An Automotive Radiator Employing Wickless Heat Pipes

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "An Automotive Radiator Employing Wickless Heat Pipes"

Transcription

1 An Automotive Radiator Employing Wickless Heat Pipes Yiding Cao and Khokiat Kengskool 2 Abstract: Heat pipe is a heat transfer device that may have a thermal conductance hundreds of times higher than that of copper. Currently, heat pipes have been used in numerous applications including satellite thermal management, energy systems for energy recovery and energy conversion, and electronics cooling, particularly in laptop and desktop computers. In this paper, a new application of the heat pipe in an automotive engine is introduced. In this application, heat pipes are incorporated into the radiator of the automotive engine for more efficient heat transfer. In particular, the employment of the heat pipes would allow the gravity to be used as the driving force for the liquid return from the condenser section to the evaporator section, so that the costs of the heat pipe can be drastically reduced. With the employment of the heat pipe, the engine radiator can be made more compact or the cooling load of the radiator can be increased for heavy-duty engines, while the power consumption of the cooling fan can be reduced for higher energy efficiency. Keywords: High Tech Radiator, Heat Pipes Application, Radiator Heat Pipes, Compact Radiator, High Efficiency Radiator. Introduction: Thermal radiator is an important part of an automobile engine, and it has the functions of preventing engine from overheating and regulating engine temperature. High temperatures in an engine can cause oil to thin, engine parts to expand, lubrication to break down, and moving parts to be damaged. A more effective radiator will reduce engine temperature in the hot environments, while consume less power from the engine, therefore, the engine thermal efficiency can be increased. The current radiator design utilizes single-phase flow in coolant tubes and cooling fins outside the tubes to increase the heat transfer area between the radiator and cooling air. A typical radiator design is schematically shown in Fig. (a). The radiator has a tank at each end. Hot coolant enters an inlet at top of one tank, flows across the flat core tubes, and returns to the engine through an outlet at the bottom of the other tank. The transmission oil cooler could also be installed in one of the tanks. Most radiator cores are a series of flat copper or aluminum tubes separated by cooling fins (Fig. (b)). Heat transfers from the coolant to the metal of the tubes and fins and then to the air flow passing through the core. The number and size of flat tubes and fins determine the radiator surface and heat transfer ability.. Yiding Cao, PhD. is currently a full Professor in the Department of Mechanical and Materials Engineering, Florida International University, Miami, Florida. 2. Khokiat Kengskool, PhD. is currently an Associate Professor in the Department of Industrial and Systems Engineering, Florida International University, Miami, Florida.

2 Heat pipes including two-phase closed thermosyphons are two-phase heat transfer devices with an effective thermal conductance hundreds of times higher than that of copper. Heat pipes have found broad applications in many areas such as energy conservation and conservation, thermal management of aircraft and spacecraft, and electric and electronic cooling. For the terrestrial applications, gravity is often used to assistant the return of the liquid condensate and no wick structure is needed inside the heat pipe, and the this type of heat pipes is often referred to as two-phase closed thermosyphons. Figure 2 schematically shows a two-phase closed thermosyphon. The working principles of two-phase closed thermosyphons are briefly described as the following: A small amount of working liquid is filled in a tube or other type of container. Air is evacuated from the container and the container is sealed. Heat is applied to the evaporator section, which causes the liquid to vaporize. The vapor then flows from the hotter section due to the higher vapor pressure to the colder section of the heat pipe, where it is condensed. The liquid condensate then returns to the evaporator section from the condenser section under the assistance of gravity. Since the latent heat of vaporization is very large, high heat transfer rates can be achieved with a small temperature difference between the evaporator and condenser sections, and consequently, the temperature is rather uniform along the heat pipe length. Since heat pipes are very efficient two-phase heat transfer devices, a radiator using heat pipes will have a much higher cooling efficiency compared to the conventional single-phase automotive radiators. The higher cooling efficiency of the heat pipe radiator will reduce the engine temperature in a hot environment and the power consumption of the engine cooling system, and consequently increase the thermal efficiency of the automotive engine. It will also increase performance reliability and increase the operational life of the radiator. Heat Pipe Automotive Radiator and its Technological Advantages over Conventional Radiators: Figure 3 schematically shows a proposed heat pipe automotive radiator. The radiator consists a number of flat heat pipes. The heat pipes are wickless heat pipes and are basically two-phase closed thermosyphons. The lower unfinned section of the heat pipe works as evaporator, which is in contact with coolant from the engine and absorbs heat from the coolant. The upper finned section works as condenser, which is in contact with the cooling air flow and rejects the heat to the cooling air (Fig. 3b). The hot coolant from the hose is directed through the inlet passage to the first row of the heat pipes in the lower section (Fig. 3c). The coolant passes through the first row, reflects to the second row due to the baffle, and eventually flows out of the radiator in the outlet. The working fluid inside the heat pipes can be different from the engine coolant. Since the heat pipe has been evacuated, the heat transfer inside the heat pipe is always a two- phase heat transfer process. The heat pipe absorbs heat in the lower section from the engine coolant and transfers the heat 2

3 from the exterior surface to the interior surface of the heat pipe, where the evaporation of the heat pipe working fluid takes places. The vapor in the evaporator section flows upwards to the condenser section, and condenses on the interior surface. The latent heat released by the condensate transfers through the container to the exterior surface and fins, where the heat is rejected to the cooling air. The condensed liquid in the upper section flows back to lower section due to gravity to complete the cycle. The heat pipe temperature is rather uniform along the heat pipe length due to the two-phase heat transfer mechanism, and is very close to the local engine coolant temperature passing through the exterior unfinned surface of the heat pipe in the lower section, due to the much larger heat transfer coefficient of cross liquid flow compared to that of cross air flow in the upper section. The heat pipe radiator design proposed here will not alter any basic design of an automotive engine. The types of cooling fins used for conventional radiators can still be used as the heat pipe cooling fins, which are shown in Fig. 2(b). The coolant used in the conventional radiator such as the mixture of water and ethylene glycol can still be used. The functions of pressure cap and the coolant drain are still the same. Also, other cooler such as transmission oil cooler can be installed in the right-side tank, and the coolant can be directed by baffles in the tank to pass through the oil cooler. However, the heat pipe radiator has the following technological advantages:. Higher effectiveness of heat exchange due to the counter-flow mode. The effectiveness of a heat exchanger is defined as (Chi, 976): Q () C T h T ) min (, i c, i where Q is the heat transfer rate, C,,, is the heat capacity rate defined as the product of the specific heat and mass flow rate of the hot or cold fluid, whichever is smaller, and Tki and T,,, are the inlet temperatures of the hot and cold fluids, respectively. It has been shown theoretically that other things being equal the counter-flow heat exchanger has higher effectiveness than either the parallel-flow or cross-flow heat exchanger. For example, if the capacity rates for the hot and cold fluids are equal, the maximum effectiveness for the counter-flow, cross-flow, and parallel-flow heat exchangers are, 0.75, and 0.5, respectively. Referred to Fig., the heat transfer between the air flow and the coolant flow in the finned tubes is a typical cross-flow mode. However, for the heat pipe radiator (Fig. 3), the heat transfer between the air flow and the coolant is a typical counter-flow mode due to the coolant flow arrangement in the lower tank and the isothermal characteristics of the heat pipes (extremely high effective thermal conductance). For the two types of radiators with the same dimension and fan power, a heat pipe radiator with a significantly higher effectiveness will reduce the maximum coolant temperature more effectively. 3

