1. a n = 2. a n = 3. a n = 4. a n = 5. a n = 6. a n =

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "1. a n = 2. a n = 3. a n = 4. a n = 5. a n = 6. a n ="

Transcription

1 Versio PREVIEW Homework Berg (5860 This prit-out should have 9 questios. Multiple-choice questios may cotiue o the ext colum or page fid all choices before aswerig. CalCb0b poits Rewrite the fiite sum ( usig summatio otatio k = 5 k = 0 5 k = 0 8 k = 8 k = 8 k = k k ( k + k k + k k ( k + k k + k k ( k + correct k k ( k + The umerators form a sequece, 6, 0,,...,, while the deomiators form a sequece +, +, 5 +, 6 +,..., 8 +. Thus the geeral term i the series is of the form k k a k = ( k + where the sum rages from k = to k = 8. Cosequetly, the series becomes 8 k = i summatio otatio. k k ( k + CalCb0exam poits If the th partial sum of a is give by S = + +, what is a whe?. a =. a =. a =. a = 5. a = 6. a = By defiitio S = 5 ( + ( + 5 ( + ( + 5 ( + 9 ( + ( + correct 9 ( + ( + 9 ( + k Thus, for, a = S S Cosequetly, a = a = a + a a. = + + ( + ( +. 9 ( + ( +.

2 Versio PREVIEW Homework Berg (5860 CalCb5a poits Determie whether the series ( (cos π =0 is coverget or diverget, ad if coverget, fid its sum.. coverget with sum 9. diverget. coverget with sum 9 5 correct. coverget with sum coverget with sum 9 CalCbs poits Determie whether the ifiite series ( + ( + coverges or diverges, ad if coverges, fid its sum.. diverges correct. coverges with sum =. coverges with sum =. coverges with sum = 5. coverges with sum = 6. coverget with sum 9 5 Sice cos π = (, the give series ca be rewritte as a ifiite geometric series ( = a r i which =0 =0 a =, r =. But the series =0 ar is (i coverget with sum a whe r <, r ad (ii diverget whe r. Cosequetly, the give series is coverget with sum 9 5. By the Divergece Test, a ifiite series a diverges whe lim a 0. Now, for the give series, a = But the, ( + ( + = lim a = 0. Cosequetly, the Divergece Test says that the give series diverges. keywords: ifiite series, Divergece Test, ratioal fuctio.

3 Versio PREVIEW Homework Berg (5860 CalCbs poits Determie whether the ifiite series ta ( + 5 coverges or diverges, ad if it coverges, fid its sum.. coverges with sum = π. coverges with sum = π. diverges correct. coverges with sum = π 5. coverges with sum = π A ifiite series a diverges whe For the give series lim a 0. a = ta ( + 5 = ta ( + 5/ But lim ta ( + 5/ Cosequetly, the give series diverges. = ta ( = π. CalCbs 006 (part of 0.0 poits i Fid all values of x for which the series (x + =0 coverges. (. coverges oly o, (. coverges oly o,. coverges oly o (, 0. coverges oly o (0, ( 5. coverges oly o, correct ( 6. coverges oly o, The give series is a geometric series =0 with a = ad r = x +. Now such a geometric series i coverges whe r <, ad ii diverges whe r, so the give series coverges exactly whe < x + <. Thus it coverges oly o the iterval (,. 007 (part of 0.0 poits ii Fid the sum of the series (x + =0 for those values of x for which it coverges.. sum = x +. sum = x +. sum = x r

4 Versio PREVIEW Homework Berg (5860. sum = x 5. sum = x 6. sum = x + correct A geometric series r has sum = =0 a r whe it coverges. For a = ad r = x +, therefore, x +. CalCc0s poits Let g be a cotiuous, positive, decreasig fuctio o [,. Compare the values of the itegral ad the series B = 9 = A = 9 g(x dx g(, C = 8 = g(. I the figure a a a 5 a the bold lie is the graph of g o [, ad the areas of the rectagles the terms i the series. Clearly from this figure we see that while g( > g( > g(5 > g(6 > g(x dx, g(x dx, g(x dx, g(x dx, ad so o. O the other had, i the figure. B > C > A. B < A < C correct. B < C < A. A < B < C 5. C < A < B a a 5 a 6 a A > B > C the bold lie is agai the graph of g o [,,

5 Versio PREVIEW Homework Berg ( but ow while a = g( < a 5 = g(5 < a 6 = g(6 < a 7 = g(7 < ad so o. Cosequetly, B < A < C. CalCc0a poits g(x dx, g(x dx, g(x dx, g(x dx, Which of the followig series are coverget: A. B. + / 7. B ad C oly correct 8. oe of them By the Itegral test, if f(x is a positive, decreasig fuctio, the the ifiite series f( coverges if ad oly if the improper itegral f(x dx coverges. Thus for the three give series we have to use a appropriate choice of f. A. Use f(x = x +. The f(x dx is diverget (log itegral. B. Use f(x = x is coverget. /. The f(x dx C. Use f(x = x. The C is coverget. f(x dx. B oly. A ad B oly. C oly. A ad C oly 5. all of them 6. A oly keywords: coverget, Itegral test, CalCc0b poits Determie whether the series (l = is coverget or diverget.

6 Versio PREVIEW Homework Berg ( diverget correct. coverget By the Divergece Test, a series =N a will be diverget for each fixed choice of N if lim a 0 sice it is oly the behaviour of a as that s importat. Now, for the give series, N = ad a = (l. But by L Hospital s Rule applied twice, lim x x (lx = lim x = lim x x lx = lim x ( lx/x /x =. Cosequetly, by the Divergece Test, the give series is diverget. CalCc0c poits Determie whether the series k l(k k = is coverget or diverget.. series coverges. series diverges correct The fuctio f(x = x l(x is cotious, positive ad decreasig o [,. By the Itegral Test, therefore, the series k l(k k = coverges if ad oly if the improper itegral f(x dx = coverges, i.e., if ad oly if lim t t x l(x dx x l(x dx exists. To evaluate this last itegral, set u = l(x. The i which case, But t Cosequetly, du = x dx, l(t x l(x dx = l u du { } = l(l(t l(l. lim l(l(t =. t lim t t x l(x dx does ot exist. The Itegral Test thus esures that the give (A series diverges. CalCcexam poits Determie whether the followig series l(,

