# Iterative Methods for Optimization

Save this PDF as:

Size: px
Start display at page:

## Transcription

1 Iterative Methods for Optimization C.T. Kelley North Carolina State University Raleigh, North Carolina Society for Industrial and Applied Mathematics Philadelphia

2 Contents Preface xiii How to Get the Software xv I Optimization of Smooth Functions 1 1 Basic Concepts The Problem Notation Necessary Conditions Sufficient Conditions Quadratic Objective Functions Positive Definite Hessian Indefinite Hessian Examples Discrete Optimal Control Parameter Identification Convex Quadratics Exercises on Basic Concepts Local Convergence of Newton s Method Types of Convergence The Standard Assumptions Newton s Method Errors in Functions, Gradients, and Hessians Termination of the Iteration Nonlinear Least Squares Gauss Newton Iteration Overdetermined Problems Underdetermined Problems Inexact Newton Methods Convergence Rates Implementation of Newton CG Examples Parameter Identification Discrete Control Problem Exercises on Local Convergence ix

3 x CONTENTS 3 Global Convergence The Method of Steepest Descent Line Search Methods and the Armijo Rule Stepsize Control with Polynomial Models Slow Convergence of Steepest Descent Damped Gauss Newton Iteration Nonlinear Conjugate Gradient Methods Trust Region Methods Changing the Trust Region and the Step Global Convergence of Trust Region Algorithms A Unidirectional Trust Region Algorithm The Exact Solution of the Trust Region Problem The Levenberg Marquardt Parameter Superlinear Convergence: The Dogleg A Trust Region Method for Newton CG Examples Parameter Identification Discrete Control Problem Exercises on Global Convergence The BFGS Method Analysis Local Theory Global Theory Implementation Storage A BFGS Armijo Algorithm Other Quasi-Newton Methods Examples Parameter ID Problem Discrete Control Problem Exercises on BFGS Simple Bound Constraints Problem Statement Necessary Conditions for Optimality Sufficient Conditions The Gradient Projection Algorithm Termination of the Iteration Convergence Analysis Identification of the Active Set A Proof of Theorem Superlinear Convergence The Scaled Gradient Projection Algorithm The Projected Newton Method A Projected BFGS Armijo Algorithm Other Approaches Infinite-Dimensional Problems Examples Parameter ID Problem Discrete Control Problem

4 CONTENTS xi 5.8 Exercises on Bound Constrained Optimization II Optimization of Noisy Functions Basic Concepts and Goals Problem Statement The Simplex Gradient Forward Difference Simplex Gradient Centered Difference Simplex Gradient Examples Weber s Problem Perturbed Convex Quadratics Lennard Jones Problem Exercises on Basic Concepts Implicit Filtering Description and Analysis of Implicit Filtering Quasi-Newton Methods and Implicit Filtering Implementation Considerations Implicit Filtering for Bound Constrained Problems Restarting and Minima at All Scales Examples Weber s Problem Parameter ID Convex Quadratics Exercises on Implicit Filtering Direct Search Algorithms The Nelder Mead Algorithm Description and Implementation Sufficient Decrease and the Simplex Gradient McKinnon s Examples Restarting the Nelder Mead Algorithm Multidirectional Search Description and Implementation Convergence and the Simplex Gradient The Hooke Jeeves Algorithm Description and Implementation Convergence and the Simplex Gradient Other Approaches Surrogate Models The DIRECT Algorithm Examples Weber s Problem Parameter ID Convex Quadratics Exercises on Search Algorithms

5 xii CONTENTS Bibliography 161 Index 177

6 Preface This book on unconstrained and bound constrained optimization can be used as a tutorial for self-study or a reference by those who solve such problems in their work. It can also serve as a textbook in an introductory optimization course. As in my earlier book [154] on linear and nonlinear equations, we treat a small number of methods in depth, giving a less detailed description of only a few (for example, the nonlinear conjugate gradient method and the DIRECT algorithm). We aim for clarity and brevity rather than complete generality and confine our scope to algorithms that are easy to implement (by the reader!) and understand. One consequence of this approach is that the algorithms in this book are often special cases of more general ones in the literature. For example, in Chapter 3, we provide details only for trust region globalizations of Newton s method for unconstrained problems and line search globalizations of the BFGS quasi-newton method for unconstrained and bound constrained problems. We refer the reader to the literature for more general results. Our intention is that both our algorithms and proofs, being special cases, are more concise and simple than others in the literature and illustrate the central issues more clearly than a fully general formulation. Part II of this book covers some algorithms for noisy or global optimization or both. There are many interesting algorithms in this class, and this book is limited to those deterministic algorithms that can be implemented in a more-or-less straightforward way. We do not, for example, cover simulated annealing, genetic algorithms, response surface methods, or random search procedures. The reader of this book should be familiar with the material in an elementary graduate level course in numerical analysis, in particular direct and iterative methods for the solution of linear equations and linear least squares problems. The material in texts such as [127] and [264] is sufficient. A suite of MATLAB codes has been written to accompany this book. These codes were used to generate the computational examples in the book, but the algorithms do not depend on the MATLAB environment and the reader can easily implement the algorithms in another language, either directly from the algorithmic descriptions or by translating the MATLAB code. The MATLAB environment is an excellent choice for experimentation, doing the exercises, and small-to-medium-scale production work. Large-scale work on high-performance computers is best done in another language. The reader should also be aware that there is a large amount of high-quality software available for optimization. The book [195], for example, provides pointers to several useful packages. Parts of this book are based upon work supported by the National Science Foundation over several years, most recently under National Science Foundation grants DMS , DMS , and DMS , and by allocations of computing resources from the North Carolina Supercomputing Center. Any opinions, findings, and conclusions or recommendations expressed MATLAB is a registered trademark of The MathWorks, Inc., 24 Prime Park Way, Natick, MA 01760, USA, (508) , xiii

7 xiv PREFACE in this material are those of the author and do not necessarily reflect the views of the National Science Foundation or of the North Carolina Supercomputing Center. The list of students and colleagues who have helped me with this project, directly, through collaborations/discussions on issues that I treat in the manuscript, by providing pointers to the literature, or as a source of inspiration, is long. I am particularly indebted to Tom Banks, Jim Banoczi, John Betts, David Bortz, Steve Campbell, Tony Choi, Andy Conn, Douglas Cooper, Joe David, John Dennis, Owen Eslinger, Jörg Gablonsky, Paul Gilmore, Matthias Heinkenschloß, Laura Helfrich, Lea Jenkins, Vickie Kearn, Carl and Betty Kelley, Debbie Lockhart, Casey Miller, Jorge Moré, Mary Rose Muccie, John Nelder, Chung-Wei Ng, Deborah Poulson, Ekkehard Sachs, Dave Shanno, Joseph Skudlarek, Dan Sorensen, John Strikwerda, Mike Tocci, Jon Tolle, Virginia Torczon, Floria Tosca, Hien Tran, Margaret Wright, Steve Wright, and Kevin Yoemans. C. T. Kelley Raleigh, North Carolina