4 2. Increasing the reliability of radiators. For both conventional and heat pipe radiators, the most vulnerable section is the finned radiator core. For conventional radiators, the coolant tubes are interconnected through the inlet and outlet tanks. Any leakage from a single thin-walled coolant tube will result in a catastrophic failure for the whole radiator. For heat pipe radiator, however, it consists of a number of independent heat pipes. A damage of an individual heat pipe in the finned section will not result in a leakage of the engine coolant and will not affect the operation of other heat pipes, and the radiator as a whole can still operate properly. Therefore, the reliability of the radiator can be significantly increased. This is especially important for military vehicle where the reliability is one of the most important concerns for the radiator design. 3. Increasing the overall heat transfer coefficient between air flow and coolant. For conventional radiators, the overall heat transfer coefficient between the air flow and the coolant in tubes, with the neglect of conduction resistance of tube wall, can be expressed as (Incropera and DeWitt, 990): U A c c U A h h h A o c c h A h h (2) where U, is the overall heat transfer coefficient based on the total air-side surface area, A c ; Uh is the overall heat transfer coefficient based on the total water-side area, Ah; 97 0 is the overall surface efficiency of the air-side finned surface; and h h is the coolant side heat transfer coefficient in the tube. For many air/water heat exchangers, the first term on the right-hand side of the above equation is much larger than the second term due to the usually much smaller value of II, than that of h h, For current compact heat exchangers used in automotive engines, however, the two terms on the righthand side of the equation have the same magnitude. (Incropera and Dewitt, 990). Therefore, increasing coolant side heat transfer coefficient also has a significant importance. For the heat pipe radiator, the corresponding overall heat transfer coefficient can be written as: R (3) hp A cu ' c ohc Ac hhp Ahp, e where Rhp is the total interior thermal resistance of the heat pipes; h hp is the coolant cross flow heat transfer coefficient in lower coolant tank that corresponds to the heat pipe evaporators; and A hme is the total outer surface area of the heat pipe evaporators. Since the heat pipe is a two-phase flow heat transfer device, the total interior thermal resistance due to evaporation and condensation is comparatively small. As a first approximation, thermal resistance Rhp can be neglected. Since the turbulent cross flow heat transfer coefficient, h hp, is much higher than h h of the laminar flow inside the flat tubes in Eq. (2), the overall heat transfer coefficient U', for the heat pipe radiator 4

5 could be much higher than U, for the conventional radiator in Eq. (2). As a result, the power consumption of the cooling fan, or the size of the radiator core can be significantly reduced. The compactness of the heat pipe heat exchangers is a common feature in many applications including the waste heat recovery. Klaschka (979) compared the plate type and heat pipe heat exchangers that were designed to operate in the same heat recovery application, and found that the compactness of the heat pipe heat exchanger is nearly 75 percent higher than that of the corresponding plate type heat exchanger. 4. Reducing the coolant pressure drop and power consumption of the coolant pump. For conventional radiators, coolant enters the inlet tank, flows through the thin core tubes, and leaves the radiator at the outlet tank. Since the number of the core tubes is large, and the flow cross sectional area of the core tube is very small, the coolant pressure drop over the radiator is relatively high. This is especially true for the current automobile design where the flat core tube is made to be extremely thin to increase the air side cooling area. For the heat pipe radiator, however, the coolant is only required to flow through the lower coolant tank and cross the smooth-walled lower sections of the heat pipes. Therefore, the coolant pressure drop over the radiator is much smaller compared to that of the conventional radiators, and the power consumption of the coolant pumped can be significantly reduced. References: Chi, S.W., 976, Heat Pipe Theory and Practice: A Sourcebook, Hemisphere Publishing Corporation, New York. Dunn, P. and Reay, D.A., 982, Heat Pipes, Pergamon Press, Oxford. Faghri, A., Chen, M.M., and Morgan, M., 989, "Heat Transfer in Two-Phase Closed Conventional and Concentric Annular Thermosyphons," ASME J. Heat Transfer, Vol., pp Kelm, W.A., 987, Diesel Engine Mechanics, TAB Books Inc. Klaschka, J.T., 979, "Development of Heat Exchangers for Waste Heat Recovery", Energy for Industry, P.W. O'Callaghan ed., Pergamon Press, Oxford. Layne, K., 986, Automotive Engine Performance, John Wiley & Sons, New York. Incropera, F.P. and DeWitt, D.P., 990, Fundamentals of Heat and Mass Transfer, 3rd Ed., John Wiley & Sons, New York. Tien, C.L. and Chung, K.S., 978, "Entrainment Limits in Heat Pipes", Proc. 3rd Int. Heat Pipe Conf., Palo Alto, California, pp

6 6

7 7

8 8

Chapter 11. Objectives

Chapter 11. Objectives Chapter 11 Heat Exchangers Islamic Azad University Karaj Branch Objectives When you finish studying this chapter, you should be able to: Recognize numerous types of heat exchangers, and classify them,

More information

Vapor Chambers. Figure 1: Example of vapor chamber. Benefits of Using Vapor Chambers

Vapor Chambers. Figure 1: Example of vapor chamber. Benefits of Using Vapor Chambers Vapor Chambers A vapor chamber is a high-end thermal management device that can evenly dissipate heat from a small source to a large platform of area (see Figure 1). It has a similar construction and mechanism

More information

A heat pipe heat recovery heat exchanger for a mini-drier

A heat pipe heat recovery heat exchanger for a mini-drier A heat pipe heat recovery heat exchanger for a mini-drier A Meyer Department of Mechanical Engineering, University of Stellenbosch, Stellenbosch R T Dobson Department of Mechanical Engineering, University