7 Versio PREVIEW Homework Berg ( (B + cos( + is coverget sice p = >. Thus, by the compariso test, series (B coverge or diverge. coverges.. A diverges, B coverges. both series diverge. both series coverge correct. A coverges, B diverges (A The fuctio f(x = l x x is cotious ad positive o [, ; i additio, sice ( lx f (x = < 0 o [,, f is also decreasig o this iterval. This suggests applyig the Itegral Test. Now, after Itegratio by Parts, we see that ad so t x [ f(x dx = l(x ] t x x, f(x dx = ( + l. The Itegral Test thus esures that series (A coverges. (B Note first that the iequalities 0 + cos( + + hold for all. O the other had, by the p-series test the series keywords: CalCds poits Determie whether the series k = coverges or diverges.. series is coverget k(k + (k + 5. series is diverget correct Note first that lim k k k(k + (k + 5 = > 0. Thus by the limit compariso test, the give series k(k + (k + 5 k = coverges if ad oly if the series k = coverges. But by the p-series test with p = (or use the compariso test applied to the harmoic series, this last series diverges. Cosequetly, the give k series is diverget. CalCd7s poits

8 Versio PREVIEW Homework Berg ( Determie whether the series coverges or diverges. ta 5 +. series is coverget correct. series is diverget We apply the Limit Compariso Test with For a = ta 5 +, b =. lim ( ta 5 + Thus the give series = lim ta = π. ta 5 + is coverget if ad oly if the series is coverget. But by the p-series test, this last series coverges because p = >. Cosequetly, the give series is coverget. CalCd9b poits Which of the followig ifiite series coverges?.. ( correct k = ( 7 7 ( + k lk + 7k We test the covergece of each of the five series. (i For the series k = k lk + 7k the limit compariso test ca be used, comparig it with k = k lk. Now, after divisio, ( k lk k lk + 7k = + 7 lk Sice + 7 > 0 lk as k, the limit compariso test applies. But by the Itegral test, the series k = does ot coverge. Thus k = does ot coverge. k lk k lk + 7k (ii If a series a coverges, the a 0.

9 Versio PREVIEW Homework Berg ( as. But for the series 7 ( + we see that a = 7 ( + = 7 ( + ( {( + = 7 = 7 + }. Now ( + e as. Thus Cosequetly, lim a = 7e 0. does ot coverge. (iii For the series 7 ( + 7 the compariso test ca be used sice 7 ( 7 while does ot coverge because of the Iegral test. Thus 7 does ot coverge. (iv Use of the Compariso test is suggested i dealig with ( + for after divisio Now the iequality + = 0 < + + holds for all, so the iequality ( + holds for all. But (. ( is a geometric series whose commo ratio is r =. Sice 0 < r <, this geometric series coverges. Hece by the Compariso test the series ( + coverges. (v The series ( 7 is a geometric series with r = 7 >. But the this geometric series does ot coverge. Cosequetly, of the five give ifiite series, oly coverges. ( + CalCds poits

10 Versio PREVIEW Homework Berg ( Determie whether the series ( si k k = coverges or diverges.. series is diverget correct. series is coverget We use the Limit Compariso test with ( a k = si, b k = k k. For the a k ad b k are series with positive terms ad ( si k lim k a k b k = lim k Thus the give series = lim θ 0 si θ θ k = k ( si k coverges if ad oly if the series k = k = > 0. coverges. But by the p-series test with p = (or because the harmoic series is diverget, this last series is diverget. Cosequetly, the give series is diverget. CalCda poits Which of the followig series (A 5 log + 6 (B (C diverge?. all of them. C oly 6 ( + ( 5 +. A ad B correct. A oly 5. A ad C (A We use the limit compariso test, comparig the give series with the series 5 log + 6 = log which by the Itegral test does ot coverge. Now ( log = 5 log log Sice log 5 > 0 as, the limit compariso test applies. Thus the give series i (A diverges. (B If a series a coverges, the a 0

11 Versio PREVIEW Homework Berg (5860 as. But for the give series, 6 ( a = ( + = 6 + ( {( + = 6 = 6 + }. Now ( + e as. Thus so the series diverges. lim a = 6e 0, (C After divisio, Now the iequality 6 ( = 5 +. Cosequetly, of the give ifiite series, diverge. oly A ad B CalCdb poits Which of the followig series coverge(s? k + (A k = (k lk (B + (C ( oe of A, B, or C. A ad B. A oly correct. C oly 5. B oly 0 < 5 6. A ad C A, B, ad C holds for all, so the iequality ( ( holds for all. But = ( 5 is a geometric series whose commo ratio is r = 5. Sice 0 < r <, this geometric series coverges. Hece by the compariso test the series ( 5 + coverges also. 8. B ad C (A After divisio, k + + (k lk + 5 = k k(lk + 5. k But + k(lk k k(lk + 5 > 0, k so k(lk ( k + (k lk + 5 > 0.

12 Versio PREVIEW Homework Berg (5860 O the other had, by the Itegral test the ifiite series k(lk k = coverges, hece by the limit compariso test, the give series i (A coverges also. (B If a ifiite series a coverges, the lim a = 0. But for the give series i (B, lim a = lim 7 + =. Cosequetly, the series i (B does ot coverge. (C After divisio, = 5, so the iequality ( holds for all. But the series ( 7 5 = ( 7 5 is a geometric series whose commo ratio r = 7 5. Now r >, so this geometric series does ot coverge. Hece by the compariso test the series i (C does ot coverge. Cosequetly, of the give ifiite series, coverges. oly A CalCd8a poits Fid all values of p for which the ifiite series ( 6 p coverges?. p <. p > correct. p < 5. p > 5 5. p > After divisio, so = 6 +, ( > 0 as. Thus by the Limit Compariso test, the ifiite series ( p will coverge if ad oly if the ifiite series p coverges. But by the Itegral test we kow that the series p coverges if ad oly if p >. Cosequetly, the give series will coverge if ad oly if p >, i.e., whe p >. 5 +

4.3. The Integral and Comparison Tests

4.3. The Integral and Comparison Tests 4.3. THE INTEGRAL AND COMPARISON TESTS 9 4.3. The Itegral ad Compariso Tests 4.3.. The Itegral Test. Suppose f is a cotiuous, positive, decreasig fuctio o [, ), ad let a = f(). The the covergece or divergece

More information

Section 11.3: The Integral Test

Section 11.3: The Integral Test Sectio.3: The Itegral Test Most of the series we have looked at have either diverged or have coverged ad we have bee able to fid what they coverge to. I geeral however, the problem is much more difficult