8 How to Get the Software All computations reported in this book were done in MATLAB (version 5.2 on various SUN SPARCstations and on an Apple Macintosh Powerbook 2400). The suite of MATLAB codes that we used for the examples is available by anonymous ftp from ftp.math.ncsu.edu in the directory FTP/kelley/optimization/matlab or from SIAM s World Wide Web server at One can obtain MATLAB from The MathWorks, Inc. 3 Apple Hill Drive Natick, MA (508) Fax: (508) WWW: xv

9 Part I Optimization of Smooth Functions

10

11 Chapter 1 Basic Concepts 1.1 The Problem The unconstrained optimization problem is to minimize a real-valued function f of N variables. By this we mean to find a local minimizer, that is, a point x such that (1.1) f(x ) f(x) for all x near x. It is standard to express this problem as (1.2) min f(x) x or to say that we seek to solve the problem min f. The understanding is that (1.1) means that we seek a local minimizer. We will refer to f as the objective function and to f(x ) as the minimum or minimum value. If a local minimizer x exists, we say a minimum is attained at x. We say that problem (1.2) is unconstrained because we impose no conditions on the independent variables x and assume that f is defined for all x. The local minimization problem is different from (and much easier than) the global minimization problem in which a global minimizer, a point x such that (1.3) f(x ) f(x) for all x, is sought. The constrained optimization problem is to minimize a function f over a set U R N.A local minimizer, therefore, is an x U such that (1.4) f(x ) f(x) for all x U near x. Similar to (1.2) we express this as (1.5) min x U f(x) or say that we seek to solve the problem min U f. A global minimizer is a point x U such that (1.6) f(x ) f(x) for all x U. We consider only the simplest constrained problems in this book (Chapter 5 and 7.4) and refer the reader to [104], [117], [195], and [66] for deeper discussions of constrained optimization and pointers to software. Having posed an optimization problem one can proceed in the classical way and use methods that require smoothness of f. That is the approach we take in this first part of the book. These 3

12 4 ITERATIVE METHODS FOR OPTIMIZATION methods can fail if the objective function has discontinuities or irregularities. Such nonsmooth effects are common and can be caused, for example, by truncation error in internal calculations for f, noise in internal probabilistic modeling in f, table lookup within f, or use of experimental data in f. We address a class of methods for dealing with such problems in Part II. 1.2 Notation In this book, following the convention in [154], vectors are to be understood as column vectors. The vector x will denote a solution, x a potential solution, and {x k } k 0 the sequence of iterates. We will refer to x 0 as the initial iterate. x 0 is sometimes timidly called the initial guess. We will denote the ith component of a vector x by (x) i (note the parentheses) and the ith component of x k by (x k ) i. We will rarely need to refer to individual components of vectors. We will let f/ x i denote the partial derivative of f with respect to (x) i. As is standard [154], e = x x will denote the error, e n = x n x the error in the nth iterate, and B(r) the ball of radius r about x B(r) ={x e <r}. For x R N we let f(x) R N denote the gradient of f, when it exists. We let 2 f denote the Hessian of f, f(x) =( f/ x 1,..., f/ x N ), ( 2 f) ij = 2 f/ x i x j, when it exists. Note that 2 f is the Jacobian of f. However, 2 f has more structure than a Jacobian for a general nonlinear function. If f is twice continuously differentiable, then the Hessian is symmetric (( 2 f) ij =( 2 f) ji ) by equality of mixed partial derivatives [229]. In this book we will consistently use the Euclidean norm x = N (x) 2 i. When we refer to a matrix norm we will mean the matrix norm induced by the Euclidean norm i=1 A = max x 0 Ax x. In optimization definiteness or semidefiniteness of the Hessian plays an important role in the necessary and sufficient conditions for optimality that we discuss in 1.3 and 1.4 and in our choice of algorithms throughout this book. Definition An N N matrix A is positive semidefinite if x T Ax 0 for all x R N. A is positive definite if x T Ax > 0 for all x R N,x 0.IfA has both positive and negative eigenvalues, we say A is indefinite. IfA is symmetric and positive definite, we will say A is spd. We will use two forms of the fundamental theorem of calculus, one for the function gradient pair and one for the gradient Hessian. Theorem Let f be twice continuously differentiable in a neighborhood of a line segment between points x,x= x + e R N ; then f(x) =f(x )+ 1 0 f(x + te) T edt

13 BASIC CONCEPTS 5 and f(x) = f(x ) f(x + te)e dt. A direct consequence (see Exercise 1.7.1) of Theorem is the following form of Taylor s theorem we will use throughout this book. Theorem Let f be twice continuously differentiable in a neighborhood of a point x R N. Then for e R N and e sufficiently small (1.7) f(x + e) =f(x )+ f(x ) T e + e T 2 f(x )e/2+o( e 2 ). 1.3 Necessary Conditions Let f be twice continuously differentiable. We will use Taylor s theorem in a simple way to show that the gradient of f vanishes at a local minimizer and the Hessian is positive semidefinite. These are the necessary conditions for optimality. The necessary conditions relate (1.1) to a nonlinear equation and allow one to use fast algorithms for nonlinear equations [84], [154], [211] to compute minimizers. Therefore, the necessary conditions for optimality will be used in a critical way in the discussion of local convergence in Chapter 2. A critical first step in the design of an algorithm for a new optimization problem is the formulation of necessary conditions. Of course, the gradient vanishes at a maximum, too, and the utility of the nonlinear equations formulation is restricted to a neighborhood of a minimizer. Theorem Let f be twice continuously differentiable and let x be a local minimizer of f. Then f(x )=0. Moreover 2 f(x ) is positive semidefinite. Proof. Let u R N be given. Taylor s theorem states that for all real t sufficiently small f(x + tu) =f(x )+t f(x ) T u + t2 2 ut 2 f(x )u + o(t 2 ). Since x is a local minimizer we must have for t sufficiently small 0 f(x + tu) f(x ) and hence (1.8) f(x ) T u + t 2 ut 2 f(x )u + o(t) 0 for all t sufficiently small and all u R N.Soifwesett =0and u = f(x ) we obtain f(x ) 2 =0. Setting f(x )=0, dividing by t, and setting t =0in (1.8), we obtain 1 2 ut 2 f(x )u 0 for all u R N. This completes the proof. The condition that f(x )=0is called the first-order necessary condition and a point satisfying that condition is called a stationary point or a critical point.

