Cell Unit 4: Genetics Unit 5: Change Through Time Unit 6: Viruses, Bacteria, Protists, and Fungi Unit 7: Plants Unit 8: Invertebrates Unit

More information

Chapter 18. Land environment: plant and fungi 生醫系劉秉慧老師分機 /03

Chapter 18. Land environment: plant and fungi 生醫系劉秉慧老師分機 /03 Chapter 18 Land environment: plant and fungi 生醫系劉秉慧老師分機 11815 2010/03 Alteration of generation - sporophyte and gametophyte - the dominant generation Diversity of plant - nonvascular plant : moss and its

More information

Club Mosses, Ferns & Horsetails: the Seed-free Vascular Plants. Vascular Plants - a quick review. Vascular Plants - a quick review

Club Mosses, Ferns & Horsetails: the Seed-free Vascular Plants. Vascular Plants - a quick review. Vascular Plants - a quick review Club Mosses, Ferns & Horsetails: the Seed-free Vascular Plants Vascular Plants - a quick review Two unrelated groups within cryptogams seed free vascular plants are recognized as phyla: 1. Lycopodiophyta

More information

Plant Classification, Structure, Growth and Hormones

Plant Classification, Structure, Growth and Hormones Biology SAT II Review Sheet Plants Plant Classification, Structure, Growth and Hormones Multicellular autotrophs (organisms that use the energy of inorganic materials to produce organic materials) Utilize

More information

Section 24 1 Reproduction With Cones and Flowers (pages 609 616)

Section 24 1 Reproduction With Cones and Flowers (pages 609 616) Chapter 24 Reproduction of Seed Plants Section 24 1 Reproduction With Cones and Flowers (pages 609 616) This section describes the reproductive structures of gymnosperms and angiosperms. It also explains

More information

Angiosperms: Phylum Anthophyta, the flowering plants

Angiosperms: Phylum Anthophyta, the flowering plants Angiosperms: Phylum Anthophyta, the flowering plants 1. Overview of seed plant evolution Figure 29.7 Land plant evolution. 2. Traits of flowering plants a) Flowers b) Fruits/Seeds c) Monocots vrs. dicots

More information

Pinus Life Cycle. Name

Pinus Life Cycle. Name Name Pinus Life Cycle You have observed some gymnosperm diversity last week; today you will observe the details of the life cycle of Pinus, one of the most common conifers (Coniferophyta). This life history

More information

And the Green Grass Grew All Around and Around, the Green Grass Grew All. Evolution of Plants

And the Green Grass Grew All Around and Around, the Green Grass Grew All. Evolution of Plants And the Green Grass Grew All Around and Around, the Green Grass Grew All Around Evolution of Plants Adapting to Terrestrial Living Plants are complex multicellular organisms that are autotrophs they feed

More information

Lecture 7: Plant Structure and Function. I. Background

Lecture 7: Plant Structure and Function. I. Background Lecture 7: Plant Structure and Function I. Background A. Challenges for terrestrial plants 1. Habitat is divided a. Air is the source of CO2 for photosynthesis i. Sunlight cannot penetrate soil b. Soil

More information

Section 24 1 Reproduction With Cones and Flowers (pages 609 616)

Section 24 1 Reproduction With Cones and Flowers (pages 609 616) Chapter 24 Reproduction of Seed Plants Section 24 1 Reproduction With Cones and Flowers (pages 609 616) Key Concepts What are the reproductive structures of gymnosperms and angiosperms? How does pollination

More information

Microgametophyte Example. What Makes Them Different? Megagametophyte. The Seed

Microgametophyte Example. What Makes Them Different? Megagametophyte. The Seed Wrap-up of cryptogams Introduction to Seed Plants How seeds allowed the full colonization of land by plants Free living gametophyte Gametophytes independent of parent sporophytes May be small & inconspicuous,

More information

Plant Structure, Growth, and Development. Chapter 35

Plant Structure, Growth, and Development. Chapter 35 Plant Structure, Growth, and Development Chapter 35 PLANTS developmental plasticity = ability of plant to alter form to respond to environment Biological heirarchy Cell basic unit of life Tissue group

More information

Plants have organs composed of different tissues, which in turn are composed of different cell types