More information

THE PSEUDO SINGLE ROW RADIATOR DESIGN

THE PSEUDO SINGLE ROW RADIATOR DESIGN International Journal of Mechanical Engineering and Technology (IJMET) Volume 7, Issue 1, Jan-Feb 2016, pp. 146-153, Article ID: IJMET_07_01_015 Available online at http://www.iaeme.com/ijmet/issues.asp?jtype=ijmet&vtype=7&itype=1

More information

16. Heat Pipes in Electronics Cooling (2)

16. Heat Pipes in Electronics Cooling (2) 16. Heat Pipes in Electronics Cooling (2) 16.1 Pulsating Heat Pipes 16.1.1Introduction Conventional heat pipe technology has been successfully applied in the last thirty years for the thermal management

More information

ECH 4224L Unit Operations Lab I Thin Film Evaporator. Introduction. Objective

ECH 4224L Unit Operations Lab I Thin Film Evaporator. Introduction. Objective Introduction In this experiment, you will use thin-film evaporator (TFE) to separate a mixture of water and ethylene glycol (EG). In a TFE a mixture of two fluids runs down a heated inner wall of a cylindrical

More information

Fundamentals of Heat and Mass Transfer

Fundamentals of Heat and Mass Transfer 2008 AGI-Information Management Consultants May be used for personal purporses only or by libraries associated to dandelon.com network. SIXTH EDITION Fundamentals of Heat and Mass Transfer FRANK P. INCROPERA

More information

LESSON 1. HEAT EXCHANGERS

LESSON 1. HEAT EXCHANGERS LESSON 1. HEAT EXCHANGERS 1 Contents (I) Definition. Classification. Regenerators. Mixers or direct contact heat exchangers. Packed bed heat exchangers (Intercambiadores de lecho compacto). Direct flame

More information

ME 315 - Heat Transfer Laboratory. Experiment No. 7 ANALYSIS OF ENHANCED CONCENTRIC TUBE AND SHELL AND TUBE HEAT EXCHANGERS

ME 315 - Heat Transfer Laboratory. Experiment No. 7 ANALYSIS OF ENHANCED CONCENTRIC TUBE AND SHELL AND TUBE HEAT EXCHANGERS ME 315 - Heat Transfer Laboratory Nomenclature Experiment No. 7 ANALYSIS OF ENHANCED CONCENTRIC TUBE AND SHELL AND TUBE HEAT EXCHANGERS A heat exchange area, m 2 C max maximum specific heat rate, J/(s

More information

Heat Pipe Heat Exchangers. Dr Amir Amini Group Heat Transfer Solution May 2013

Heat Pipe Heat Exchangers. Dr Amir Amini Group Heat Transfer Solution May 2013 Dr Amir Amini Group Heat Transfer Solution May 2013 Heat pipe comprises : Tube filled with a working fluid, Wick Structures : Sintered, Groove and Mesh Using the latent capacity of the fluid, we can transfer

More information

Heat Exchangers. Heat Exchanger Types. Heat Exchanger Types. Applied Heat Transfer Part Two. Topics of This chapter

Heat Exchangers. Heat Exchanger Types. Heat Exchanger Types. Applied Heat Transfer Part Two. Topics of This chapter Applied Heat Transfer Part Two Heat Excangers Dr. Amad RAMAZANI S.A. Associate Professor Sarif University of Tecnology انتقال حرارت کاربردی احمد رمضانی سعادت ا بادی Autumn, 1385 (2006) Ramazani, Heat Excangers

More information

HEAT TRANSFER ENHANCEMENT ON DOUBLE PIPE HEAT EXCHANGER BY WIRE COILED AND TAPER WIRE COILED TURBULATOR INSERTS

HEAT TRANSFER ENHANCEMENT ON DOUBLE PIPE HEAT EXCHANGER BY WIRE COILED AND TAPER WIRE COILED TURBULATOR INSERTS HEAT TRANSFER ENHANCEMENT ON DOUBLE PIPE HEAT EXCHANGER BY WIRE COILED AND TAPER WIRE COILED TURBULATOR INSERTS J.Kalil basha 1,G.Karthikeyan 2, S.Karuppusamy 3 1,2 Assistant Professor, Dhanalakshmi Srinivasan

More information

Volkswagen B3 Passat General-Engine 4 CYL. 19 Engine - Cooling System (Page GR-19)

Volkswagen B3 Passat General-Engine 4 CYL. 19 Engine - Cooling System (Page GR-19) 19 Engine - Cooling System (Page GR-19) Cooling system draining and filling general information Body components, layout Engine components, layout Radiator fan run-on checking Recommended mixture ratios

More information

Design of heat exchangers

Design of heat exchangers Design of heat exchangers Exchanger Design Methodology The problem of heat exchanger design is complex and multidisciplinary. The major design considerations for a new heat exchanger include: process/design

More information

COIL INPUT SCREENS. ITEM NUMBER: Always use a 1 through? In this field you might also use a dash and place quantity of coils here.

COIL INPUT SCREENS. ITEM NUMBER: Always use a 1 through? In this field you might also use a dash and place quantity of coils here. COIL INPUT SCREENS Example of a Water Coil Input Screen: (*please see the appendix for an example of an Evaporator, Steam or Condenser Coil input screen) PHYSICAL DATA ITEM NUMBER: Always use a 1 through?

More information

Simulation and CFD Analysis of heat pipe heat exchanger using Fluent to increase of the thermal efficiency

Simulation and CFD Analysis of heat pipe heat exchanger using Fluent to increase of the thermal efficiency Simulation and CFD Analysis of heat pipe heat exchanger using Fluent to increase of the thermal efficiency M. H. SABER, H. MAZAHER ASHTIANI CFD department Fanavar Petro Arya engineering Co. Tehran, Saharak

More information

Volkswagen New Beetle 2.0 Liter 4-cyl General, Engine (Engine Code AEG) 19 Engine-Cooling system (Page GR-19)

Volkswagen New Beetle 2.0 Liter 4-cyl General, Engine (Engine Code AEG) 19 Engine-Cooling system (Page GR-19) 19 Engine-Cooling system (Page GR-19) Cooling system components, removing and installing Coolant hose connection diagram Coolant pump, removing and installing Cooling system components (body side), removing

More information

CoolTop. A unique water cooled air-conditioning unit for server room cooling from the top AC-TOPx-CW-240/60

CoolTop. A unique water cooled air-conditioning unit for server room cooling from the top AC-TOPx-CW-240/60 CoolTop A unique water cooled air-conditioning unit for server room cooling from the top AC-TOPx-CW-240/60 Application CoolTop is a new, unique air conditioning unit especially designed for datacenters.

