ADVANCED LINEAR ALGEBRA FOR ENGINEERS WITH MATLAB. Sohail A. Dianat. Rochester Institute of Technology, New York, U.S.A. Eli S.


 Dinah Dalton
 2 years ago
 Views:
Transcription
1 ADVANCED LINEAR ALGEBRA FOR ENGINEERS WITH MATLAB Sohail A. Dianat Rochester Institute of Technology, New York, U.S.A. Eli S. Saber Rochester Institute of Technology, New York, U.S.A. (g) CRC Press Taylor & Francis Group Boca Raton London New York CRC Press is an imprint of the Taylor & Francis Group, an informa business
2 Contents Preface Authors xiii xvii 1 Matrices, Matrix Algebra, and Elementary Matrix Operations Introduction Basic Concepts and Notation Matrix and Vector Notation Matrix Definition Elementary Matrices Elementary Matrix Operations Matrix Algebra Matrix Addition and Subtraction Properties of Matrix Addition Matrix Multiplication Properties of Matrix Multiplication Applications of Matrix Multiplication in Signal and Image Processing Application in Linear Discrete One Dimensional Convolution Application in Linear Discrete Two Dimensional Convolution Matrix Representation of Discrete Fourier Transform Elementary Row Operations Row Echelon Form Elementary Transformation Matrices Type 1: Scaling Transformation Matrix (Ej) Type 2: Interchange Transformation Matrix (E 2 ) Type 3: Combination Transformation Matrices (E 3 ) Solution of System of Linear Equations Gaussian Elimination Over Determined Systems Under Determined Systems Matrix Partitions Column Partitions Row Partitions Block Multiplication 35 vii
3 viii Contents 1.8 Inner, Outer, and Kronecker Products Inner Product Outer Product Kronecker Products 40 Problems 40 2 Determinants, Matrix Inversion and Solutions to Systems of Linear Equations Introduction Determinant of a Matrix Properties of Determinant Row Operations and Determinants Interchange of Two Rows Multiplying a Row of A by a Nonzero Constant Adding a Multiple of One Row to Another Row Singular Matrices Matrix Inversion Properties of Matrix Inversion GaussJordan Method for Calculating Inverse of a Matrix Useful Formulas for Matrix Inversion Recursive Least Square (RLS) Parameter Estimation Solution of Simultaneous Linear Equations Equivalent Systems Strict Triangular Form Cramer's Rule LU Decomposition Applications: Circuit Analysis Homogeneous Coordinates System Applications of Homogeneous Coordinates in Image Processing Rank, Null Space and Invertibility of Matrices Null Space MA) Column Space C(A) Row Space R(A) Rank of a Matrix Special Matrices with Applications Vandermonde Matrix Hankel Matrix Toeplitz Matrices Permutation Matrix Markov Matrices Circulant Matrices Hadamard Matrices Nilpotent Matrices 94
4 Contents ix 2.9 Derivatives and Gradients Derivative of Scalar with Respect to a Vector Quadratic Functions Derivative of a Vector Function with Respect to a Vector 98 Problems 99 3 Linear Vector Spaces Introduction Linear Vector Space Definition of Linear Vector Space Examples of Linear Vector Spaces Additional Properties of Linear Vector Spaces Subspace of a Linear Vector Space Span of a Set of Vectors Spanning Set of a Vector Space Linear Dependence Basis Vectors Change of Basis Vectors Normed Vector Spaces Definition of Normed Vector Space Examples of Normed Vector Spaces Distance Function Equivalence of Norms Inner Product Spaces Definition of Inner Product Examples of Inner Product Spaces Schwarz's Inequality Norm Derived from Inner Product Applications of Schwarz Inequality in Communication Systems Detection of a Discrete Signal "Buried" in White Noise Detection of Continuous Signal "Buried" in Noise Hilbert Space Orthogonality Orthonormal Set GramSchmidt Orthogonalization Process Orthogonal Matrices Complete Orthonormal Set Generalized Fourier Series (GFS) Applications of GFS Continuous Fourier Series Discrete Fourier Transform (DFT) Legendre Polynomial Sine Functions 146