Plants have organs composed of different tissues, which in turn are composed of different cell types Plant Structure, Growth, & Development Ch. 35 Plants have organs composed of different tissues, which in turn are composed of different cell types A tissue is a group of cells consisting of one or more

More information

Domain: Archaea Group: Methanogens methane releasing Group: Halophiles lives in high salt areas Group: Thermophiles lives in extreme temperatures

Domain: Archaea Group: Methanogens methane releasing Group: Halophiles lives in high salt areas Group: Thermophiles lives in extreme temperatures Domain: Archaea Group: Methanogens methane releasing Group: Halophiles lives in high salt areas Group: Thermophiles lives in extreme temperatures Viruses b Virus Structure Virus Structure Capsid Protein

More information

All About Plants. What are plants?

All About Plants. What are plants? All About Plants What are plants? Plants are living things that are made up of cells. They need air, water, soil, and sunlight to live. They cannot move from place to place, but their leaves move to catch

More information

Chapter 3. Biology of Flowering Plants: Reproduction. Gametophytes, Fruits, Seeds, and Embryos

Chapter 3. Biology of Flowering Plants: Reproduction. Gametophytes, Fruits, Seeds, and Embryos BOT 3015L (Sherdan/Outlaw/Aghoram); Page 1 of 13 Chapter 3 Biology of Flowering Plants: Reproduction Gametophytes, Fruits, Seeds, and Embryos Objectives Angiosperms. Understand alternation of generations.

More information

Exercise 7 Angiosperm Reproduction: Flowers and Fruits Biol 1012, S2008, Lee, Etterson, and Little

Exercise 7 Angiosperm Reproduction: Flowers and Fruits Biol 1012, S2008, Lee, Etterson, and Little Exercise 7 Angiosperm Reproduction: Flowers and Fruits Biol 1012, S2008, Lee, Etterson, and Little Goals Relate structures in a flower to the plant life cycle: alternation of generations. Identify floral,

More information

Diagram of a Typical Plant

Diagram of a Typical Plant Grade: 9 to 12 Length: variable Subjects: life science Topics: weed identification Objectives Exercises in this lesson help students achieve the following objectives: Understand the basic parts of a plant

More information

Germination is the process in which a

Germination is the process in which a The Germination Of a Bean Photographs and article By Lily C. Gerhardt LCG1603@rit.edu Germination is the process in which a seed, spore, or fungi sprouts, or begins growth. Seed germination can occur after

More information

Mitosis and Meiosis. Part I Mitosis

Mitosis and Meiosis. Part I Mitosis Mitosis and Meiosis Name Date Part I Mitosis It was discovered in 1858, by Rudolf Virchow, that new cells can only arise from previously existing cells. This is done in two ways: mitosis and meiosis. Body

More information

Plant Reproduction. 2. Evolutionarily, floral parts are modified A. stems B. leaves C. roots D. stolons E. suberins

Plant Reproduction. 2. Evolutionarily, floral parts are modified A. stems B. leaves C. roots D. stolons E. suberins Plant Reproduction 1. Angiosperms use temporary reproductive structures that are not present in any other group of plants. These structures are called A. cones B. carpels C. receptacles D. flowers E. seeds

More information

Angiosperms: Phylum Anthophyta, the flowering plants

Angiosperms: Phylum Anthophyta, the flowering plants Angiosperms: Phylum Anthophyta, the flowering plants 1. Overview of seed plant evolution Figure 29.7 Land plant evolution. 2. Traits of flowering plants a) Flowers b) Monocots vrs. Dicots 3. Pollination

More information

FIFTH GRADE PLANT LIFE

FIFTH GRADE PLANT LIFE FIFTH GRADE PLANT LIFE 2 weeks LESSON PLANS AND ACTIVITIES LIFE CYCLE OVERVIEW OF FIFTH GRADE ORGANISMS WEEK 1. PRE: Identifying animal and plant cell parts. LAB: Exploring the different organelles of

More information

1. Why is mitosis alone insufficient for the life cycle of sexually reproducing eukaryotes?

1. Why is mitosis alone insufficient for the life cycle of sexually reproducing eukaryotes? Chapter 13: Meiosis and Sexual Life Cycles 1. Why is mitosis alone insufficient for the life cycle of sexually reproducing eukaryotes? 2. Define: gamete zygote meiosis homologous chromosomes diploid haploid