14 6 ITERATIVE METHODS FOR OPTIMIZATION 1.4 Sufficient Conditions A stationary point need not be a minimizer. For example, the function φ(t) = t 4 satisfies the necessary conditions at 0, which is a maximizer of φ. To obtain a minimizer we must require that the second derivative be nonnegative. This alone is not sufficient (think of φ(t) =t 3 ) and only if the second derivative is strictly positive can we be completely certain. These are the sufficient conditions for optimality. Theorem Let f be twice continuously differentiable in a neighborhood of x. Assume that f(x )=0and that 2 f(x ) is positive definite. Then x is a local minimizer of f. Proof. Let 0 u R N. For sufficiently small t we have f(x + tu) = f(x )+t f(x ) T u + t2 2 ut 2 f(x )u + o(t 2 ) = f(x )+ t2 2 ut 2 f(x )u + o(t 2 ). Hence, if λ>0 is the smallest eigenvalue of 2 f(x ) we have f(x + tu) f(x ) λ 2 tu 2 + o(t 2 ) > 0 for t sufficiently small. Hence x is a local minimizer. 1.5 Quadratic Objective Functions The simplest optimization problems are those with quadratic objective functions. Here (1.9) f(x) = x T b xt Hx. We may, without loss of generality, assume that H is symmetric because (1.10) x T Hx = x T ( H + H T 2 ) x. Quadratic functions form the basis for most of the algorithms in Part I, which approximate an objective function f by a quadratic model and minimize that model. In this section we discuss some elementary issues in quadratic optimization. Clearly, for all x. The symmetry of H implies that 2 f(x) =H f(x) = b + Hx. Definition The quadratic function f in (1.9) is convex if H is positive semidefinite.

15 BASIC CONCEPTS Positive Definite Hessian The necessary conditions for optimality imply that if a quadratic function f has a local minimum x, then H is positive semidefinite and (1.11) Hx = b. In particular, if H is spd (and hence nonsingular), the unique global minimizer is the solution of the linear system (1.11). If H is a dense matrix and N is not too large, it is reasonable to solve (1.11) by computing the Cholesky factorization [249], [127] of H H = LL T, where L is a nonsingular lower triangular matrix with positive diagonal, and then solving (1.11) by two triangular solves. If H is indefinite the Cholesky factorization will not exist and the standard implementation [127], [249], [264] will fail because the computation of the diagonal of L will require a real square root of a negative number or a division by zero. If N is very large, H is sparse, or a matrix representation of H is not available, a more efficient approach is the conjugate gradient iteration [154], [141]. This iteration requires only matrix vector products, a feature which we will use in a direct way in 2.5 and Our formulation of the algorithm uses x as both an input and output variable. On input x contains x 0, the initial iterate, and on output the approximate solution. We terminate the iteration if the relative residual is sufficiently small, i.e., or if too many iterations have been taken. Algorithm cg(x, b, H, ɛ, kmax) 1. r = b Hx, ρ 0 = r 2, k =1. 2. Do While ρ k 1 >ɛ b and k < kmax (a) if k =1then p = r else β = ρ k 1 /ρ k 2 and p = r + βp (b) w = Hp (c) α = ρ k 1 /p T w (d) x = x + αp (e) r = r αw (f) ρ k = r 2 (g) k = k +1 b Hx ɛ b Note that if H is not spd, the denominator in α = ρ k 1 /p T w may vanish, resulting in breakdown of the iteration. The conjugate gradient iteration minimizes f over an increasing sequence of nested subspaces of R N [127], [154]. We have that f(x k ) f(x) for all x x 0 + K k,

16 8 ITERATIVE METHODS FOR OPTIMIZATION where K k is the Krylov subspace K k = span(r 0,Hr 0,...,H k 1 r 0 ) for k 1. While in principle the iteration must converge after N iterations and conjugate gradient can be regarded as a direct solver, N is, in practice, far too many iterations for the large problems to which conjugate gradient is applied. As an iterative method, the performance of the conjugate gradient algorithm depends both on b and on the spectrum of H (see [154] and the references cited therein). A general convergence estimate [68], [60], which will suffice for the discussion here, is [ ] k κ(h) 1 (1.12) x k x H 2 x 0 x H. κ(h)+1 In (1.12), the H-norm of a vector is defined by u 2 H = u T Hu for an spd matrix H. κ(h) is the l 2 condition number For spd H κ(h) = H H 1. κ(h) =λ l λ 1 s, where λ l and λ s are the largest and smallest eigenvalues of H. Geometrically, κ(h) is large if the ellipsoidal level surfaces of f are very far from spherical. The conjugate gradient iteration will perform well if κ(h) is near 1 and may perform very poorly if κ(h) is large. The performance can be improved by preconditioning, which transforms (1.11) into one with a coefficient matrix having eigenvalues near 1. Suppose that M is spd and a sufficiently good approximation to H 1 so that κ(m 1/2 HM 1/2 ) is much smaller that κ(h). In that case, (1.12) would indicate that far fewer conjugate gradient iterations might be needed to solve (1.13) M 1/2 HM 1/2 z = M 1/2 b than to solve (1.11). Moreover, the solution x of (1.11) could be recovered from the solution z of (1.13) by (1.14) x = M 1/2 z. In practice, the square root of the preconditioning matrix M need not be computed. The algorithm, using the same conventions that we used for cg, is Algorithm pcg(x, b, H, M, ɛ, kmax) 1. r = b Hx, ρ 0 = r 2, k =1 2. Do While ρ k 1 >ɛ b and k < kmax (a) z = Mr (b) τ k 1 = z T r

17 BASIC CONCEPTS 9 (c) if k =1then β =0and p = z else β = τ k 1 /τ k 2, p = z + βp (d) w = Hp (e) α = τ k 1 /p T w (f) x = x + αp (g) r = r αw (h) ρ k = r T r (i) k = k +1 Note that only products of M with vectors in R N are needed and that a matrix representation of M need not be stored. We refer the reader to [11], [15], [127], and [154] for more discussion of preconditioners and their construction Indefinite Hessian If H is indefinite, the necessary conditions, Theorem 1.3.1, imply that there will be no local minimum. Even so, it will be important to understand some properties of quadratic problems with indefinite Hessians when we design algorithms with initial iterates far from local minimizers and we discuss some of the issues here. If u T Hu < 0, we say that u is a direction of negative curvature. Ifu is a direction of negative curvature, then f(x + tu) will decrease to as t. 1.6 Examples It will be useful to have some example problems to solve as we develop the algorithms. The examples here are included to encourage the reader to experiment with the algorithms and play with the MATLAB codes. The codes for the problems themselves are included with the set of MATLAB codes. The author of this book does not encourage the reader to regard the examples as anything more than examples. In particular, they are not real-world problems, and should not be used as an exhaustive test suite for a code. While there are documented collections of test problems (for example, [10] and [26]), the reader should always evaluate and compare algorithms in the context of his/her own problems. Some of the problems are directly related to applications. When that is the case we will cite some of the relevant literature. Other examples are included because they are small, simple, and illustrate important effects that can be hidden by the complexity of more serious problems Discrete Optimal Control This is a classic example of a problem in which gradient evaluations cost little more than function evaluations. We begin with the continuous optimal control problems and discuss how gradients are computed and then move to the discretizations. We will not dwell on the functional analytic issues surrounding the rigorous definition of gradients of maps on function spaces, but the reader should be aware that control problems require careful attention to this. The most important results can