More information

Chapter 8: Heat Exchangers

Chapter 8: Heat Exchangers Chapter 8: Heat Exchangers Section 8.1: Introduction to Heat Exchangers 8.1-1 (8-1 in text) Dry air at T a,in = 30 C, and atmospheric pressure is blown at V a = 1.0 m 3 /s through a cross-flow heat exchanger

More information

Technical data. Danfoss DHP-A

Technical data. Danfoss DHP-A Technical data Danfoss DHP-A An air heat pump which produces both heat and hot water Can operate efficiently down to -0 C Danfoss TWS tank gives plenty of hot water quickly and with low operating costs

More information

Macroscopic Balances for Nonisothermal Systems

Macroscopic Balances for Nonisothermal Systems Transport Phenomena Macroscopic Balances for Nonisothermal Systems 1 Macroscopic Balances for Nonisothermal Systems 1. The macroscopic energy balance 2. The macroscopic mechanical energy balance 3. Use

More information

How Ground/Water Source Heat Pumps Work

How Ground/Water Source Heat Pumps Work How Ground/Water Source s Work Steve Kavanaugh, Professor Emeritus of Mechanical Engineering, University of Alabama Ground Source s (a.k.a. Geothermal s) are becoming more common as the costs of energy

More information

ENGINE COOLING SYSTEM

ENGINE COOLING SYSTEM ENGINE COOLING SYSTEM 3.1 Necessity for cooling In an internal combustion engine, the fuel is burned within the engine cylinder. During combustion, high temperatures are reached within the cylinder, for

More information

ENGINE COOLING SYSTEM

ENGINE COOLING SYSTEM ENGINE COOLING SYSTEM 1988 Toyota Celica 1987-88 TOYOTA Engine Cooling Systems Celica DESCRIPTION The basic liquid cooling system consists of a radiator, water pump, thermostat, cooling fan, pressure cap,

More information

DESIGN OF AIR CONDITIONING SYSTEM IN AUTOMOBILE

DESIGN OF AIR CONDITIONING SYSTEM IN AUTOMOBILE DESIGN OF AIR CONDITIONING SYSTEM IN AUTOMOBILE Md Shahid Imam, Dr.M.Shameer Basha, Dr.Md.Azizuddin, Dr. K.Vijaya Kumar Reddy 4 M.Tech HVAC II Yr, Royal Institute of Technology & Science Chevella R.R Dist

More information

A/C refrigerant system, overview

A/C refrigerant system, overview Page 1 of 19 87-18 A/C refrigerant system, overview A/C refrigerant system, identification Typical A/C refrigerant system with expansion valve and receiver drier 1 - Evaporator 2 - Expansion valve 3 -

More information

Air-sourced 90 Hot Water Supplying Heat Pump "HEM-90A"

Air-sourced 90 Hot Water Supplying Heat Pump HEM-90A Air-sourced 90 Hot Water Supplying Heat Pump "HEM-90A" Takahiro OUE *1, Kazuto OKADA *1 *1 Refrigeration System & Energy Dept., Compressor Div., Machinery Business Kobe Steel has developed an air-sourced

More information

HEAT TRANSFER IM0245 3 LECTURE HOURS PER WEEK THERMODYNAMICS - IM0237 2014_1

HEAT TRANSFER IM0245 3 LECTURE HOURS PER WEEK THERMODYNAMICS - IM0237 2014_1 COURSE CODE INTENSITY PRE-REQUISITE CO-REQUISITE CREDITS ACTUALIZATION DATE HEAT TRANSFER IM05 LECTURE HOURS PER WEEK 8 HOURS CLASSROOM ON 6 WEEKS, HOURS LABORATORY, HOURS OF INDEPENDENT WORK THERMODYNAMICS

More information

Heat Pipe Cooling of Concentrating Photovoltaic (CPV) Systems

Heat Pipe Cooling of Concentrating Photovoltaic (CPV) Systems Heat Pipe Cooling of Concentrating Photovoltaic (CPV) Systems William G. Anderson 1, Sanjida Tamanna 2, David B. Sarraf 3, and Peter M. Dussinger 4 Advanced Cooling Technologies, Inc., Lancaster, PA, 17601

More information

5.2. Vaporizers - Types and Usage

5.2. Vaporizers - Types and Usage 5.2. Vaporizers - Types and Usage 5.2.1. General Vaporizers are constructed in numerous designs and operated in many modes. Depending upon the service application the design, construction, inspection,

More information

Review on Experimental Analysis and Performance Characteristic of Heat Transfer In Shell and Twisted Tube Heat Exchanger

Review on Experimental Analysis and Performance Characteristic of Heat Transfer In Shell and Twisted Tube Heat Exchanger Review on Experimental Analysis and Performance Characteristic of Heat Transfer In Shell and Twisted Tube Heat Exchanger Nitesh B. Dahare Student, M.Tech (Heat power Engg.) Ballarpur Institute of Technology,

More information

ANAEROBIC DIGESTER HEATING

ANAEROBIC DIGESTER HEATING ANAEROBIC DIGESTER HEATING The use of an external heat exchanger is the most common means of maintaining the proper temperature in an anaerobic digester. Raw sludge is sometimes pumped through these units

More information

Heat exchangers are devices that facilitate the exchange of heat between

Heat exchangers are devices that facilitate the exchange of heat between cen5426_ch23.qxd /26/04 9:42 AM Page 03 HEAT EXCHANGERS CHAPTER 23 Heat exchangers are devices that facilitate the exchange of heat between two fluids that are at different temperatures while keeping them

More information

CONDENSATION IN REFRIDGERATED BUILDINGS

CONDENSATION IN REFRIDGERATED BUILDINGS CONDENSATION IN REFRIDGERATED BUILDINGS By: Steve Salisbury Nov. 10, 2010 (revised Nov. 14, 2013) Introduction The following discussion reviews the basic causes of condensation in refrigerated buildings

More information

SECTION 5 COMMERCIAL REFRIGERATION UNIT 21 EVAPORATORS AND THE REFRIGERATION SYSTEM

SECTION 5 COMMERCIAL REFRIGERATION UNIT 21 EVAPORATORS AND THE REFRIGERATION SYSTEM SECTION 5 COMMERCIAL REFRIGERATION UNIT 21 EVAPORATORS AND THE REFRIGERATION SYSTEM UNIT OBJECTIVES After studying this unit, the reader should be able to Define high-, medium-, and low-temperature refrigeration.