More information

SAMPLE QUESTIONS FOR FINAL EXAM. (1) (2) (3) (4) Find the following using the definition of the Riemann integral: (2x + 1)dx

SAMPLE QUESTIONS FOR FINAL EXAM. (1) (2) (3) (4) Find the following using the definition of the Riemann integral: (2x + 1)dx SAMPLE QUESTIONS FOR FINAL EXAM REAL ANALYSIS I FALL 006 3 4 Fid the followig usig the defiitio of the Riema itegral: a 0 x + dx 3 Cosider the partitio P x 0 3, x 3 +, x 3 +,......, x 3 3 + 3 of the iterval

More information

Theorems About Power Series

Theorems About Power Series Physics 6A Witer 20 Theorems About Power Series Cosider a power series, f(x) = a x, () where the a are real coefficiets ad x is a real variable. There exists a real o-egative umber R, called the radius

More information

Our aim is to show that under reasonable assumptions a given 2π-periodic function f can be represented as convergent series

Our aim is to show that under reasonable assumptions a given 2π-periodic function f can be represented as convergent series 8 Fourier Series Our aim is to show that uder reasoable assumptios a give -periodic fuctio f ca be represeted as coverget series f(x) = a + (a cos x + b si x). (8.) By defiitio, the covergece of the series

More information

4 n. n 1. You shold think of the Ratio Test as a generalization of the Geometric Series Test. For example, if a n ar n is a geometric sequence then

4 n. n 1. You shold think of the Ratio Test as a generalization of the Geometric Series Test. For example, if a n ar n is a geometric sequence then SECTION 2.6 THE RATIO TEST 79 2.6. THE RATIO TEST We ow kow how to hadle series which we ca itegrate (the Itegral Test), ad series which are similar to geometric or p-series (the Compariso Test), but of

More information

Sequences and Series

Sequences and Series CHAPTER 9 Sequeces ad Series 9.. Covergece: Defiitio ad Examples Sequeces The purpose of this chapter is to itroduce a particular way of geeratig algorithms for fidig the values of fuctios defied by their

More information

TAYLOR SERIES, POWER SERIES

TAYLOR SERIES, POWER SERIES TAYLOR SERIES, POWER SERIES The followig represets a (icomplete) collectio of thigs that we covered o the subject of Taylor series ad power series. Warig. Be prepared to prove ay of these thigs durig the

More information

Lecture 4: Cauchy sequences, Bolzano-Weierstrass, and the Squeeze theorem

Lecture 4: Cauchy sequences, Bolzano-Weierstrass, and the Squeeze theorem Lecture 4: Cauchy sequeces, Bolzao-Weierstrass, ad the Squeeze theorem The purpose of this lecture is more modest tha the previous oes. It is to state certai coditios uder which we are guarateed that limits

More information

Approximating the Sum of a Convergent Series

Approximating the Sum of a Convergent Series Approximatig the Sum of a Coverget Series Larry Riddle Ages Scott College Decatur, GA 30030 lriddle@agesscott.edu The BC Calculus Course Descriptio metios how techology ca be used to explore covergece

More information

Sequences II. Chapter 3. 3.1 Convergent Sequences

Sequences II. Chapter 3. 3.1 Convergent Sequences Chapter 3 Sequeces II 3. Coverget Sequeces Plot a graph of the sequece a ) = 2, 3 2, 4 3, 5 + 4,...,,... To what limit do you thik this sequece teds? What ca you say about the sequece a )? For ǫ = 0.,

More information

Infinite Sequences and Series

Infinite Sequences and Series CHAPTER 4 Ifiite Sequeces ad Series 4.1. Sequeces A sequece is a ifiite ordered list of umbers, for example the sequece of odd positive itegers: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29...

More information

INFINITE SERIES KEITH CONRAD

INFINITE SERIES KEITH CONRAD INFINITE SERIES KEITH CONRAD. Itroductio The two basic cocepts of calculus, differetiatio ad itegratio, are defied i terms of limits (Newto quotiets ad Riema sums). I additio to these is a third fudametal

More information

a 4 = 4 2 4 = 12. 2. Which of the following sequences converge to zero? n 2 (a) n 2 (b) 2 n x 2 x 2 + 1 = lim x n 2 + 1 = lim x

a 4 = 4 2 4 = 12. 2. Which of the following sequences converge to zero? n 2 (a) n 2 (b) 2 n x 2 x 2 + 1 = lim x n 2 + 1 = lim x 0 INFINITE SERIES 0. Sequeces Preiary Questios. What is a 4 for the sequece a? solutio Substitutig 4 i the expressio for a gives a 4 4 4.. Which of the followig sequeces coverge to zero? a b + solutio

More information

8.1 Arithmetic Sequences

8.1 Arithmetic Sequences MCR3U Uit 8: Sequeces & Series Page 1 of 1 8.1 Arithmetic Sequeces Defiitio: A sequece is a comma separated list of ordered terms that follow a patter. Examples: 1, 2, 3, 4, 5 : a sequece of the first

More information

Building Blocks Problem Related to Harmonic Series

Building Blocks Problem Related to Harmonic Series TMME, vol3, o, p.76 Buildig Blocks Problem Related to Harmoic Series Yutaka Nishiyama Osaka Uiversity of Ecoomics, Japa Abstract: I this discussio I give a eplaatio of the divergece ad covergece of ifiite

More information

4.1 Sigma Notation and Riemann Sums

4.1 Sigma Notation and Riemann Sums 0 the itegral. Sigma Notatio ad Riema Sums Oe strategy for calculatig the area of a regio is to cut the regio ito simple shapes, calculate the area of each simple shape, ad the add these smaller areas

More information

Math 113 HW #11 Solutions

Math 113 HW #11 Solutions Math 3 HW # Solutios 5. 4. (a) Estimate the area uder the graph of f(x) = x from x = to x = 4 usig four approximatig rectagles ad right edpoits. Sketch the graph ad the rectagles. Is your estimate a uderestimate

More information

In nite Sequences. Dr. Philippe B. Laval Kennesaw State University. October 9, 2008

In nite Sequences. Dr. Philippe B. Laval Kennesaw State University. October 9, 2008 I ite Sequeces Dr. Philippe B. Laval Keesaw State Uiversity October 9, 2008 Abstract This had out is a itroductio to i ite sequeces. mai de itios ad presets some elemetary results. It gives the I ite Sequeces