18 10 ITERATIVE METHODS FOR OPTIMIZATION be found in [151]. The function space setting for the particular control problems of interest in this section can be found in [170], [158], and [159], as can a discussion of more general problems. The infinite-dimensional problem is (1.15) min u f, where (1.16) f(u) = T 0 L(y(t),u(t),t) dt, and we seek an optimal point u L [0,T]. u is called the control variable or simply the control. The function L is given and y, the state variable, satisfies the initial value problem (with ẏ = dy/dt) (1.17) ẏ(t) =φ(y(t),u(t),t),y(0) = y 0. One could view the problem (1.15) (1.17) as a constrained optimization problem or, as we do here, think of the evaluation of f as requiring the solution of (1.17) before the integral on the right side of (1.16) can be evaluated. This means that evaluation of f requires the solution of (1.17), which is called the state equation. f(u), the gradient of f at u with respect to the L 2 inner product, is uniquely determined, if it exists, by (1.18) f(u + w) f(u) T as w 0, uniformly in w. If f(u) exists then T 0 ( f(u))(t)w(t) dt = 0 ( f(u))(t)w(t) dt = o( w ) df (u + ξw) dξ. ξ=0 If L and φ are continuously differentiable, then f(u), as a function of t, isgivenby (1.19) f(u)(t) =p(t)φ u (y(t),u(t),t)+l u (y(t),u(t),t). In (1.19) p, the adjoint variable, satisfies the final-value problem on [0,T] (1.20) ṗ(t) =p(t)φ y (y(t),u(t),t)+l y (y(t),u(t),t),p(t )=0. So computing the gradient requires u and y, hence a solution of the state equation, and p, which requires a solution of (1.20), a final-value problem for the adjoint equation. In the general case, (1.17) is nonlinear, but (1.20) is a linear problem for p, which should be expected to be easier to solve. This is the motivation for our claim that a gradient evaluation costs little more than a function evaluation. The discrete problems of interest here are constructed by solving (1.17) by numerical integration. After doing that, one can derive an adjoint variable and compute gradients using a discrete form of (1.19). However, in [139] the equation for the adjoint variable of the discrete problem is usually not a discretization of (1.20). For the forward Euler method, however, the discretization of the adjoint equation is the adjoint equation for the discrete problem and we use that discretization here for that reason. The fully discrete problem is min u f, where u R N and f(u) = N L((y) j, (u) j,j), j=1

19 BASIC CONCEPTS 11 and the states {x j } are given by the Euler recursion y j+1 = y j + hφ((y) j, (u) j,j) for j =0,...,N 1, where h = T/(N 1) and x 0 is given. Then ( f(u)) j =(p) j φ u ((y) j, (u) j,j)+l u ((y) j, (u) j,j), where (p) N =0and ( ) (p) j 1 =(p) j + h (p) j φ y ((y) j, (u) j,j)+l y ((y) j, (u) j,j) for j = N,..., Parameter Identification This example, taken from [13], will appear throughout the book. The problem is small with N =2. The goal is to identify the damping c and spring constant k of a linear spring by minimizing the difference of a numerical prediction and measured data. The experimental scenario is that the spring-mass system will be set into motion by an initial displacement from equilibrium and measurements of displacements will be taken at equally spaced increments in time. The motion of an unforced harmonic oscillator satisfies the initial value problem (1.21) u + cu + ku =0;u(0) = u 0,u (0)=0, on the interval [0,T]. We let x =(c, k) T be the vector of unknown parameters and, when the dependence on the parameters needs to be explicit, we will write u(t : x) instead of u(t) for the solution of (1.21). If the displacement is sampled at {t j } M j=1, where t j =(j 1)T/(M 1), and the observations for u are {u j } M j=1, then the objective function is (1.22) f(x) = 1 2 M u(t j : x) u j 2. j=1 This is an example of a nonlinear least squares problem. u is differentiable with respect to x when c 2 4k 0. In that case, the gradient of f is M ) u(t j:x) j=1 f(x) =( c (u(t j : x) u j ) (1.23) M u(t j:x). j=1 k (u(t j : x) u j ) We can compute the derivatives of u(t : x) with respect to the parameters by solving the sensitivity equations. Differentiating (1.21) with respect to c and k and setting w 1 = u/ c and w 2 = u/ k we obtain (1.24) w 1 + u + cw 1 + kw 1 =0;w 1 (0) = w 1(0)=0, w 2 + cw 2 + u + kw 2 =0;w 2 (0) = w 2(0)=0. If c is large, the initial value problems (1.21) and (1.24) will be stiff and one should use a good variable step stiff integrator. We refer the reader to [110], [8], [235] for details on this issue. In the numerical examples in this book we used the MATLAB code ode15s from [236]. Stiffness can also arise in the optimal control problem from but does not in the specific examples we use in this book. We caution the reader that when one uses an ODE code the results may only be expected to be accurate to the tolerances input to the code. This limitation on the accuracy must be taken into account, for example, when approximating the Hessian by differences.

20 12 ITERATIVE METHODS FOR OPTIMIZATION Convex Quadratics While convex quadratic problems are, in a sense, the easiest of optimization problems, they present surprising challenges to the sampling algorithms presented in Part II and can illustrate fundamental problems with classical gradient-based methods like the steepest descent algorithm from 3.1. Our examples will all take N =2, b =0, and ( ) λs 0 H =, 0 λ l where 0 <λ s λ l. The function to be minimized is f(x) =x T Hx and the minimizer is x =(0, 0) T. As λ l /λ s becomes large, the level curves of f become elongated. When λ s = λ l =1, min x f is the easiest problem in optimization. 1.7 Exercises on Basic Concepts Prove Theorem Consider the parameter identification problem for x =(c, k, ω, φ) T R 4 associated with the initial value problem u + cu + ku = sin(ωt + φ); u(0)=10,u (0)=0. For what values of x is u differentiable? Derive the sensitivity equations for those values of x for which u is differentiable Solve the system of sensitivity equations from exercise numerically for c =10, k =1, ω = π, and φ =0using the integrator of your choice. What happens if you use a nonstiff integrator? Let N =2, d =(1, 1) T, and let f(x) =x T d + x T x. Compute, by hand, the minimizer using conjugate gradient iteration For the same f as in exercise solve the constrained optimization problem min x U f(x), where U is the circle centered at (0, 0) T of radius 1/3. You can solve this by inspection; no computer and very little mathematics is needed.