More information

STRUCTURAL ORGANIZATION OF VASCULAR PLANTS

STRUCTURAL ORGANIZATION OF VASCULAR PLANTS STRUCTURAL ORGANIZATION OF VASCULAR PLANTS STRUCTURAL ORGANIZATION OF VASCULAR PLANTS The vascular plant body plan Root system Shoot system Stems Leaves Flowers 2 PLANT TISSUES Tissue = collection of similar

More information

AP Biology Lab #3: Mitosis Date Period

AP Biology Lab #3: Mitosis Date Period AP Biology Lab #3: Mitosis Name Date Period Introduction and Overview All new cells come from preexisting cells. New cells are formed by the process of cell division which involves both replication of

More information

BIOL100 Laboratory Assignment 4: Mitosis and Meiosis. Name:

BIOL100 Laboratory Assignment 4: Mitosis and Meiosis. Name: BIOL100 Laboratory Assignment 4: Mitosis and Meiosis Name: Laboratory Objectives After completing this lab topic, you should be able to: 1. Describe the activities of chromosomes and microtubules in the

More information

Plant Structure and Function Notes

Plant Structure and Function Notes For plants, when they made the transition from water to land, they had to make adaptations for obtaining water and prevent loss by desiccation (drying out) -water also needed for fertilization of eggs

More information

2.3: Eukaryotic Evolution and Diversity pg. 67. For about 1.5 billion years Prokaryotes were on the only living organism on Earth.

2.3: Eukaryotic Evolution and Diversity pg. 67. For about 1.5 billion years Prokaryotes were on the only living organism on Earth. 2.3: Eukaryotic Evolution and Diversity pg. 67 For about 1.5 billion years Prokaryotes were on the only living organism on Earth. 3.5 to 2 billion years ago Prokaryotes thrive in many different environments.

More information

UNIT 7: ANGIOSPERMS 2 (Embryogenesis, Seeds. and Fruits)

UNIT 7: ANGIOSPERMS 2 (Embryogenesis, Seeds. and Fruits) 55 UNIT 7: ANGIOSPERMS 2 (Embryogenesis, Seeds. and Fruits) Textbook Chapter 19 OBJECTIVES By the end of this unit, you should understand the development of the gametophyte generation of the flowering

More information

Dichotomous Keys. KEY A: Key to the DOMAINS of LIVING THINGS. KEY B: KEY to the KINGDOMS in the DOMAIN EUKARYA

Dichotomous Keys. KEY A: Key to the DOMAINS of LIVING THINGS. KEY B: KEY to the KINGDOMS in the DOMAIN EUKARYA 1 Dichotomous Keys Dichotomous keys are used to assist in the identification and classification of specimens of living things. To use a key, start at the top. At each decision point within a key, there

More information

Mitosis and Meiosis BRING YOUR TEXT TO LAB!

Mitosis and Meiosis BRING YOUR TEXT TO LAB! Mitosis and Meiosis BRING YOUR TEXT TO LAB! Objectives: 1. To begin to understand the mechanics of cellular Reproduction/Life Cycles and how the process underlies inheritance. 2. To simulate the movement

More information

Angiosperms or Flowering Plants the phylum Magnoliophyta. Angiosperms - Flowering Plants. Land Plant Evolution: Algae to Angiosperms. Fungi?

Angiosperms or Flowering Plants the phylum Magnoliophyta. Angiosperms - Flowering Plants. Land Plant Evolution: Algae to Angiosperms. Fungi? Angiosperms or Flowering Plants the phylum Magnoliophyta The Importance of Plant Collections Land Plant Evolution: Algae to Angiosperms The greatest adaptive radiation... is the largest radiation of plants

More information

WHAT ARE THE DIFFERENCES BETWEEN VASCULAR AND NON- VASCULAR PLANTS?