More information

Convexity, Inequalities, and Norms

Convexity, Inequalities, and Norms Covexity, Iequalities, ad Norms Covex Fuctios You are probably familiar with the otio of cocavity of fuctios. Give a twicedifferetiable fuctio ϕ: R R, We say that ϕ is covex (or cocave up) if ϕ (x) 0 for

More information

x(x 1)(x 2)... (x k + 1) = [x] k n+m 1

x(x 1)(x 2)... (x k + 1) = [x] k n+m 1 1 Coutig mappigs For every real x ad positive iteger k, let [x] k deote the fallig factorial ad x(x 1)(x 2)... (x k + 1) ( ) x = [x] k k k!, ( ) k = 1. 0 I the sequel, X = {x 1,..., x m }, Y = {y 1,...,

More information

MATHEMATICS P1 COMMON TEST JUNE 2014 NATIONAL SENIOR CERTIFICATE GRADE 12

MATHEMATICS P1 COMMON TEST JUNE 2014 NATIONAL SENIOR CERTIFICATE GRADE 12 Mathematics/P1 1 Jue 014 Commo Test MATHEMATICS P1 COMMON TEST JUNE 014 NATIONAL SENIOR CERTIFICATE GRADE 1 Marks: 15 Time: ½ hours N.B: This questio paper cosists of 7 pages ad 1 iformatio sheet. Please

More information

3. Greatest Common Divisor - Least Common Multiple

3. Greatest Common Divisor - Least Common Multiple 3 Greatest Commo Divisor - Least Commo Multiple Defiitio 31: The greatest commo divisor of two atural umbers a ad b is the largest atural umber c which divides both a ad b We deote the greatest commo gcd

More information

Sequences, Series and Convergence with the TI 92. Roger G. Brown Monash University

Sequences, Series and Convergence with the TI 92. Roger G. Brown Monash University Sequeces, Series ad Covergece with the TI 92. Roger G. Brow Moash Uiversity email: rgbrow@deaki.edu.au Itroductio. Studets erollig i calculus at Moash Uiversity, like may other calculus courses, are itroduced

More information

Properties of MLE: consistency, asymptotic normality. Fisher information.

Properties of MLE: consistency, asymptotic normality. Fisher information. Lecture 3 Properties of MLE: cosistecy, asymptotic ormality. Fisher iformatio. I this sectio we will try to uderstad why MLEs are good. Let us recall two facts from probability that we be used ofte throughout

More information

Chapter 5: Inner Product Spaces

Chapter 5: Inner Product Spaces Chapter 5: Ier Product Spaces Chapter 5: Ier Product Spaces SECION A Itroductio to Ier Product Spaces By the ed of this sectio you will be able to uderstad what is meat by a ier product space give examples

More information

SECTION 1.5 : SUMMATION NOTATION + WORK WITH SEQUENCES

SECTION 1.5 : SUMMATION NOTATION + WORK WITH SEQUENCES SECTION 1.5 : SUMMATION NOTATION + WORK WITH SEQUENCES Read Sectio 1.5 (pages 5 9) Overview I Sectio 1.5 we lear to work with summatio otatio ad formulas. We will also itroduce a brief overview of sequeces,

More information

Lecture 5: Span, linear independence, bases, and dimension

Lecture 5: Span, linear independence, bases, and dimension Lecture 5: Spa, liear idepedece, bases, ad dimesio Travis Schedler Thurs, Sep 23, 2010 (versio: 9/21 9:55 PM) 1 Motivatio Motivatio To uderstad what it meas that R has dimesio oe, R 2 dimesio 2, etc.;

More information

Taylor Series and Polynomials

Taylor Series and Polynomials Taylor Series ad Polyomials Motivatios The purpose of Taylor series is to approimate a fuctio with a polyomial; ot oly we wat to be able to approimate, but we also wat to kow how good the approimatio is.

More information

Asymptotic Growth of Functions

Asymptotic Growth of Functions CMPS Itroductio to Aalysis of Algorithms Fall 3 Asymptotic Growth of Fuctios We itroduce several types of asymptotic otatio which are used to compare the performace ad efficiecy of algorithms As we ll

More information

http://www.webassign.net/v4cgijeff.downs@wnc/control.pl

http://www.webassign.net/v4cgijeff.downs@wnc/control.pl Assigmet Previewer http://www.webassig.et/vcgijeff.dows@wc/cotrol.pl of // : PM Practice Eam () Questio Descriptio Eam over chapter.. Questio DetailsLarCalc... [] Fid the geeral solutio of the differetial

More information

0.7 0.6 0.2 0 0 96 96.5 97 97.5 98 98.5 99 99.5 100 100.5 96.5 97 97.5 98 98.5 99 99.5 100 100.5

0.7 0.6 0.2 0 0 96 96.5 97 97.5 98 98.5 99 99.5 100 100.5 96.5 97 97.5 98 98.5 99 99.5 100 100.5 Sectio 13 Kolmogorov-Smirov test. Suppose that we have a i.i.d. sample X 1,..., X with some ukow distributio P ad we would like to test the hypothesis that P is equal to a particular distributio P 0, i.e.

More information

Overview of some probability distributions.

Overview of some probability distributions. Lecture Overview of some probability distributios. I this lecture we will review several commo distributios that will be used ofte throughtout the class. Each distributio is usually described by its probability

More information

Exponential function: For a > 0, the exponential function with base a is defined by. f(x) = a x

Exponential function: For a > 0, the exponential function with base a is defined by. f(x) = a x MATH 11011 EXPONENTIAL FUNCTIONS KSU AND THEIR APPLICATIONS Defiitios: Expoetial fuctio: For a > 0, the expoetial fuctio with base a is defied by fx) = a x Horizotal asymptote: The lie y = c is a horizotal

More information

AP Calculus BC 2003 Scoring Guidelines Form B

AP Calculus BC 2003 Scoring Guidelines Form B AP Calculus BC Scorig Guidelies Form B The materials icluded i these files are iteded for use by AP teachers for course ad exam preparatio; permissio for ay other use must be sought from the Advaced Placemet

More information

Basic Elements of Arithmetic Sequences and Series

Basic Elements of Arithmetic Sequences and Series MA40S PRE-CALCULUS UNIT G GEOMETRIC SEQUENCES CLASS NOTES (COMPLETED NO NEED TO COPY NOTES FROM OVERHEAD) Basic Elemets of Arithmetic Sequeces ad Series Objective: To establish basic elemets of arithmetic