### Numerical Analysis Lecture Notes

Numerical Analysis Lecture Notes Peter J. Olver 5. Inner Products and Norms The norm of a vector is a measure of its size. Besides the familiar Euclidean norm based on the dot product, there are a number

### (Quasi-)Newton methods

(Quasi-)Newton methods 1 Introduction 1.1 Newton method Newton method is a method to find the zeros of a differentiable non-linear function g, x such that g(x) = 0, where g : R n R n. Given a starting

### AN INTRODUCTION TO NUMERICAL METHODS AND ANALYSIS

AN INTRODUCTION TO NUMERICAL METHODS AND ANALYSIS Revised Edition James Epperson Mathematical Reviews BICENTENNIAL 0, 1 8 0 7 z ewiley wu 2007 r71 BICENTENNIAL WILEY-INTERSCIENCE A John Wiley & Sons, Inc.,

### Inner Product Spaces

Math 571 Inner Product Spaces 1. Preliminaries An inner product space is a vector space V along with a function, called an inner product which associates each pair of vectors u, v with a scalar u, v, and

### ME128 Computer-Aided Mechanical Design Course Notes Introduction to Design Optimization

ME128 Computer-ided Mechanical Design Course Notes Introduction to Design Optimization 2. OPTIMIZTION Design optimization is rooted as a basic problem for design engineers. It is, of course, a rare situation

### The Steepest Descent Algorithm for Unconstrained Optimization and a Bisection Line-search Method

The Steepest Descent Algorithm for Unconstrained Optimization and a Bisection Line-search Method Robert M. Freund February, 004 004 Massachusetts Institute of Technology. 1 1 The Algorithm The problem

Adaptive Online Gradient Descent Peter L Bartlett Division of Computer Science Department of Statistics UC Berkeley Berkeley, CA 94709 bartlett@csberkeleyedu Elad Hazan IBM Almaden Research Center 650

### Applications to Data Smoothing and Image Processing I

Applications to Data Smoothing and Image Processing I MA 348 Kurt Bryan Signals and Images Let t denote time and consider a signal a(t) on some time interval, say t. We ll assume that the signal a(t) is

### t := maxγ ν subject to ν {0,1,2,...} and f(x c +γ ν d) f(x c )+cγ ν f (x c ;d).

1. Line Search Methods Let f : R n R be given and suppose that x c is our current best estimate of a solution to P min x R nf(x). A standard method for improving the estimate x c is to choose a direction

### Principles of Scientific Computing Nonlinear Equations and Optimization

Principles of Scientific Computing Nonlinear Equations and Optimization David Bindel and Jonathan Goodman last revised March 6, 2006, printed March 6, 2009 1 1 Introduction This chapter discusses two related

### NUMERICALLY EFFICIENT METHODS FOR SOLVING LEAST SQUARES PROBLEMS

NUMERICALLY EFFICIENT METHODS FOR SOLVING LEAST SQUARES PROBLEMS DO Q LEE Abstract. Computing the solution to Least Squares Problems is of great importance in a wide range of fields ranging from numerical

### Linear Least Squares

Linear Least Squares Suppose we are given a set of data points {(x i,f i )}, i = 1,...,n. These could be measurements from an experiment or obtained simply by evaluating a function at some points. One

### Mathematics Course 111: Algebra I Part IV: Vector Spaces

Mathematics Course 111: Algebra I Part IV: Vector Spaces D. R. Wilkins Academic Year 1996-7 9 Vector Spaces A vector space over some field K is an algebraic structure consisting of a set V on which are

### Scientific Computing: An Introductory Survey

Scientific Computing: An Introductory Survey Chapter 3 Linear Least Squares Prof. Michael T. Heath Department of Computer Science University of Illinois at Urbana-Champaign Copyright c 2002. Reproduction

### Continued Fractions and the Euclidean Algorithm

Continued Fractions and the Euclidean Algorithm Lecture notes prepared for MATH 326, Spring 997 Department of Mathematics and Statistics University at Albany William F Hammond Table of Contents Introduction

### Section 1.1. Introduction to R n

The Calculus of Functions of Several Variables Section. Introduction to R n Calculus is the study of functional relationships and how related quantities change with each other. In your first exposure to

### Matrix Norms. Tom Lyche. September 28, Centre of Mathematics for Applications, Department of Informatics, University of Oslo

Matrix Norms Tom Lyche Centre of Mathematics for Applications, Department of Informatics, University of Oslo September 28, 2009 Matrix Norms We consider matrix norms on (C m,n, C). All results holds for

### Iterative Methods for Computing Eigenvalues and Eigenvectors

The Waterloo Mathematics Review 9 Iterative Methods for Computing Eigenvalues and Eigenvectors Maysum Panju University of Waterloo mhpanju@math.uwaterloo.ca Abstract: We examine some numerical iterative

### since by using a computer we are limited to the use of elementary arithmetic operations

> 4. Interpolation and Approximation Most functions cannot be evaluated exactly: x, e x, ln x, trigonometric functions since by using a computer we are limited to the use of elementary arithmetic operations

### Linear Threshold Units

Linear Threshold Units w x hx (... w n x n w We assume that each feature x j and each weight w j is a real number (we will relax this later) We will study three different algorithms for learning linear

### ADVANCED LINEAR ALGEBRA FOR ENGINEERS WITH MATLAB. Sohail A. Dianat. Rochester Institute of Technology, New York, U.S.A. Eli S.

ADVANCED LINEAR ALGEBRA FOR ENGINEERS WITH MATLAB Sohail A. Dianat Rochester Institute of Technology, New York, U.S.A. Eli S. Saber Rochester Institute of Technology, New York, U.S.A. (g) CRC Press Taylor

### 2.2 Creaseness operator

2.2. Creaseness operator 31 2.2 Creaseness operator Antonio López, a member of our group, has studied for his PhD dissertation the differential operators described in this section [72]. He has compared

### Inner Product Spaces and Orthogonality

Inner Product Spaces and Orthogonality week 3-4 Fall 2006 Dot product of R n The inner product or dot product of R n is a function, defined by u, v a b + a 2 b 2 + + a n b n for u a, a 2,, a n T, v b,

### Computing a Nearest Correlation Matrix with Factor Structure

Computing a Nearest Correlation Matrix with Factor Structure Nick Higham School of Mathematics The University of Manchester higham@ma.man.ac.uk http://www.ma.man.ac.uk/~higham/ Joint work with Rüdiger

### Some Polynomial Theorems. John Kennedy Mathematics Department Santa Monica College 1900 Pico Blvd. Santa Monica, CA 90405 rkennedy@ix.netcom.