WHAT ARE THE DIFFERENCES BETWEEN VASCULAR AND NON- VASCULAR PLANTS? WHAT ARE THE DIFFERENCES BETWEEN VASCULAR AND NON- VASCULAR PLANTS? Let s take a closer look. What makes them different on the outside and inside? Learning Intentions To understand how vascular plant cells

More information

LAB EXERCISE: Mitosis and Meiosis

LAB EXERCISE: Mitosis and Meiosis LAB EXERCISE: Mitosis and Meiosis Laboratory Objectives After completing this lab topic, you should be able to: 1. Describe the activities of chromosomes and microtubules in the cell cycle, including all

More information

The Huntington Library, Art Collections, and Botanical Gardens

The Huntington Library, Art Collections, and Botanical Gardens The Huntington Library, Art Collections, and Botanical Gardens Rooting for Mitosis Overview Students will fix, stain, and make slides of onion root tips. These slides will be examined for the presence

More information

Angiosperm Reproduction: Flowers, Fruits, and Seeds Overview Objectives bold Part I Floral Anatomy . calyx sepals corolla, petals, stamens, filament

Angiosperm Reproduction: Flowers, Fruits, and Seeds Overview Objectives bold Part I Floral Anatomy . calyx sepals corolla, petals, stamens, filament Angiosperm Reproduction: Flowers, Fruits, and Seeds Overview In this lab you will observe assorted flowers, fruits, and seeds to better understand the unique adaptations of and the life cycle of angiosperms.

More information

IGCSE and GCSE Biology. Answers to questions. Section 2. Flowering Plants. Chapters 6-9. Chapter 6 Plant structure and function

IGCSE and GCSE Biology. Answers to questions. Section 2. Flowering Plants. Chapters 6-9. Chapter 6 Plant structure and function 1 IGCSE and GCSE Biology. Answers to questions Section 2. Flowering Plants. Chapters 6-9 Chapter 6 Plant structure and function Page 54 1. a Epidermis. Helps maintain shape, reduces evaporation, resists

More information

Name Class Date WHAT I KNOW. many different body forms and ways of living. and reproduce in a similar way to bacteria.

Name Class Date WHAT I KNOW. many different body forms and ways of living. and reproduce in a similar way to bacteria. Protists and Fungi Interdependence in Nature Q: How do protists and fungi affect the homeostasis of other organisms and ecosystems? 21.1 Why are protists difficult to classify? WHAT I KNOW SAMPLE ANSWER:

More information

nucleus cytoplasm membrane wall A cell is the smallest unit that makes up living and nonliving things.

nucleus cytoplasm membrane wall A cell is the smallest unit that makes up living and nonliving things. 1 In nature there are living things and nonliving things. Living things depend on three basic life processes: nutrition, sensitivity and reproduction. Living things are made up of cells. 1. Match the two

More information

Meiosis is a special form of cell division.

Meiosis is a special form of cell division. Page 1 of 6 KEY CONCEPT Meiosis is a special form of cell division. BEFORE, you learned Mitosis produces two genetically identical cells In sexual reproduction, offspring inherit traits from both parents

More information

LAB 8 EUKARYOTIC CELL DIVISION: MITOSIS AND MEIOSIS

LAB 8 EUKARYOTIC CELL DIVISION: MITOSIS AND MEIOSIS LAB 8 EUKARYOTIC CELL DIVISION: MITOSIS AND MEIOSIS Los Angeles Mission College Biology 3 Name: Date: INTRODUCTION BINARY FISSION: Prokaryotic cells (bacteria) reproduce asexually by binary fission. Bacterial

More information

Lab Exercise 7: Leaves (also see Atlas pp )

Lab Exercise 7: Leaves (also see Atlas pp ) Lab Exercise 7: Leaves (also see Atlas pp. 141-150) In most green plants, leaves are the primary photosynthetic organs. They are well adapted for efficient light absorption, carbon fixation, and conduction

More information

Lab 6. Cellular Reproduction: Mitosis and Meiosis

Lab 6. Cellular Reproduction: Mitosis and Meiosis Lab 6. Cellular Reproduction: Mitosis and Meiosis Cell Division - Mitosis Sexually-reproducing, multicellular organisms begin life as a single cell, the fertilized egg. This cell, the zygote, through the