More information

Chapter One BASIC MATHEMATICAL TOOLS

Chapter One BASIC MATHEMATICAL TOOLS Chapter Oe BAIC MATHEMATICAL TOOL As the reader will see, the study of the time value of moey ivolves substatial use of variables ad umbers that are raised to a power. The power to which a variable is

More information

{{1}, {2, 4}, {3}} {{1, 3, 4}, {2}} {{1}, {2}, {3, 4}} 5.4 Stirling Numbers

{{1}, {2, 4}, {3}} {{1, 3, 4}, {2}} {{1}, {2}, {3, 4}} 5.4 Stirling Numbers . Stirlig Numbers Whe coutig various types of fuctios from., we quicly discovered that eumeratig the umber of oto fuctios was a difficult problem. For a domai of five elemets ad a rage of four elemets,

More information

.04. This means $1000 is multiplied by 1.02 five times, once for each of the remaining sixmonth

.04. This means $1000 is multiplied by 1.02 five times, once for each of the remaining sixmonth Questio 1: What is a ordiary auity? Let s look at a ordiary auity that is certai ad simple. By this, we mea a auity over a fixed term whose paymet period matches the iterest coversio period. Additioally,

More information

Approximating Area under a curve with rectangles. To find the area under a curve we approximate the area using rectangles and then use limits to find

Approximating Area under a curve with rectangles. To find the area under a curve we approximate the area using rectangles and then use limits to find 1.8 Approximatig Area uder a curve with rectagles 1.6 To fid the area uder a curve we approximate the area usig rectagles ad the use limits to fid 1.4 the area. Example 1 Suppose we wat to estimate 1.

More information

Trigonometric Form of a Complex Number. The Complex Plane. axis. ( 2, 1) or 2 i FIGURE 6.44. The absolute value of the complex number z a bi is

Trigonometric Form of a Complex Number. The Complex Plane. axis. ( 2, 1) or 2 i FIGURE 6.44. The absolute value of the complex number z a bi is 0_0605.qxd /5/05 0:45 AM Page 470 470 Chapter 6 Additioal Topics i Trigoometry 6.5 Trigoometric Form of a Complex Number What you should lear Plot complex umbers i the complex plae ad fid absolute values

More information

The Euler Totient, the Möbius and the Divisor Functions

The Euler Totient, the Möbius and the Divisor Functions The Euler Totiet, the Möbius ad the Divisor Fuctios Rosica Dieva July 29, 2005 Mout Holyoke College South Hadley, MA 01075 1 Ackowledgemets This work was supported by the Mout Holyoke College fellowship

More information

NUMBERS COMMON TO TWO POLYGONAL SEQUENCES

NUMBERS COMMON TO TWO POLYGONAL SEQUENCES NUMBERS COMMON TO TWO POLYGONAL SEQUENCES DIANNE SMITH LUCAS Chia Lake, Califoria a iteger, The polygoal sequece (or sequeces of polygoal umbers) of order r (where r is r > 3) may be defied recursively

More information

Limits, Continuity and derivatives (Stewart Ch. 2) say: the limit of f(x) equals L

Limits, Continuity and derivatives (Stewart Ch. 2) say: the limit of f(x) equals L Limits, Cotiuity ad derivatives (Stewart Ch. 2) f(x) = L say: the it of f(x) equals L as x approaches a The values of f(x) ca be as close to L as we like by takig x sufficietly close to a, but x a. If

More information

NATIONAL SENIOR CERTIFICATE GRADE 12

NATIONAL SENIOR CERTIFICATE GRADE 12 NATIONAL SENIOR CERTIFICATE GRADE MATHEMATICS P EXEMPLAR 04 MARKS: 50 TIME: 3 hours This questio paper cosists of 8 pages ad iformatio sheet. Please tur over Mathematics/P DBE/04 NSC Grade Eemplar INSTRUCTIONS

More information

Learning outcomes. Algorithms and Data Structures. Time Complexity Analysis. Time Complexity Analysis How fast is the algorithm? Prof. Dr.

Learning outcomes. Algorithms and Data Structures. Time Complexity Analysis. Time Complexity Analysis How fast is the algorithm? Prof. Dr. Algorithms ad Data Structures Algorithm efficiecy Learig outcomes Able to carry out simple asymptotic aalysisof algorithms Prof. Dr. Qi Xi 2 Time Complexity Aalysis How fast is the algorithm? Code the

More information

Lesson 15 ANOVA (analysis of variance)

Lesson 15 ANOVA (analysis of variance) Outlie Variability -betwee group variability -withi group variability -total variability -F-ratio Computatio -sums of squares (betwee/withi/total -degrees of freedom (betwee/withi/total -mea square (betwee/withi

More information

1. MATHEMATICAL INDUCTION

1. MATHEMATICAL INDUCTION 1. MATHEMATICAL INDUCTION EXAMPLE 1: Prove that for ay iteger 1. Proof: 1 + 2 + 3 +... + ( + 1 2 (1.1 STEP 1: For 1 (1.1 is true, sice 1 1(1 + 1. 2 STEP 2: Suppose (1.1 is true for some k 1, that is 1

More information

Lecture 13. Lecturer: Jonathan Kelner Scribe: Jonathan Pines (2009)

Lecture 13. Lecturer: Jonathan Kelner Scribe: Jonathan Pines (2009) 18.409 A Algorithmist s Toolkit October 27, 2009 Lecture 13 Lecturer: Joatha Keler Scribe: Joatha Pies (2009) 1 Outlie Last time, we proved the Bru-Mikowski iequality for boxes. Today we ll go over the

More information

Class Meeting # 16: The Fourier Transform on R n

Class Meeting # 16: The Fourier Transform on R n MATH 18.152 COUSE NOTES - CLASS MEETING # 16 18.152 Itroductio to PDEs, Fall 2011 Professor: Jared Speck Class Meetig # 16: The Fourier Trasform o 1. Itroductio to the Fourier Trasform Earlier i the course,

More information

Soving Recurrence Relations

Soving Recurrence Relations Sovig Recurrece Relatios Part 1. Homogeeous liear 2d degree relatios with costat coefficiets. Cosider the recurrece relatio ( ) T () + at ( 1) + bt ( 2) = 0 This is called a homogeeous liear 2d degree

More information

University of California, Los Angeles Department of Statistics. Distributions related to the normal distribution

University of California, Los Angeles Department of Statistics. Distributions related to the normal distribution Uiversity of Califoria, Los Ageles Departmet of Statistics Statistics 100B Istructor: Nicolas Christou Three importat distributios: Distributios related to the ormal distributio Chi-square (χ ) distributio.