More information

SECTION 5 COMMERCIAL REFRIGERATION UNIT 22 CONDENSERS

SECTION 5 COMMERCIAL REFRIGERATION UNIT 22 CONDENSERS SECTION 5 COMMERCIAL REFRIGERATION UNIT 22 CONDENSERS UNIT OBJECTIVES After studying this unit, the reader should be able to explain the purpose of the condenser in a refrigeration system. describe differences

More information

AN EXPERIMENTAL STUDY OF EXERGY IN A CORRUGATED PLATE HEAT EXCHANGER

AN EXPERIMENTAL STUDY OF EXERGY IN A CORRUGATED PLATE HEAT EXCHANGER International Journal of Mechanical Engineering and Technology (IJMET) Volume 6, Issue 11, Nov 2015, pp. 16-22, Article ID: IJMET_06_11_002 Available online at http://www.iaeme.com/ijmet/issues.asp?jtype=ijmet&vtype=6&itype=11

More information

CONDENSERS AND CONDENSER COOLING SYSTEMS

CONDENSERS AND CONDENSER COOLING SYSTEMS CONDENSERS AND CONDENSER COOLING SYSTEMS INTRODUCTION Conventional cooling methods of thermal power plants are extremely water intensive processes. Once-through cooling needs large natural bodies of water

More information

UNIT 5 REFRIGERATION SYSTEMS

UNIT 5 REFRIGERATION SYSTEMS UNIT REFRIGERATION SYSTEMS Refrigeration Systems Structure. Introduction Objectives. Vapour Compression Systems. Carnot Vapour Compression Systems. Limitations of Carnot Vapour Compression Systems with

More information

ENERGY SAVING WORT BOILING SISTEM IN BREWING FACTORY

ENERGY SAVING WORT BOILING SISTEM IN BREWING FACTORY ENERGY SAVING WORT BOILING SISTEM IN BREWING FACTORY Mariana Geta TOMESCU (cas. Cismarescu) *, Carol CSATLOS** * Faculty of Food and Tourism, Transilvania University of Braşov, Braşov, Romania ** Faculty

More information

Heat Pipe, selection of working fluid

Heat Pipe, selection of working fluid Heat Pipe, selection of working fluid Per Wallin Dept. of Energy Sciences, Faculty of Engineering, Lund University, Box 118, 22100 Lund, Sweden Abstract Heat pipes are common in many application fields

More information

Engine Heat Transfer. Engine Heat Transfer

Engine Heat Transfer. Engine Heat Transfer Engine Heat Transfer 1. Impact of heat transfer on engine operation 2. Heat transfer environment 3. Energy flow in an engine 4. Engine heat transfer Fundamentals Spark-ignition engine heat transfer Diesel

More information

ASSESSMENT OF THE SUBCOOLING CAPABILITIES OF A THERMOELECTRIC DEVICE IN A VAPOR COMPRESSION REFRIGERATION SYSTEM

ASSESSMENT OF THE SUBCOOLING CAPABILITIES OF A THERMOELECTRIC DEVICE IN A VAPOR COMPRESSION REFRIGERATION SYSTEM Universitatea de Ştiinţe Agricole şi Medicină Veterinară Iaşi ASSESSMENT OF E SUBCOOLING CAPABILITIES OF A ERMOELECTRIC DEVICE IN A VAPOR COMPRESSION REFRIGERATION SYSTEM R. ROŞCA 1, I. ŢENU 1, P. CÂRLESCU

More information

Refrigeration Basics 101. By: Eric Nelson

Refrigeration Basics 101. By: Eric Nelson Refrigeration Basics 101 By: Eric Nelson Basics Refrigeration is the removal of heat from a material or space, so that it s temperature is lower than that of it s surroundings. When refrigerant absorbs

More information

Experimental Study of Free Convection Heat Transfer From Array Of Vertical Tubes At Different Inclinations

Experimental Study of Free Convection Heat Transfer From Array Of Vertical Tubes At Different Inclinations Experimental Study of Free Convection Heat Transfer From Array Of Vertical Tubes At Different Inclinations A.Satyanarayana.Reddy 1, Suresh Akella 2, AMK. Prasad 3 1 Associate professor, Mechanical Engineering

More information

Welcome to the World of Aavid Heat Pipes

Welcome to the World of Aavid Heat Pipes Welcome to the World of Aavid Heat Pipes As a pioneer in heat pipe technology and their application, Aavid Thermalloy has developed a high quality manufacturing process to ensure long life and reliability

More information

Lesson 23 Condensers & Evaporators. Version 1 ME, IIT Kharagpur 1

Lesson 23 Condensers & Evaporators. Version 1 ME, IIT Kharagpur 1 Lesson 23 Condensers & Evaporators Version 1 ME, IIT Kharagpur 1 The specific objectives of this lesson are to: 1. Classify refrigerant evaporators as natural convection or forced convection type, flooded

More information

AIR COOLED CONDENSERS WITH AXIAL FANS ACH / ACV (MONO COIL)

AIR COOLED CONDENSERS WITH AXIAL FANS ACH / ACV (MONO COIL) AIR COOLED CONDENSERS WITH AXIAL FANS ACH / ACV (MONO COIL) 5-1,420 kw REFRIGERANTS: available for all refrigerants incl. NH 3 and CO 2 vertical or horizontal tubes: Copper, Stainless Steel, Alu reliable

More information

THEORETICAL ANALYSIS OF THE PERFORMANCE OF DUAL PRESSURE CONDENSER IN A THERMAL POWER PLANT

THEORETICAL ANALYSIS OF THE PERFORMANCE OF DUAL PRESSURE CONDENSER IN A THERMAL POWER PLANT INTERNATIONAL JOURNAL OF MECHANICAL ENGINEERING AND TECHNOLOGY (IJMET) International Journal of Mechanical Engineering and Technology (IJMET), ISSN 0976 6340(Print), ISSN 0976 6340 (Print) ISSN 0976 6359

More information

TEMA DESIGNATIONS OF HEAT EXCHANGERS REMOVABLE BUNDLE EXCHANGERS NON REMOVABLE BUNDLE EXCHANGERS SOURCE: WWW.WERMAC.ORG/

TEMA DESIGNATIONS OF HEAT EXCHANGERS REMOVABLE BUNDLE EXCHANGERS NON REMOVABLE BUNDLE EXCHANGERS SOURCE: WWW.WERMAC.ORG/ TEMA DESIGNATIONS OF HEAT EXCHANGERS Because of the number of variations in mechanical designs for front and rear heads and shells, and for commercial reasons, TEMA has designated a system of notations