More information

Chapter 35: Plant Structure, Growth & Development

Chapter 35: Plant Structure, Growth & Development Chapter 35: Plant Structure, Growth & Development 1. Vascular Plant Structure 2. Vascular Plant Growth 3. Vascular Plant Development 1. Vascular Plant Structure Roots & Shoots Reproductive shoot (flower)

More information

COWLEY COLLEGE & Area Vocational Technical School

COWLEY COLLEGE & Area Vocational Technical School COWLEY COLLEGE & Area Vocational Technical School COURSE PROCEDURE FOR GENERAL BIOLOGY II BIO4135 5 Credit Hours Student Level: This course is open to students on the college level in either the freshman

More information

Science 10-Biology Activity 14 Worksheet on Sexual Reproduction

Science 10-Biology Activity 14 Worksheet on Sexual Reproduction Science 10-Biology Activity 14 Worksheet on Sexual Reproduction 10 Name Due Date Show Me NOTE: This worksheet is based on material from pages 367-372 in Science Probe. 1. Sexual reproduction requires parents,

More information

2. Fill in the blank. The of a cell is like a leader, directing and telling the different parts of the cell what to do.

2. Fill in the blank. The of a cell is like a leader, directing and telling the different parts of the cell what to do. 1. Plant and animal cells have some similarities as well as differences. What is one thing that plant and animal cells have in common? A. cell wall B. chlorophyll C. nucleus D. chloroplasts 2. Fill in

More information

Mitosis & Meiosis Web Quest

Mitosis & Meiosis Web Quest Part 1 Mitosis Interactive Mitosis Tutorial Go to http://www.sci.sdsu.edu/multimedia/mitosis/ 1. What is mitosis? 2. Cells that are non-reproductive undergo mitosis. Which are the reproductive cells? _

More information

Lab 8 Mitosis and Meiosis

Lab 8 Mitosis and Meiosis Lab 8 Mitosis and Meiosis Introduction: All new cells come from previously existing cells. New cells are formed by karyokinesis (the process in cell division that involves replication of the cell s nucleus)

More information

Transport in plants. Unit 1

Transport in plants. Unit 1 Unit 1 Transport in plants A knowledge of how plants take in and transport substances is vitally important to agriculture. Using this knowledge, scientists are able to develop more effective ways of applying

More information

Page 1. 1. The production of monoploid cells by spermatogenesis occurs in (1) zygotes (3) ovaries (2) testes (4) meristems

Page 1. 1. The production of monoploid cells by spermatogenesis occurs in (1) zygotes (3) ovaries (2) testes (4) meristems 1. The production of monoploid cells by spermatogenesis occurs in (1) zygotes (3) ovaries (2) testes (4) meristems Base your answers to questions 2 and 3 on the diagram below of the female reproductive

More information

Unit 9.2: The Evolution of Multicellular Life

Unit 9.2: The Evolution of Multicellular Life Unit 9.2: The Evolution of Multicellular Life Lesson Objectives Describe important events of the late Precambrian. Give an overview of evolution during the Paleozoic Era. Explain why the Mesozoic Era is

More information

Chapter 13: Meiosis and Sexual Life Cycles

Chapter 13: Meiosis and Sexual Life Cycles Name Period Chapter 13: Meiosis and Sexual Life Cycles Concept 13.1 Offspring acquire genes from parents by inheriting chromosomes 1. Let s begin with a review of several terms that you may already know.

More information

MONDAY MORNING SCIENCE BLAST CD Beans - Plant Growth - Life Science

MONDAY MORNING SCIENCE BLAST CD Beans - Plant Growth - Life Science MONDAY MORNING SCIENCE BLAST CD Beans - Plant Growth - Life Science What we call a plant, is any member of the kingdom Plantae. Plants are multicellular organisms which usually produce their own food from

More information

Living things: Cells Living things:

Living things: Cells Living things: unit 1 The cell is the smallest unit capable of living an independent existence. Most cells contain a nucleus which controls the way they work; the only cells in the human body with no nuclei are the red

More information

The Flower - what is it?! Floral structure will be examined in lab this Mon/Tues save space in your notes!