Some Polynomial Theorems by John Kennedy Mathematics Department Santa Monica College 1900 Pico Blvd. Santa Monica, CA 90405 rkennedy@ix.netcom.com This paper contains a collection of 31 theorems, lemmas,

### DATA ANALYSIS II. Matrix Algorithms

DATA ANALYSIS II Matrix Algorithms Similarity Matrix Given a dataset D = {x i }, i=1,..,n consisting of n points in R d, let A denote the n n symmetric similarity matrix between the points, given as where

### 2.3 Convex Constrained Optimization Problems

42 CHAPTER 2. FUNDAMENTAL CONCEPTS IN CONVEX OPTIMIZATION Theorem 15 Let f : R n R and h : R R. Consider g(x) = h(f(x)) for all x R n. The function g is convex if either of the following two conditions

### Numerical Methods I Solving Linear Systems: Sparse Matrices, Iterative Methods and Non-Square Systems

Numerical Methods I Solving Linear Systems: Sparse Matrices, Iterative Methods and Non-Square Systems Aleksandar Donev Courant Institute, NYU 1 donev@courant.nyu.edu 1 Course G63.2010.001 / G22.2420-001,

### Parameter Estimation: A Deterministic Approach using the Levenburg-Marquardt Algorithm

Parameter Estimation: A Deterministic Approach using the Levenburg-Marquardt Algorithm John Bardsley Department of Mathematical Sciences University of Montana Applied Math Seminar-Feb. 2005 p.1/14 Outline

### Practical Numerical Training UKNum

Practical Numerical Training UKNum 7: Systems of linear equations C. Mordasini Max Planck Institute for Astronomy, Heidelberg Program: 1) Introduction 2) Gauss Elimination 3) Gauss with Pivoting 4) Determinants

### ANALYTICAL MATHEMATICS FOR APPLICATIONS 2016 LECTURE NOTES Series

ANALYTICAL MATHEMATICS FOR APPLICATIONS 206 LECTURE NOTES 8 ISSUED 24 APRIL 206 A series is a formal sum. Series a + a 2 + a 3 + + + where { } is a sequence of real numbers. Here formal means that we don

### Numerical Linear Algebra Chap. 4: Perturbation and Regularisation

Numerical Linear Algebra Chap. 4: Perturbation and Regularisation Heinrich Voss voss@tu-harburg.de Hamburg University of Technology Institute of Numerical Simulation TUHH Heinrich Voss Numerical Linear

### PUTNAM TRAINING POLYNOMIALS. Exercises 1. Find a polynomial with integral coefficients whose zeros include 2 + 5.

PUTNAM TRAINING POLYNOMIALS (Last updated: November 17, 2015) Remark. This is a list of exercises on polynomials. Miguel A. Lerma Exercises 1. Find a polynomial with integral coefficients whose zeros include

### Summary of week 8 (Lectures 22, 23 and 24)

WEEK 8 Summary of week 8 (Lectures 22, 23 and 24) This week we completed our discussion of Chapter 5 of [VST] Recall that if V and W are inner product spaces then a linear map T : V W is called an isometry

### Dynamics. Figure 1: Dynamics used to generate an exemplar of the letter A. To generate

Dynamics Any physical system, such as neurons or muscles, will not respond instantaneously in time but will have a time-varying response termed the dynamics. The dynamics of neurons are an inevitable constraint

### BIG DATA PROBLEMS AND LARGE-SCALE OPTIMIZATION: A DISTRIBUTED ALGORITHM FOR MATRIX FACTORIZATION

BIG DATA PROBLEMS AND LARGE-SCALE OPTIMIZATION: A DISTRIBUTED ALGORITHM FOR MATRIX FACTORIZATION Ş. İlker Birbil Sabancı University Ali Taylan Cemgil 1, Hazal Koptagel 1, Figen Öztoprak 2, Umut Şimşekli

### Nonlinear Optimization: Algorithms 3: Interior-point methods

Nonlinear Optimization: Algorithms 3: Interior-point methods INSEAD, Spring 2006 Jean-Philippe Vert Ecole des Mines de Paris Jean-Philippe.Vert@mines.org Nonlinear optimization c 2006 Jean-Philippe Vert,

### General Framework for an Iterative Solution of Ax b. Jacobi s Method

2.6 Iterative Solutions of Linear Systems 143 2.6 Iterative Solutions of Linear Systems Consistent linear systems in real life are solved in one of two ways: by direct calculation (using a matrix factorization,

### SMOOTHING APPROXIMATIONS FOR TWO CLASSES OF CONVEX EIGENVALUE OPTIMIZATION PROBLEMS YU QI. (B.Sc.(Hons.), BUAA)

SMOOTHING APPROXIMATIONS FOR TWO CLASSES OF CONVEX EIGENVALUE OPTIMIZATION PROBLEMS YU QI (B.Sc.(Hons.), BUAA) A THESIS SUBMITTED FOR THE DEGREE OF MASTER OF SCIENCE DEPARTMENT OF MATHEMATICS NATIONAL

### Solution of Linear Systems

Chapter 3 Solution of Linear Systems In this chapter we study algorithms for possibly the most commonly occurring problem in scientific computing, the solution of linear systems of equations. We start

### Mean value theorem, Taylors Theorem, Maxima and Minima.

MA 001 Preparatory Mathematics I. Complex numbers as ordered pairs. Argand s diagram. Triangle inequality. De Moivre s Theorem. Algebra: Quadratic equations and express-ions. Permutations and Combinations.

### Linear Systems. Singular and Nonsingular Matrices. Find x 1, x 2, x 3 such that the following three equations hold:

Linear Systems Example: Find x, x, x such that the following three equations hold: x + x + x = 4x + x + x = x + x + x = 6 We can write this using matrix-vector notation as 4 {{ A x x x {{ x = 6 {{ b General

### Computational Optical Imaging - Optique Numerique. -- Deconvolution --

Computational Optical Imaging - Optique Numerique -- Deconvolution -- Winter 2014 Ivo Ihrke Deconvolution Ivo Ihrke Outline Deconvolution Theory example 1D deconvolution Fourier method Algebraic method

### Metric Spaces. Chapter 7. 7.1. Metrics

Chapter 7 Metric Spaces A metric space is a set X that has a notion of the distance d(x, y) between every pair of points x, y X. The purpose of this chapter is to introduce metric spaces and give some

### Vector and Matrix Norms

Chapter 1 Vector and Matrix Norms 11 Vector Spaces Let F be a field (such as the real numbers, R, or complex numbers, C) with elements called scalars A Vector Space, V, over the field F is a non-empty

### Bindel, Spring 2012 Intro to Scientific Computing (CS 3220) Week 3: Wednesday, Feb 8

Spaces and bases Week 3: Wednesday, Feb 8 I have two favorite vector spaces 1 : R n and the space P d of polynomials of degree at most d. For R n, we have a canonical basis: R n = span{e 1, e 2,..., e

### Linear Systems COS 323

Linear Systems COS 323 Last time: Constrained Optimization Linear constrained optimization Linear programming (LP) Simplex method for LP General optimization With equality constraints: Lagrange multipliers

### Bindel, Fall 2012 Matrix Computations (CS 6210) Week 8: Friday, Oct 12

Why eigenvalues? Week 8: Friday, Oct 12 I spend a lot of time thinking about eigenvalue problems. In part, this is because I look for problems that can be solved via eigenvalues. But I might have fewer

### Mathematics of Cryptography

CHAPTER 2 Mathematics of Cryptography Part I: Modular Arithmetic, Congruence, and Matrices Objectives This chapter is intended to prepare the reader for the next few chapters in cryptography. The chapter