More information

Optimum fin spacing for fan-cooled heat sinks

Optimum fin spacing for fan-cooled heat sinks Optimum fin spacing for fan-cooled heat sinks Keywords: optimum fin spacing fan-cooled heat sink heatsink optimal fin pitch parallel plate fin array optimization forced air cooling fan curve pressure drop

More information

International Journal of Latest Research in Science and Technology Volume 4, Issue 2: Page No.161-166, March-April 2015

International Journal of Latest Research in Science and Technology Volume 4, Issue 2: Page No.161-166, March-April 2015 International Journal of Latest Research in Science and Technology Volume 4, Issue 2: Page No.161-166, March-April 2015 http://www.mnkjournals.com/ijlrst.htm ISSN (Online):2278-5299 EXPERIMENTAL STUDY

More information

FEASIBILITY OF A BRAYTON CYCLE AUTOMOTIVE AIR CONDITIONING SYSTEM

FEASIBILITY OF A BRAYTON CYCLE AUTOMOTIVE AIR CONDITIONING SYSTEM FEASIBILITY OF A BRAYTON CYCLE AUTOMOTIVE AIR CONDITIONING SYSTEM L. H. M. Beatrice a, and F. A. S. Fiorelli a a Universidade de São Paulo Escola Politécnica Departamento de Engenharia Mecânica Av. Prof.

More information

Optimized Heat Pipe Backup Cooling System Tested with a Stirling Convertor

Optimized Heat Pipe Backup Cooling System Tested with a Stirling Convertor Optimized Heat Pipe Backup Cooling System Tested with a Stirling Convertor Calin Tarau 1, Carl L. Schwendeman 1, Nicholas A. Schifer 2, William G. Anderson 1 1 Advanced Cooling Technologies, Inc., 1046

More information

Integration of a fin experiment into the undergraduate heat transfer laboratory

Integration of a fin experiment into the undergraduate heat transfer laboratory Integration of a fin experiment into the undergraduate heat transfer laboratory H. I. Abu-Mulaweh Mechanical Engineering Department, Purdue University at Fort Wayne, Fort Wayne, IN 46805, USA E-mail: mulaweh@engr.ipfw.edu

More information

FLASH TANK ECONOMIZER PRODUCT GUIDE

FLASH TANK ECONOMIZER PRODUCT GUIDE FLASH TANK ECONOMIZER PRODUCT GUIDE Overview A flash tank is used to recover blowdown energy in the form of flash steam and blowdown. This can only be used with a deaerator or some other pressurized device.

More information

The Development of a Frost-Less Heat Pump

The Development of a Frost-Less Heat Pump The Development of a Frost-Less Heat Pump V. C. Mei, R. E. Domitrovic, and F. C. Chen, Oak Ridge National Laboratory J. K. Kilpatrick, Tennessee Valley Authority ABSTRACT There are two major concerns associated

More information

Automobile Air Conditioning Primer

Automobile Air Conditioning Primer Automobile Air Conditioning Primer An air conditioner is basically a refrigerator without the insulated box. It uses the evaporation of a refrigerant, like Freon, to provide cooling. The mechanics of the

More information

Mechanisms of Heat Transfer. Amin Sabzevari

Mechanisms of Heat Transfer. Amin Sabzevari Mechanisms of Heat Transfer Amin Sabzevari Outline Definition of Heat and Temperature Conduction, Convection, Radiation Demonstrations and Examples What is Heat? Heat is the spontaneous flow of energy

More information

Ejector Refrigeration System

Ejector Refrigeration System Ejector Refrigeration System Design Team Matthew Birnie, Morgan Galaznik, Scott Jensen, Scott Marchione, Darren Murphy Design Advisor Prof. Gregory Kowalski Abstract An ejector refrigeration system utilizing

More information

CFD SIMULATION OF SDHW STORAGE TANK WITH AND WITHOUT HEATER

CFD SIMULATION OF SDHW STORAGE TANK WITH AND WITHOUT HEATER International Journal of Advancements in Research & Technology, Volume 1, Issue2, July-2012 1 CFD SIMULATION OF SDHW STORAGE TANK WITH AND WITHOUT HEATER ABSTRACT (1) Mr. Mainak Bhaumik M.E. (Thermal Engg.)

More information

Heat Pipe Selection Revision 12/04/2001

Heat Pipe Selection Revision 12/04/2001 Heat Pipe Selection Revision 12/04/2001 Heat pipes are being used very often in particular applications when conventional cooling methods are not suitable. Once the need for heat pipe arises, the most

More information

Il Peso del Thermal Management nei LED

Il Peso del Thermal Management nei LED Il Peso del Thermal Management nei LED Heat Pipe: high performance thermal solution Ing. Manca Claudio F.lli POLI S.r.l. Padova 10-12 Ottobre 2013 Titolo Intervento 1/N Heat pipes in the history The Heat

More information

Drain the cooling system. Remove the wheel and tire assembly. Remove the fender splash shield. Remove the air deflector.

Drain the cooling system. Remove the wheel and tire assembly. Remove the fender splash shield. Remove the air deflector. Drain the cooling system. Remove the wheel and tire assembly. Remove the fender splash shield. Remove the air deflector. Remove the drive belt splash shield. Disconnect the dual coolant flow valve bottom

More information

Dr. P. Srinivasa Rao & Chamanooru Kartik Chandra Indian Institute of Technology Kharagpur

Dr. P. Srinivasa Rao & Chamanooru Kartik Chandra Indian Institute of Technology Kharagpur Modeling of Pressure Profiles in a High Pressure Chamber using COMSOL Multiphysics Presented at COMSOL Conference 2012 Bangalore Dr. P. Srinivasa Rao & Chamanooru Kartik Chandra Indian Institute of Technology

More information

UNIT 2 REFRIGERATION CYCLE

UNIT 2 REFRIGERATION CYCLE UNIT 2 REFRIGERATION CYCLE Refrigeration Cycle Structure 2. Introduction Objectives 2.2 Vapour Compression Cycle 2.2. Simple Vapour Compression Refrigeration Cycle 2.2.2 Theoretical Vapour Compression

More information

Water Fired Chiller/Chiller-Heater. WFC-S Series: 10, 20 and 30 RT Cooling

Water Fired Chiller/Chiller-Heater. WFC-S Series: 10, 20 and 30 RT Cooling Water Fired Chiller/Chiller-Heater WFC-S Series: 1, 2 and 3 RT Cooling W E A R E F R I E N D L Y T O T H E E A R T H Water Fired SINGLE-EFFECT Chiller or Chiller-Heater Absorption Principle Cooling Cycle