5 x Contents 3.7 Matrix Factorization QR Factorization Solution of Linear Equations Using QR Factorization 149 Problems Eigenvalues and Eigenvectors Introduction ' Matrices as Linear Transformations Definition: Linear Transformation Matrices as Linear Operators Null Space of a Matrix Projection Operator Orthogonal Projection Projection Theorem Matrix Representation of Projection Operator Eigenvalues and Eigenvectors Definition of Eigenvalues and Eigenvectors Properties of Eigenvalues and Eigenvectors Independent Property Product and Sum of Eigenvalues Finding the Characteristic Polynomial of a Matrix Modal Matrix Matrix Diagonalization Distinct Eigenvalues Jordan Canonical Form Special Matrices Unitary Matrices Hermitian Matrices Definite Matrices Positive Definite Matrices Positive Semidefinite Matrices Negative Definite Matrices Negative Semidefinite Matrices Test for Matrix Positiveness Singular Value Decomposition (SVD) Definition of SVD Matrix Norm Frobenius Norm Matrix Condition Number Numerical Computation of Eigenvalues and Eigenvectors Power Method Properties of Eigenvalues and Eigenvectors of Different Classes of Matrices Applications Image Edge Detection 206
6 Contents xi Gradient Based Edge Detection of Gray Scale Images Gradient Based Edge Detection of RGB Images Vibration Analysis Signal Subspace Decomposition Frequency Estimation Direction of Arrival Estimation 219 Problems Matrix Polynomials and Functions of Square Matrices Introduction Matrix Polynomials Infinite Series of Matrices Convergence of an Infinite Matrix Series CayleyHamilton Theorem Matrix Polynomial Reduction Functions of Matrices Sylvester's Expansion CayleyHamilton Technique Modal Matrix Technique Special Matrix Functions Matrix Exponential Function e At Matrix Function A* The State Space Modeling of Linear Continuoustime Systems Concept of States State Equations of Continuous Time Systems State Space Representation of Continuous LTI Systems Solution of Continuoustime State Space Equations Solution of Homogenous State Equations and State Transition Matrix Properties of State Transition Matrix Computing State Transition Matrix Complete Solution of State Equations State Space Representation of Discretetime Systems Definition of States State Equations State Space Representation of Discretetime LTI Systems Solution of Discretetime State Equations Solution of Homogenous State Equation and State Transition Matrix Properties of State Transition Matrix 266
7 xii Contents Computing the State Transition Matrix Complete Solution of the State Equations Controllability of LTI Systems Definition of Controllability Controllability Condition Observability of LTI Systems Definition of Observability Observability Condition 272 Problems Introduction to Optimization Introduction Stationary Points of Functions of Several Variables Hessian Matrix LeastSquare (LS) Technique LS Computation Using QR Factorization LS Computation Using Singular Value Decomposition (SVD) Weighted Least Square (WLS) LS Curve Fitting Applications of LS Technique One Dimensional Wiener Filter Choice of Q Matrix and Scale Factor ß Two Dimensional Wiener Filter Total LeastSquares (TLS) Eigen Filters Stationary Points with Equality Constraints Lagrange Multipliers Applications Maximum Entropy Problem Design of Digital Finite Impulse Response (FIR) Filters 312 Problems 316 Appendix A: The Laplace Transform 321 Al Definition of the Laplace Transform 321 A2 The Inverse Laplace Transform 323 A3 Partial Fraction Expansion 323 Appendix B: The ztransform 329 Bl Definition of the ztransform 329 B2 The Inverse ztransform 330 B2.1 Inversion by Partial Fraction Expansion 330 Bibliography 335 Index 339
Applied Linear Algebra I Review page 1
Applied Linear Algebra Review 1 I. Determinants A. Definition of a determinant 1. Using sum a. Permutations i. Sign of a permutation ii. Cycle 2. Uniqueness of the determinant function in terms of properties
More informationMean value theorem, Taylors Theorem, Maxima and Minima.
MA 001 Preparatory Mathematics I. Complex numbers as ordered pairs. Argand s diagram. Triangle inequality. De Moivre s Theorem. Algebra: Quadratic equations and expressions. Permutations and Combinations.
More informationLinear Algebra Review. Vectors
Linear Algebra Review By Tim K. Marks UCSD Borrows heavily from: Jana Kosecka kosecka@cs.gmu.edu http://cs.gmu.edu/~kosecka/cs682.html Virginia de Sa Cogsci 8F Linear Algebra review UCSD Vectors The length
More informationLINEAR ALGEBRA. September 23, 2010
LINEAR ALGEBRA September 3, 00 Contents 0. LUdecomposition.................................... 0. Inverses and Transposes................................. 0.3 Column Spaces and NullSpaces.............................