More information

Module 4: Mathematical Induction

Module 4: Mathematical Induction Module 4: Mathematical Iductio Theme 1: Priciple of Mathematical Iductio Mathematical iductio is used to prove statemets about atural umbers. As studets may remember, we ca write such a statemet as a predicate

More information

3. Covariance and Correlation

3. Covariance and Correlation Virtual Laboratories > 3. Expected Value > 1 2 3 4 5 6 3. Covariace ad Correlatio Recall that by takig the expected value of various trasformatios of a radom variable, we ca measure may iterestig characteristics

More information

Example 2 Find the square root of 0. The only square root of 0 is 0 (since 0 is not positive or negative, so those choices don t exist here).

Example 2 Find the square root of 0. The only square root of 0 is 0 (since 0 is not positive or negative, so those choices don t exist here). BEGINNING ALGEBRA Roots ad Radicals (revised summer, 00 Olso) Packet to Supplemet the Curret Textbook - Part Review of Square Roots & Irratioals (This portio ca be ay time before Part ad should mostly

More information

Definition. A variable X that takes on values X 1, X 2, X 3,...X k with respective frequencies f 1, f 2, f 3,...f k has mean

Definition. A variable X that takes on values X 1, X 2, X 3,...X k with respective frequencies f 1, f 2, f 3,...f k has mean 1 Social Studies 201 October 13, 2004 Note: The examples i these otes may be differet tha used i class. However, the examples are similar ad the methods used are idetical to what was preseted i class.

More information

A function f whose domain is the set of positive integers is called a sequence. The values

A function f whose domain is the set of positive integers is called a sequence. The values EQUENCE: A fuctio f whose domi is the set of positive itegers is clled sequece The vlues f ( ), f (), f (),, f (), re clled the terms of the sequece; f() is the first term, f() is the secod term, f() is

More information

Chapter 6: Variance, the law of large numbers and the Monte-Carlo method

Chapter 6: Variance, the law of large numbers and the Monte-Carlo method Chapter 6: Variace, the law of large umbers ad the Mote-Carlo method Expected value, variace, ad Chebyshev iequality. If X is a radom variable recall that the expected value of X, E[X] is the average value

More information

The second difference is the sequence of differences of the first difference sequence, 2

The second difference is the sequence of differences of the first difference sequence, 2 Differece Equatios I differetial equatios, you look for a fuctio that satisfies ad equatio ivolvig derivatives. I differece equatios, istead of a fuctio of a cotiuous variable (such as time), we look for

More information

NATIONAL SENIOR CERTIFICATE GRADE 11

NATIONAL SENIOR CERTIFICATE GRADE 11 NATIONAL SENIOR CERTIFICATE GRADE MATHEMATICS P NOVEMBER 007 MARKS: 50 TIME: 3 hours This questio paper cosists of 9 pages, diagram sheet ad a -page formula sheet. Please tur over Mathematics/P DoE/November

More information

BINOMIAL EXPANSIONS 12.5. In this section. Some Examples. Obtaining the Coefficients

BINOMIAL EXPANSIONS 12.5. In this section. Some Examples. Obtaining the Coefficients 652 (12-26) Chapter 12 Sequeces ad Series 12.5 BINOMIAL EXPANSIONS I this sectio Some Examples Otaiig the Coefficiets The Biomial Theorem I Chapter 5 you leared how to square a iomial. I this sectio you

More information

Distributions of Order Statistics

Distributions of Order Statistics Chapter 2 Distributios of Order Statistics We give some importat formulae for distributios of order statistics. For example, where F k: (x)=p{x k, x} = I F(x) (k, k + 1), I x (a,b)= 1 x t a 1 (1 t) b 1

More information

WHEN IS THE (CO)SINE OF A RATIONAL ANGLE EQUAL TO A RATIONAL NUMBER?

WHEN IS THE (CO)SINE OF A RATIONAL ANGLE EQUAL TO A RATIONAL NUMBER? WHEN IS THE (CO)SINE OF A RATIONAL ANGLE EQUAL TO A RATIONAL NUMBER? JÖRG JAHNEL 1. My Motivatio Some Sort of a Itroductio Last term I tought Topological Groups at the Göttige Georg August Uiversity. This

More information

Incremental calculation of weighted mean and variance

Incremental calculation of weighted mean and variance Icremetal calculatio of weighted mea ad variace Toy Fich faf@cam.ac.uk dot@dotat.at Uiversity of Cambridge Computig Service February 009 Abstract I these otes I eplai how to derive formulae for umerically

More information

Repeating Decimals are decimal numbers that have number(s) after the decimal point that repeat in a pattern.

Repeating Decimals are decimal numbers that have number(s) after the decimal point that repeat in a pattern. 5.5 Fractios ad Decimals Steps for Chagig a Fractio to a Decimal. Simplify the fractio, if possible. 2. Divide the umerator by the deomiator. d d Repeatig Decimals Repeatig Decimals are decimal umbers

More information

GCE Further Mathematics (6360) Further Pure Unit 2 (MFP2) Textbook. Version: 1.4

GCE Further Mathematics (6360) Further Pure Unit 2 (MFP2) Textbook. Version: 1.4 GCE Further Mathematics (660) Further Pure Uit (MFP) Tetbook Versio: 4 MFP Tetbook A-level Further Mathematics 660 Further Pure : Cotets Chapter : Comple umbers 4 Itroductio 5 The geeral comple umber 5

More information

Chapter 7 - Sampling Distributions. 1 Introduction. What is statistics? It consist of three major areas:

Chapter 7 - Sampling Distributions. 1 Introduction. What is statistics? It consist of three major areas: Chapter 7 - Samplig Distributios 1 Itroductio What is statistics? It cosist of three major areas: Data Collectio: samplig plas ad experimetal desigs Descriptive Statistics: umerical ad graphical summaries

More information

Algebra Vocabulary List (Definitions for Middle School Teachers)

Algebra Vocabulary List (Definitions for Middle School Teachers) Algebra Vocabulary List (Defiitios for Middle School Teachers) A Absolute Value Fuctio The absolute value of a real umber x, x is xifx 0 x = xifx < 0 http://www.math.tamu.edu/~stecher/171/f02/absolutevaluefuctio.pdf