### 1 Norms and Vector Spaces

008.10.07.01 1 Norms and Vector Spaces Suppose we have a complex vector space V. A norm is a function f : V R which satisfies (i) f(x) 0 for all x V (ii) f(x + y) f(x) + f(y) for all x,y V (iii) f(λx)

### Introduction to Algebraic Geometry. Bézout s Theorem and Inflection Points

Introduction to Algebraic Geometry Bézout s Theorem and Inflection Points 1. The resultant. Let K be a field. Then the polynomial ring K[x] is a unique factorisation domain (UFD). Another example of a

### 1 VECTOR SPACES AND SUBSPACES

1 VECTOR SPACES AND SUBSPACES What is a vector? Many are familiar with the concept of a vector as: Something which has magnitude and direction. an ordered pair or triple. a description for quantities such

### Cost Minimization and the Cost Function

Cost Minimization and the Cost Function Juan Manuel Puerta October 5, 2009 So far we focused on profit maximization, we could look at a different problem, that is the cost minimization problem. This is

### CS3220 Lecture Notes: QR factorization and orthogonal transformations

CS3220 Lecture Notes: QR factorization and orthogonal transformations Steve Marschner Cornell University 11 March 2009 In this lecture I ll talk about orthogonal matrices and their properties, discuss

### Notes on Symmetric Matrices

CPSC 536N: Randomized Algorithms 2011-12 Term 2 Notes on Symmetric Matrices Prof. Nick Harvey University of British Columbia 1 Symmetric Matrices We review some basic results concerning symmetric matrices.

### (57) (58) (59) (60) (61)

Module 4 : Solving Linear Algebraic Equations Section 5 : Iterative Solution Techniques 5 Iterative Solution Techniques By this approach, we start with some initial guess solution, say for solution and

### MATHEMATICAL METHODS OF STATISTICS

MATHEMATICAL METHODS OF STATISTICS By HARALD CRAMER TROFESSOK IN THE UNIVERSITY OF STOCKHOLM Princeton PRINCETON UNIVERSITY PRESS 1946 TABLE OF CONTENTS. First Part. MATHEMATICAL INTRODUCTION. CHAPTERS

### Lecture Notes to Accompany. Scientific Computing An Introductory Survey. by Michael T. Heath. Chapter 10

Lecture Notes to Accompany Scientific Computing An Introductory Survey Second Edition by Michael T. Heath Chapter 10 Boundary Value Problems for Ordinary Differential Equations Copyright c 2001. Reproduction

### MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS. + + x 2. x n. a 11 a 12 a 1n b 1 a 21 a 22 a 2n b 2 a 31 a 32 a 3n b 3. a m1 a m2 a mn b m

MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS 1. SYSTEMS OF EQUATIONS AND MATRICES 1.1. Representation of a linear system. The general system of m equations in n unknowns can be written a 11 x 1 + a 12 x 2 +

### THE FUNDAMENTAL THEOREM OF ALGEBRA VIA PROPER MAPS

THE FUNDAMENTAL THEOREM OF ALGEBRA VIA PROPER MAPS KEITH CONRAD 1. Introduction The Fundamental Theorem of Algebra says every nonconstant polynomial with complex coefficients can be factored into linear

### 1 Sets and Set Notation.

LINEAR ALGEBRA MATH 27.6 SPRING 23 (COHEN) LECTURE NOTES Sets and Set Notation. Definition (Naive Definition of a Set). A set is any collection of objects, called the elements of that set. We will most

### Numerical Analysis Lecture Notes

Numerical Analysis Lecture Notes Peter J. Olver 4. Gaussian Elimination In this part, our focus will be on the most basic method for solving linear algebraic systems, known as Gaussian Elimination in honor

### Date: April 12, 2001. Contents

2 Lagrange Multipliers Date: April 12, 2001 Contents 2.1. Introduction to Lagrange Multipliers......... p. 2 2.2. Enhanced Fritz John Optimality Conditions...... p. 12 2.3. Informative Lagrange Multipliers...........

Quadratic Functions, Optimization, and Quadratic Forms Robert M. Freund February, 2004 2004 Massachusetts Institute of echnology. 1 2 1 Quadratic Optimization A quadratic optimization problem is an optimization

### Big Data - Lecture 1 Optimization reminders

Big Data - Lecture 1 Optimization reminders S. Gadat Toulouse, Octobre 2014 Big Data - Lecture 1 Optimization reminders S. Gadat Toulouse, Octobre 2014 Schedule Introduction Major issues Examples Mathematics

### Nonlinear Iterative Partial Least Squares Method

Numerical Methods for Determining Principal Component Analysis Abstract Factors Béchu, S., Richard-Plouet, M., Fernandez, V., Walton, J., and Fairley, N. (2016) Developments in numerical treatments for

### The Characteristic Polynomial

Physics 116A Winter 2011 The Characteristic Polynomial 1 Coefficients of the characteristic polynomial Consider the eigenvalue problem for an n n matrix A, A v = λ v, v 0 (1) The solution to this problem

### 9.2 Summation Notation

9. Summation Notation 66 9. Summation Notation In the previous section, we introduced sequences and now we shall present notation and theorems concerning the sum of terms of a sequence. We begin with a

### Some Notes on Taylor Polynomials and Taylor Series

Some Notes on Taylor Polynomials and Taylor Series Mark MacLean October 3, 27 UBC s courses MATH /8 and MATH introduce students to the ideas of Taylor polynomials and Taylor series in a fairly limited

### Module MA1S11 (Calculus) Michaelmas Term 2016 Section 3: Functions

Module MA1S11 (Calculus) Michaelmas Term 2016 Section 3: Functions D. R. Wilkins Copyright c David R. Wilkins 2016 Contents 3 Functions 43 3.1 Functions between Sets...................... 43 3.2 Injective

### MATH 240 Fall, Chapter 1: Linear Equations and Matrices

MATH 240 Fall, 2007 Chapter Summaries for Kolman / Hill, Elementary Linear Algebra, 9th Ed. written by Prof. J. Beachy Sections 1.1 1.5, 2.1 2.3, 4.2 4.9, 3.1 3.5, 5.3 5.5, 6.1 6.3, 6.5, 7.1 7.3 DEFINITIONS

### General Theory of Differential Equations Sections 2.8, 3.1-3.2, 4.1

A B I L E N E C H R I S T I A N U N I V E R S I T Y Department of Mathematics General Theory of Differential Equations Sections 2.8, 3.1-3.2, 4.1 Dr. John Ehrke Department of Mathematics Fall 2012 Questions

### LINEAR ALGEBRA W W L CHEN

LINEAR ALGEBRA W W L CHEN c W W L Chen, 1997, 2008 This chapter is available free to all individuals, on understanding that it is not to be used for financial gain, and may be downloaded and/or photocopied,