More information

Waste Heat Recovery through Air Conditioning System

Waste Heat Recovery through Air Conditioning System International Journal of Engineering Research and Development e-issn: 2278-067X, p-issn : 2278-800X, www.ijerd.com Volume 5, Issue 3 (December 2012), PP. 87-92 Waste Heat Recovery through Air Conditioning

More information

Waste heat recovery using heat pipe heat exchanger (HPHE) for surgery rooms in hospitals

Waste heat recovery using heat pipe heat exchanger (HPHE) for surgery rooms in hospitals Applied Thermal Engineering 20 (2000) 1271±1282 www.elsevier.com/locate/apthermeng Waste heat recovery using heat pipe heat exchanger (HPHE) for surgery rooms in hospitals S.H. Noie-Baghban*, G.R. Majideian

More information

New Trends in the Field of Automobile Air Conditioning

New Trends in the Field of Automobile Air Conditioning New Trends in the Field of Automobile Air Conditioning E. Janotkova and M. Pavelek Department of Thermomechanics and Environmental Engineering Brno University of Technology, 61669 Brno, Czech Republic

More information

Water Cooled. AKG 2010 (changes and errors expected) AKG 2009 (changes and errors expected)

Water Cooled. AKG 2010 (changes and errors expected) AKG 2009 (changes and errors expected) Water Cooled AKG/P Series AKG 2010 (changes and errors expected) AKG 2009 (changes and errors expected) Performance Data AKG/P 400 AND AKG/P 410 20 400 SERIES 70 410 SERIES 15 10 5 0 400-10 400-20 400-30

More information

How does solar air conditioning work?

How does solar air conditioning work? How does solar air conditioning work? In a conventional air conditioning system; The working fluid arrives at the compressor as a cool, low-pressure gas. The compressor is powered by electricity to squeeze

More information

Cooling Towers: Design and Operation Considerations

Cooling Towers: Design and Operation Considerations Cooling Towers: Design and Operation Considerations Cooling towers are a very important part of many chemical plants. They represent a relatively inexpensive and dependable means of removing low grade

More information

An Assessment of Radiator Performance

An Assessment of Radiator Performance An Assessment of Radiator Performance By William Adams September 9, 2005 Table of contents 1. Test Equipment and Procedures...2 2. Radiator Descriptions...3 3. Performance Testing...4 a. Group 1: Single

More information

An Experimenatl Study on Heat Transfer Behaviors of A Welded - Aluminum Minichannel Heat Exchanger

An Experimenatl Study on Heat Transfer Behaviors of A Welded - Aluminum Minichannel Heat Exchanger ISSN (e): 2250 3005 Vol, 05 Issue,02 February 2015 International Journal of Computational Engineering Research (IJCER) An Experimenatl Study on Heat Transfer Behaviors of A Welded - Aluminum Minichannel

More information

Rusty Walker, Corporate Trainer Hill PHOENIX

Rusty Walker, Corporate Trainer Hill PHOENIX Refrigeration 101 Rusty Walker, Corporate Trainer Hill PHOENIX Compressor Basic Refrigeration Cycle Evaporator Condenser / Receiver Expansion Device Vapor Compression Cycle Cooling by the removal of heat

More information

FEDSM2014-21213. Flow Boiling Heat Transfer Enhancement in Subcooled and Saturated Refrigerants in Minichannel Heat Sinks

FEDSM2014-21213. Flow Boiling Heat Transfer Enhancement in Subcooled and Saturated Refrigerants in Minichannel Heat Sinks Proceedings of the ASME 2014 4th Joint US-European Fluids Engineering Division Summer Meeting and 12th International Conference on Nanochannels, Microchannels, and Minichannels FEDSM2014 August 3-7, 2014,

More information

BUT PRECAUTIONS MUST BE TAKEN OR SERIOUS BURNS CAN RESULT.

BUT PRECAUTIONS MUST BE TAKEN OR SERIOUS BURNS CAN RESULT. Cooling System Operation Below is an explanation of this system's operation Radiator The radiator is a device designed to dissipate the heat which the coolant has absorbed from the engine. It is constructed

More information

Environmental and Safety Impacts of HFC Emission Reduction Options for Air Conditioning and Heat Pump Systems

Environmental and Safety Impacts of HFC Emission Reduction Options for Air Conditioning and Heat Pump Systems Environmental and Safety Impacts of HFC Emission Reduction Options for Air Conditioning and Heat Pump Systems William M. Corcoran, George Rusch, Mark W. Spatz, and Tim Vink AlliedSignal, Inc. ABSTRACT

More information

The examination rubric is: Answer THREE questions, from FIVE offered. All questions carry equal weight.

The examination rubric is: Answer THREE questions, from FIVE offered. All questions carry equal weight. MODULE DESCRIPTOR MECHGM06 Heat Transfer and Heat Systems Code: MECHGM06 Alt. Codes(s) MECHGR06, MECHM007 Title: Heat Transfer and Heat Systems Level: M UCL Credits/ECTS: 15/6 Start: September End: March

More information

A model of heat transfer in metal foaming

A model of heat transfer in metal foaming A model of heat transfer in metal foaming B. Chinè 1,2, V. Mussi 2, M. Monno 3, A Rossi 2 1 Instituto Tecnológico de Costa Rica, Costa Rica; 2 Laboratorio MUSP, Macchine Utensili e Sistemi di Produzione,

More information

Two-Phase Evaporative Precision Cooling Systems

Two-Phase Evaporative Precision Cooling Systems Two-Phase Evaporative Precision Cooling Systems For heat loads from 3 to 300kW Using non-conductive refrigerant fluid, our patented Next-generation, two-phase evaporative precision cooling systems enable

More information

01-3 6820-11 6820-11 AIR CONDITIONER GENERAL 1. SPECIFICATIONS AIR CONDITIONER REXTON 2010.01

01-3 6820-11 6820-11 AIR CONDITIONER GENERAL 1. SPECIFICATIONS AIR CONDITIONER REXTON 2010.01 682011 013 GENERAL 1. SPECIFICATIONS 682011 014 682011 2. REPAIR INSTRUCTIONS 1) Precautions for Working with R134a R12 refrigerant and R134a refrigerant are not compatible. These refrigerants must never

More information

Sizing of triple concentric pipe heat exchanger

Sizing of triple concentric pipe heat exchanger Sizing of triple concentric pipe heat exchanger 1 Tejas M. Ghiwala, 2 Dr. V.K. Matawala 1 Post Graduate Student, 2 Head of Department 1 Thermal Engineering, SVMIT, Bharuch-392001, Gujarat, INDIA, 2 Department

More information

Experimental Analysis of an Automotive Air Conditioning System With Two-Phase Flow Measurements