More information

AP Calculus AB 2006 Scoring Guidelines Form B

AP Calculus AB 2006 Scoring Guidelines Form B AP Calculus AB 6 Scorig Guidelies Form B The College Board: Coectig Studets to College Success The College Board is a ot-for-profit membership associatio whose missio is to coect studets to college success

More information

Modified Line Search Method for Global Optimization

Modified Line Search Method for Global Optimization Modified Lie Search Method for Global Optimizatio Cria Grosa ad Ajith Abraham Ceter of Excellece for Quatifiable Quality of Service Norwegia Uiversity of Sciece ad Techology Trodheim, Norway {cria, ajith}@q2s.tu.o

More information

Chapter 7 Methods of Finding Estimators

Chapter 7 Methods of Finding Estimators Chapter 7 for BST 695: Special Topics i Statistical Theory. Kui Zhag, 011 Chapter 7 Methods of Fidig Estimators Sectio 7.1 Itroductio Defiitio 7.1.1 A poit estimator is ay fuctio W( X) W( X1, X,, X ) of

More information

7. Sample Covariance and Correlation

7. Sample Covariance and Correlation 1 of 8 7/16/2009 6:06 AM Virtual Laboratories > 6. Radom Samples > 1 2 3 4 5 6 7 7. Sample Covariace ad Correlatio The Bivariate Model Suppose agai that we have a basic radom experimet, ad that X ad Y

More information

EGYPTIAN FRACTION EXPANSIONS FOR RATIONAL NUMBERS BETWEEN 0 AND 1 OBTAINED WITH ENGEL SERIES

EGYPTIAN FRACTION EXPANSIONS FOR RATIONAL NUMBERS BETWEEN 0 AND 1 OBTAINED WITH ENGEL SERIES EGYPTIAN FRACTION EXPANSIONS FOR RATIONAL NUMBERS BETWEEN 0 AND OBTAINED WITH ENGEL SERIES ELVIA NIDIA GONZÁLEZ AND JULIA BERGNER, PHD DEPARTMENT OF MATHEMATICS Abstract. The aciet Egyptias epressed ratioal

More information

CHAPTER 3 THE TIME VALUE OF MONEY

CHAPTER 3 THE TIME VALUE OF MONEY CHAPTER 3 THE TIME VALUE OF MONEY OVERVIEW A dollar i the had today is worth more tha a dollar to be received i the future because, if you had it ow, you could ivest that dollar ad ear iterest. Of all

More information

The Field Q of Rational Numbers

The Field Q of Rational Numbers Chapter 3 The Field Q of Ratioal Numbers I this chapter we are goig to costruct the ratioal umber from the itegers. Historically, the positive ratioal umbers came first: the Babyloias, Egyptias ad Grees

More information

CS103X: Discrete Structures Homework 4 Solutions

CS103X: Discrete Structures Homework 4 Solutions CS103X: Discrete Structures Homewor 4 Solutios Due February 22, 2008 Exercise 1 10 poits. Silico Valley questios: a How may possible six-figure salaries i whole dollar amouts are there that cotai at least

More information

Lecture 4: Cheeger s Inequality

Lecture 4: Cheeger s Inequality Spectral Graph Theory ad Applicatios WS 0/0 Lecture 4: Cheeger s Iequality Lecturer: Thomas Sauerwald & He Su Statemet of Cheeger s Iequality I this lecture we assume for simplicity that G is a d-regular

More information

Maximum Likelihood Estimators.

Maximum Likelihood Estimators. Lecture 2 Maximum Likelihood Estimators. Matlab example. As a motivatio, let us look at oe Matlab example. Let us geerate a radom sample of size 00 from beta distributio Beta(5, 2). We will lear the defiitio

More information

NATIONAL SENIOR CERTIFICATE GRADE 12

NATIONAL SENIOR CERTIFICATE GRADE 12 NATIONAL SENIOR CERTIFICATE GRADE MATHEMATICS P NOVEMBER 0 MARKS: 50 TIME: 3 hours This questio paper cosists of 8 pages, diagram sheet ad iformatio sheet. Please tur over Mathematics/P DBE/November 0

More information

Factoring x n 1: cyclotomic and Aurifeuillian polynomials Paul Garrett <garrett@math.umn.edu>

Factoring x n 1: cyclotomic and Aurifeuillian polynomials Paul Garrett <garrett@math.umn.edu> (March 16, 004) Factorig x 1: cyclotomic ad Aurifeuillia polyomials Paul Garrett Polyomials of the form x 1, x 3 1, x 4 1 have at least oe systematic factorizatio x 1 = (x 1)(x 1

More information

1 Set Theory and Functions

1 Set Theory and Functions Set Theory ad Fuctios. Basic De itios ad Notatio A set A is a collectio of objects of ay kid. We write a A to idicate that a is a elemet of A: We express this as a is cotaied i A. We write A B if every

More information

FIBONACCI NUMBERS: AN APPLICATION OF LINEAR ALGEBRA. 1. Powers of a matrix

FIBONACCI NUMBERS: AN APPLICATION OF LINEAR ALGEBRA. 1. Powers of a matrix FIBONACCI NUMBERS: AN APPLICATION OF LINEAR ALGEBRA. Powers of a matrix We begi with a propositio which illustrates the usefuless of the diagoalizatio. Recall that a square matrix A is diogaalizable if

More information

Case Study. Normal and t Distributions. Density Plot. Normal Distributions

Case Study. Normal and t Distributions. Density Plot. Normal Distributions Case Study Normal ad t Distributios Bret Halo ad Bret Larget Departmet of Statistics Uiversity of Wiscosi Madiso October 11 13, 2011 Case Study Body temperature varies withi idividuals over time (it ca

More information

Here are a couple of warnings to my students who may be here to get a copy of what happened on a day that you missed.