The Flower - what is it?! Floral structure will be examined in lab this Mon/Tues save space in your notes! The Flower - what is it?! Floral structure will be examined in lab this Mon/Tues save space in your notes! Magnoliophyta - Flowering Plants! Introduction to Angiosperms "angio-" = vessel; so "angiosperm"

More information

Mitosis in Onion Root Tip Cells

Mitosis in Onion Root Tip Cells Mitosis in Onion Root Tip Cells A quick overview of cell division The genetic information of plants, animals and other eukaryotic organisms resides in several (or many) individual DNA molecules, or chromosomes.

More information

Meiosis and Sexual Life Cycles

Meiosis and Sexual Life Cycles Meiosis and Sexual Life Cycles Chapter 13 1 Ojectives Distinguish between the following terms: somatic cell and gamete; autosome and sex chromosomes; haploid and diploid. List the phases of meiosis I and

More information

Bio Factsheet January 2001 Number 82

Bio Factsheet January 2001 Number 82 January 2001 Number 82 Transport in Flowering Plants This Factsheet covers the relevant AS syllabus content of the major examination boards. By studying this Factsheet candidates will gain a knowledge

More information

Get It Right. Answers. Chapter 1: The Science of Life. A biologist studies all living things.

Get It Right. Answers. Chapter 1: The Science of Life. A biologist studies all living things. Discover Biology 'N' Level Science Chapter 1 Chapter 1: The Science of Life A biologist studies all living things. In order to carry out the scientific method, we need to ask questions. Discover Biology

More information

Double Fertilization and Post - Fertilization Events: Measuring

Double Fertilization and Post - Fertilization Events: Measuring WFP062298 Double Fertilization and Post - Fertilization Events: Measuring Concepts In plants fertilization is the event in sexual reproduction which follows pollination. In higher plants, two sperm are

More information

Lesson 11: Reproduce - Part 2

Lesson 11: Reproduce - Part 2 Lesson 11: Reproduce - Part 2 Slide 1: Introduction Slide 2: Human chromosomes Fascinating Education Script Fascinating Biology Lessons Every human cell has 46 chromosomes, 23 from the father and 23 matching

More information

Human Reproduction Practice Problems #1 Use your current knowledge and critical reasoning skills to choose the best answer

Human Reproduction Practice Problems #1 Use your current knowledge and critical reasoning skills to choose the best answer Human Reproduction Practice Problems #1 Use your current knowledge and critical reasoning skills to choose the best answer Use the diagram below and your knowledge of biology to answer questions 1 through

More information

28 Exploring Redi s Experiment

28 Exploring Redi s Experiment 28 Exploring Redi s Experiment Prentice-Hall, Inc. One jar was left uncovered. The second jar was covered. SCIENCE EXPLORER Focus on Life Science Maggots appeared on the meat in the open jar. Redi concluded

More information

CELERY LAB - Structure and Function of a Plant

CELERY LAB - Structure and Function of a Plant CELERY LAB - Structure and Function of a Plant READ ALL INSTRUCTIONS BEFORE BEGINNING! YOU MAY WORK WITH A PARTNER ON THIS ACTIVITY, BUT YOU MUST COMPLETE YOUR OWN LAB SHEET! Plants are incredible organisms!

More information

Cellular Reproduction In Eukaryotic Cells

Cellular Reproduction In Eukaryotic Cells Cellular Reproduction In Eukaryotic Cells OBJECTIVE: By the end of the exercise you should be able to: 1. Describe the events associated with the cell cycle. 2. Describe the events associated with mitosis.

More information

Chapter 38: Angiosperm Reproduction and Biotechnology

Chapter 38: Angiosperm Reproduction and Biotechnology Name Period Concept 38.1 Flowers, double fertilization, and fruits are unique features of the angiosperm life cycle This may be a good time for you to go back to Chapter 29 and review alternation of generation

More information

Cell Division Mitosis and Meiosis

Cell Division Mitosis and Meiosis Cell Division Mitosis and Meiosis students will describe the processes of mitosis and meiosis o define and explain the significance of chromosome number in somatic and sex cells o explain the events of

More information

Question Bank Five Kingdom Classification

Question Bank Five Kingdom Classification Question Bank Five Kingdom Classification 1. Who proposed Five Kingdom Classification? Give the bases of classification. Ans. Whittaker in 1969 proposed five kingdom classification based on :- (i) Cell

More information