Experimental Analysis of an Automotive Air Conditioning System With Two-Phase Flow Measurements Purdue University Purdue e-pubs International Refrigeration and Air Conditioning Conference School of Mechanical Engineering Experimental Analysis of an Automotive Air Conditioning System With Two-Phase

More information

Comparison of Heat Transfer between a Helical and Straight Tube Heat Exchanger

Comparison of Heat Transfer between a Helical and Straight Tube Heat Exchanger International Journal of Engineering Research and Technology. ISSN 0974-3154 Volume 6, Number 1 (2013), pp. 33-40 International Research Publication House http://www.irphouse.com Comparison of Heat Transfer

More information

NUMERICAL ANALYSIS FOR TWO PHASE FLOW DISTRIBUTION HEADERS IN HEAT EXCHANGERS

NUMERICAL ANALYSIS FOR TWO PHASE FLOW DISTRIBUTION HEADERS IN HEAT EXCHANGERS NUMERICAL ANALYSIS FOR TWO PHASE FLOW DISTRIBUTION HEADERS IN HEAT EXCHANGERS B.Babu 1, Florence.T 2, M.Punithavalli 3, B.R.Rohit 4 1 Assistant professor, Department of mechanical engineering, Rathinam

More information

Temperature Scales. temperature scales Celsius Fahrenheit Kelvin

Temperature Scales. temperature scales Celsius Fahrenheit Kelvin Ch. 10-11 Concept Ch. 10 #1, 3, 7, 8, 9, 11 Ch11, # 3, 6, 11 Problems Ch10 # 3, 5, 11, 17, 21, 24, 25, 29, 33, 37, 39, 43, 47, 59 Problems: CH 11 # 1, 2, 3a, 4, 5, 6, 9, 13, 15, 22, 25, 27, 28, 35 Temperature

More information

AIR REVERSING R744 AIR CONDITIONING SYSTEM

AIR REVERSING R744 AIR CONDITIONING SYSTEM AIR REVERSING R744 AIR CONDITIONING SYSTEM A.HAFNER 1 ; D.J. GARSKI 2 ; J. MANZIONE 3 1 SINTEF Energy Research, 7465 Trondheim, Norway, Armin.Hafner@sintef.no 2 MODINE, Racine, USA, D.J.Garski@na.modine.com

More information

Advanced Engine Cooling Systems for Vehicle Application

Advanced Engine Cooling Systems for Vehicle Application Advanced Engine Cooling Systems for Vehicle Application Italo LONGO EMEA Engine Systems Unit Responsible April 2015 Italo Longo Engine Systems Unit Responsible EDUCATION Mechanical Engineering Master Degree

More information

Glossary of Heating, Ventilation and Air Conditioning Terms

Glossary of Heating, Ventilation and Air Conditioning Terms Glossary of Heating, Ventilation and Air Conditioning Terms Air Change: Unlike re-circulated air, this is the total air required to completely replace the air in a room or building. Air Conditioner: Equipment

More information

05 Heat Transfer & its Applications

05 Heat Transfer & its Applications 05 Heat Transfer & its Applications Heat Transfer & its Applications Objectives When you have completed study of this chapter you should be able to: Get familiar with the various types of heat transfer

More information

Packaged Air Conditioner - Water Cooled Vertical Type Model 25

Packaged Air Conditioner - Water Cooled Vertical Type Model 25 Refrigerant R407C CX Packaged Air Conditioner - Water Cooled Vertical Type Model 25 8.0kW CX 25 1 Product Code Model Power supply Product code CX 25 230V / 1 ~ / 50 Hz 7XU012153 CX 25 CX 25 2 CX 25 General

More information

Cooling system components, removing and installing

Cooling system components, removing and installing Page 1 of 34 19-1 Cooling system components, removing and installing WARNING! The cooling system is pressurized when the engine is warm. When opening the expansion tank, wear gloves and other appropriate

More information

HOW HVAC WORKS. How HVAC. Works PAGE 1

HOW HVAC WORKS. How HVAC. Works PAGE 1 How HVAC Works PAGE 1 Heat - What is it? Heat is more than a physical concept - it is a feeling. Heat is taught to us at a very young age as a danger to be avoided. Yet, have you ever stopped and thought

More information

Analysis of Ammonia Water (NH3-H2O) Vapor Absorption Refrigeration System based on First Law of Thermodynamics

Analysis of Ammonia Water (NH3-H2O) Vapor Absorption Refrigeration System based on First Law of Thermodynamics International Journal of Scientific & Engineering Research Volume 2, Issue 8, August-2011 1 Analysis of Ammonia Water (NH3-H2O) Vapor Absorption Refrigeration System based on First Law of Thermodynamics

More information

Specific Volume of Liquid (Column 7). The volume per unit of mass in cubic feet per pound.

Specific Volume of Liquid (Column 7). The volume per unit of mass in cubic feet per pound. Steam Tables What They Are How to Use Them The heat quantities and temperature/ pressure relationships referred to in this Handbook are taken from the Properties of Saturated Steam table. Definitions of

More information

Energy Recovery Systems for the Efficient Cooling of Data Centers using Absorption Chillers and Renewable Energy Resources

Energy Recovery Systems for the Efficient Cooling of Data Centers using Absorption Chillers and Renewable Energy Resources Energy Recovery Systems for the Efficient Cooling of Data Centers using Absorption Chillers and Renewable Energy Resources ALEXANDRU SERBAN, VICTOR CHIRIAC, FLOREA CHIRIAC, GABRIEL NASTASE Building Services

More information

HEAT TRANSFER ANALYSIS IN A 3D SQUARE CHANNEL LAMINAR FLOW WITH USING BAFFLES 1 Vikram Bishnoi

HEAT TRANSFER ANALYSIS IN A 3D SQUARE CHANNEL LAMINAR FLOW WITH USING BAFFLES 1 Vikram Bishnoi HEAT TRANSFER ANALYSIS IN A 3D SQUARE CHANNEL LAMINAR FLOW WITH USING BAFFLES 1 Vikram Bishnoi 2 Rajesh Dudi 1 Scholar and 2 Assistant Professor,Department of Mechanical Engineering, OITM, Hisar (Haryana)

More information

Installing a new 928 Motorsports All-Aluminum Radiator

Installing a new 928 Motorsports All-Aluminum Radiator 928 Motorsports Supercharger Installation Copyright 2008, 928 Motorsports, LLC All Rights Reserved Installing a new 928 Motorsports All-Aluminum Radiator Copyright 2008 928 Motorsports, LLC. Toll-Free

More information