### a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a 2n x n = b 2.

Chapter 1 LINEAR EQUATIONS 1.1 Introduction to linear equations A linear equation in n unknowns x 1, x,, x n is an equation of the form a 1 x 1 + a x + + a n x n = b, where a 1, a,..., a n, b are given

### The Not-Formula Book for C1

Not The Not-Formula Book for C1 Everything you need to know for Core 1 that won t be in the formula book Examination Board: AQA Brief This document is intended as an aid for revision. Although it includes

### 1 Orthogonal projections and the approximation

Math 1512 Fall 2010 Notes on least squares approximation Given n data points (x 1, y 1 ),..., (x n, y n ), we would like to find the line L, with an equation of the form y = mx + b, which is the best fit

### ( % . This matrix consists of \$ 4 5 " 5' the coefficients of the variables as they appear in the original system. The augmented 3 " 2 2 # 2 " 3 4&

Matrices define matrix We will use matrices to help us solve systems of equations. A matrix is a rectangular array of numbers enclosed in parentheses or brackets. In linear algebra, matrices are important

### Chapter 4, Arithmetic in F [x] Polynomial arithmetic and the division algorithm.

Chapter 4, Arithmetic in F [x] Polynomial arithmetic and the division algorithm. We begin by defining the ring of polynomials with coefficients in a ring R. After some preliminary results, we specialize

### 1 Review of Least Squares Solutions to Overdetermined Systems

cs4: introduction to numerical analysis /9/0 Lecture 7: Rectangular Systems and Numerical Integration Instructor: Professor Amos Ron Scribes: Mark Cowlishaw, Nathanael Fillmore Review of Least Squares

### 7 Gaussian Elimination and LU Factorization

7 Gaussian Elimination and LU Factorization In this final section on matrix factorization methods for solving Ax = b we want to take a closer look at Gaussian elimination (probably the best known method

### by the matrix A results in a vector which is a reflection of the given

Eigenvalues & Eigenvectors Example Suppose Then So, geometrically, multiplying a vector in by the matrix A results in a vector which is a reflection of the given vector about the y-axis We observe that

### Machine Learning and Pattern Recognition Logistic Regression

Machine Learning and Pattern Recognition Logistic Regression Course Lecturer:Amos J Storkey Institute for Adaptive and Neural Computation School of Informatics University of Edinburgh Crichton Street,

### By W.E. Diewert. July, Linear programming problems are important for a number of reasons:

APPLIED ECONOMICS By W.E. Diewert. July, 3. Chapter : Linear Programming. Introduction The theory of linear programming provides a good introduction to the study of constrained maximization (and minimization)

### Numerical Methods I Eigenvalue Problems

Numerical Methods I Eigenvalue Problems Aleksandar Donev Courant Institute, NYU 1 donev@courant.nyu.edu 1 Course G63.2010.001 / G22.2420-001, Fall 2010 September 30th, 2010 A. Donev (Courant Institute)

### FACTORING POLYNOMIALS IN THE RING OF FORMAL POWER SERIES OVER Z

FACTORING POLYNOMIALS IN THE RING OF FORMAL POWER SERIES OVER Z DANIEL BIRMAJER, JUAN B GIL, AND MICHAEL WEINER Abstract We consider polynomials with integer coefficients and discuss their factorization

### 3 Orthogonal Vectors and Matrices

3 Orthogonal Vectors and Matrices The linear algebra portion of this course focuses on three matrix factorizations: QR factorization, singular valued decomposition (SVD), and LU factorization The first

### Problem 1 (10 pts) Find the radius of convergence and interval of convergence of the series

1 Problem 1 (10 pts) Find the radius of convergence and interval of convergence of the series a n n=1 n(x + 2) n 5 n 1. n(x + 2)n Solution: Do the ratio test for the absolute convergence. Let a n =. Then,

### CONTINUED FRACTIONS AND FACTORING. Niels Lauritzen

CONTINUED FRACTIONS AND FACTORING Niels Lauritzen ii NIELS LAURITZEN DEPARTMENT OF MATHEMATICAL SCIENCES UNIVERSITY OF AARHUS, DENMARK EMAIL: niels@imf.au.dk URL: http://home.imf.au.dk/niels/ Contents

### LECTURE NOTES: FINITE ELEMENT METHOD

LECTURE NOTES: FINITE ELEMENT METHOD AXEL MÅLQVIST. Motivation The finite element method has two main strengths... Geometry. Very complex geometries can be used. This is probably the main reason why finite

### it is easy to see that α = a

21. Polynomial rings Let us now turn out attention to determining the prime elements of a polynomial ring, where the coefficient ring is a field. We already know that such a polynomial ring is a UF. Therefore

### A FIRST COURSE IN OPTIMIZATION THEORY

A FIRST COURSE IN OPTIMIZATION THEORY RANGARAJAN K. SUNDARAM New York University CAMBRIDGE UNIVERSITY PRESS Contents Preface Acknowledgements page xiii xvii 1 Mathematical Preliminaries 1 1.1 Notation

### 5 Numerical Differentiation

D. Levy 5 Numerical Differentiation 5. Basic Concepts This chapter deals with numerical approximations of derivatives. The first questions that comes up to mind is: why do we need to approximate derivatives

### Numerisches Rechnen. (für Informatiker) M. Grepl J. Berger & J.T. Frings. Institut für Geometrie und Praktische Mathematik RWTH Aachen

(für Informatiker) M. Grepl J. Berger & J.T. Frings Institut für Geometrie und Praktische Mathematik RWTH Aachen Wintersemester 2010/11 Problem Statement Unconstrained Optimality Conditions Constrained

### 3. INNER PRODUCT SPACES

. INNER PRODUCT SPACES.. Definition So far we have studied abstract vector spaces. These are a generalisation of the geometric spaces R and R. But these have more structure than just that of a vector space.

### The Dirichlet Unit Theorem

Chapter 6 The Dirichlet Unit Theorem As usual, we will be working in the ring B of algebraic integers of a number field L. Two factorizations of an element of B are regarded as essentially the same if

### UNIT 2 MATRICES - I 2.0 INTRODUCTION. Structure

UNIT 2 MATRICES - I Matrices - I Structure 2.0 Introduction 2.1 Objectives 2.2 Matrices 2.3 Operation on Matrices 2.4 Invertible Matrices 2.5 Systems of Linear Equations 2.6 Answers to Check Your Progress

### Notes on Orthogonal and Symmetric Matrices MENU, Winter 2013

Notes on Orthogonal and Symmetric Matrices MENU, Winter 201 These notes summarize the main properties and uses of orthogonal and symmetric matrices. We covered quite a bit of material regarding these topics,

### Limit processes are the basis of calculus. For example, the derivative. f f (x + h) f (x)

SEC. 4.1 TAYLOR SERIES AND CALCULATION OF FUNCTIONS 187 Taylor Series 4.1 Taylor Series and Calculation of Functions Limit processes are the basis of calculus. For example, the derivative f f (x + h) f