Here are a couple of warnings to my students who may be here to get a copy of what happened on a day that you missed. This documet was writte ad copyrighted by Paul Dawkis. Use of this documet ad its olie versio is govered by the Terms ad Coditios of Use located at http://tutorial.math.lamar.edu/terms.asp. The olie versio

More information

THE ARITHMETIC OF INTEGERS. - multiplication, exponentiation, division, addition, and subtraction

THE ARITHMETIC OF INTEGERS. - multiplication, exponentiation, division, addition, and subtraction THE ARITHMETIC OF INTEGERS - multiplicatio, expoetiatio, divisio, additio, ad subtractio What to do ad what ot to do. THE INTEGERS Recall that a iteger is oe of the whole umbers, which may be either positive,

More information

SEQUENCES AND SERIES CHAPTER

SEQUENCES AND SERIES CHAPTER CHAPTER SEQUENCES AND SERIES Whe the Grat family purchased a computer for $,200 o a istallmet pla, they agreed to pay $00 each moth util the cost of the computer plus iterest had bee paid The iterest each

More information

Figure 40.1. Figure 40.2

Figure 40.1. Figure 40.2 40 Regular Polygos Covex ad Cocave Shapes A plae figure is said to be covex if every lie segmet draw betwee ay two poits iside the figure lies etirely iside the figure. A figure that is ot covex is called

More information

2-3 The Remainder and Factor Theorems

2-3 The Remainder and Factor Theorems - The Remaider ad Factor Theorems Factor each polyomial completely usig the give factor ad log divisio 1 x + x x 60; x + So, x + x x 60 = (x + )(x x 15) Factorig the quadratic expressio yields x + x x

More information

MARTINGALES AND A BASIC APPLICATION

MARTINGALES AND A BASIC APPLICATION MARTINGALES AND A BASIC APPLICATION TURNER SMITH Abstract. This paper will develop the measure-theoretic approach to probability i order to preset the defiitio of martigales. From there we will apply this

More information

Unbiased Estimation. Topic 14. 14.1 Introduction

Unbiased Estimation. Topic 14. 14.1 Introduction Topic 4 Ubiased Estimatio 4. Itroductio I creatig a parameter estimator, a fudametal questio is whether or ot the estimator differs from the parameter i a systematic maer. Let s examie this by lookig a

More information

Using Excel to Construct Confidence Intervals

Using Excel to Construct Confidence Intervals OPIM 303 Statistics Ja Stallaert Usig Excel to Costruct Cofidece Itervals This hadout explais how to costruct cofidece itervals i Excel for the followig cases: 1. Cofidece Itervals for the mea of a populatio

More information

An Efficient Polynomial Approximation of the Normal Distribution Function & Its Inverse Function

An Efficient Polynomial Approximation of the Normal Distribution Function & Its Inverse Function A Efficiet Polyomial Approximatio of the Normal Distributio Fuctio & Its Iverse Fuctio Wisto A. Richards, 1 Robi Atoie, * 1 Asho Sahai, ad 3 M. Raghuadh Acharya 1 Departmet of Mathematics & Computer Sciece;

More information

How Euler Did It. Since we discussed the first part of this paper last February, we will start in the middle of this paper, with Euler s Theorem 7:

How Euler Did It. Since we discussed the first part of this paper last February, we will start in the middle of this paper, with Euler s Theorem 7: How Euler Did It Ifiitely may rimes March 2006 Why are there so very may rime umbers? by Ed Sadifer Euclid wodered this more tha 200 years ago, ad his roof that Prime umbers are more tha ay assiged multitude

More information

1 Correlation and Regression Analysis

1 Correlation and Regression Analysis 1 Correlatio ad Regressio Aalysis I this sectio we will be ivestigatig the relatioship betwee two cotiuous variable, such as height ad weight, the cocetratio of a ijected drug ad heart rate, or the cosumptio

More information

THIN SEQUENCES AND THE GRAM MATRIX PAMELA GORKIN, JOHN E. MCCARTHY, SANDRA POTT, AND BRETT D. WICK

THIN SEQUENCES AND THE GRAM MATRIX PAMELA GORKIN, JOHN E. MCCARTHY, SANDRA POTT, AND BRETT D. WICK THIN SEQUENCES AND THE GRAM MATRIX PAMELA GORKIN, JOHN E MCCARTHY, SANDRA POTT, AND BRETT D WICK Abstract We provide a ew proof of Volberg s Theorem characterizig thi iterpolatig sequeces as those for

More information

Cooley-Tukey. Tukey FFT Algorithms. FFT Algorithms. Cooley

Cooley-Tukey. Tukey FFT Algorithms. FFT Algorithms. Cooley Cooley Cooley-Tuey Tuey FFT Algorithms FFT Algorithms Cosider a legth- sequece x[ with a -poit DFT X[ where Represet the idices ad as +, +, Cooley Cooley-Tuey Tuey FFT Algorithms FFT Algorithms Usig these

More information

M06/5/MATME/SP2/ENG/TZ2/XX MATHEMATICS STANDARD LEVEL PAPER 2. Thursday 4 May 2006 (morning) 1 hour 30 minutes INSTRUCTIONS TO CANDIDATES

M06/5/MATME/SP2/ENG/TZ2/XX MATHEMATICS STANDARD LEVEL PAPER 2. Thursday 4 May 2006 (morning) 1 hour 30 minutes INSTRUCTIONS TO CANDIDATES IB MATHEMATICS STANDARD LEVEL PAPER 2 DIPLOMA PROGRAMME PROGRAMME DU DIPLÔME DU BI PROGRAMA DEL DIPLOMA DEL BI 22067304 Thursday 4 May 2006 (morig) 1 hour 30 miutes INSTRUCTIONS TO CANDIDATES Do ot ope

More information

Analysis Notes (only a draft, and the first one!)

Analysis Notes (only a draft, and the first one!) Aalysis Notes (oly a draft, ad the first oe!) Ali Nesi Mathematics Departmet Istabul Bilgi Uiversity Kuştepe Şişli Istabul Turkey aesi@bilgi.edu.tr Jue 22, 2004 2 Cotets 1 Prelimiaries 9 1.1 Biary Operatio...........................

More information

The following example will help us understand The Sampling Distribution of the Mean. C1 C2 C3 C4 C5 50 miles 84 miles 38 miles 120 miles 48 miles

The following example will help us understand The Sampling Distribution of the Mean. C1 C2 C3 C4 C5 50 miles 84 miles 38 miles 120 miles 48 miles The followig eample will help us uderstad The Samplig Distributio of the Mea Review: The populatio is the etire collectio of all idividuals or objects of iterest The sample is the portio of the populatio

More information

SOME GEOMETRY IN HIGH-DIMENSIONAL SPACES

SOME GEOMETRY IN HIGH-DIMENSIONAL SPACES SOME GEOMETRY IN HIGH-DIMENSIONAL SPACES MATH 57A. Itroductio Our geometric ituitio is derived from three-dimesioal space. Three coordiates suffice. May objects of iterest i aalysis, however, require far

More information