More informationMATRIX ALGEBRA AND SYSTEMS OF EQUATIONS. + + x 2. x n. a 11 a 12 a 1n b 1 a 21 a 22 a 2n b 2 a 31 a 32 a 3n b 3. a m1 a m2 a mn b m
MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS 1. SYSTEMS OF EQUATIONS AND MATRICES 1.1. Representation of a linear system. The general system of m equations in n unknowns can be written a 11 x 1 + a 12 x 2 +
More informationSALEM COMMUNITY COLLEGE Carneys Point, New Jersey 08069 COURSE SYLLABUS COVER SHEET. Action Taken (Please Check One) New Course Initiated
SALEM COMMUNITY COLLEGE Carneys Point, New Jersey 08069 COURSE SYLLABUS COVER SHEET Course Title Course Number Department Linear Algebra Mathematics MAT240 Action Taken (Please Check One) New Course Initiated
More informationMATRIX ALGEBRA AND SYSTEMS OF EQUATIONS
MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS Systems of Equations and Matrices Representation of a linear system The general system of m equations in n unknowns can be written a x + a 2 x 2 + + a n x n b a
More informationChapter 6. Orthogonality
6.3 Orthogonal Matrices 1 Chapter 6. Orthogonality 6.3 Orthogonal Matrices Definition 6.4. An n n matrix A is orthogonal if A T A = I. Note. We will see that the columns of an orthogonal matrix must be
More informationSolutions to Linear Algebra Practice Problems
Solutions to Linear Algebra Practice Problems. Find all solutions to the following systems of linear equations. (a) x x + x 5 x x x + x + x 5 (b) x + x + x x + x + x x + x + 8x Answer: (a) We create the
More informationPresentation 3: Eigenvalues and Eigenvectors of a Matrix
Colleen Kirksey, Beth Van Schoyck, Dennis Bowers MATH 280: Problem Solving November 18, 2011 Presentation 3: Eigenvalues and Eigenvectors of a Matrix Order of Presentation: 1. Definitions of Eigenvalues
More informationLinear Algebra: Determinants, Inverses, Rank
D Linear Algebra: Determinants, Inverses, Rank D 1 Appendix D: LINEAR ALGEBRA: DETERMINANTS, INVERSES, RANK TABLE OF CONTENTS Page D.1. Introduction D 3 D.2. Determinants D 3 D.2.1. Some Properties of
More informationScientific Computing: An Introductory Survey
Scientific Computing: An Introductory Survey Chapter 3 Linear Least Squares Prof. Michael T. Heath Department of Computer Science University of Illinois at UrbanaChampaign Copyright c 2002. Reproduction
More informationNonlinear Iterative Partial Least Squares Method
Numerical Methods for Determining Principal Component Analysis Abstract Factors Béchu, S., RichardPlouet, M., Fernandez, V., Walton, J., and Fairley, N. (2016) Developments in numerical treatments for
More informationLecture 5: Singular Value Decomposition SVD (1)
EEM3L1: Numerical and Analytical Techniques Lecture 5: Singular Value Decomposition SVD (1) EE3L1, slide 1, Version 4: 25Sep02 Motivation for SVD (1) SVD = Singular Value Decomposition Consider the system
More informationBindel, Spring 2012 Intro to Scientific Computing (CS 3220) Week 3: Wednesday, Feb 8
Spaces and bases Week 3: Wednesday, Feb 8 I have two favorite vector spaces 1 : R n and the space P d of polynomials of degree at most d. For R n, we have a canonical basis: R n = span{e 1, e 2,..., e
More informationα = u v. In other words, Orthogonal Projection
Orthogonal Projection Given any nonzero vector v, it is possible to decompose an arbitrary vector u into a component that points in the direction of v and one that points in a direction orthogonal to v
More informationInner Product Spaces and Orthogonality
Inner Product Spaces and Orthogonality week 34 Fall 2006 Dot product of R n The inner product or dot product of R n is a function, defined by u, v a b + a 2 b 2 + + a n b n for u a, a 2,, a n T, v b,
More informationMATHEMATICAL METHODS OF STATISTICS
MATHEMATICAL METHODS OF STATISTICS By HARALD CRAMER TROFESSOK IN THE UNIVERSITY OF STOCKHOLM Princeton PRINCETON UNIVERSITY PRESS 1946 TABLE OF CONTENTS. First Part. MATHEMATICAL INTRODUCTION. CHAPTERS
More informationGeneralized Inverse of Matrices and its Applications
Generalized Inverse of Matrices and its Applications C. RADHAKRISHNA RAO, Sc.D., F.N.A., F.R.S. Director, Research and Training School Indian Statistical Institute SUJIT KUMAR MITRA, Ph.D. Professor of
More informationLinear Dependence Tests
Linear Dependence Tests The book omits a few key tests for checking the linear dependence of vectors. These short notes discuss these tests, as well as the reasoning behind them. Our first test checks
More informationRecall that two vectors in are perpendicular or orthogonal provided that their dot
Orthogonal Complements and Projections Recall that two vectors in are perpendicular or orthogonal provided that their dot product vanishes That is, if and only if Example 1 The vectors in are orthogonal
More information1 2 3 1 1 2 x = + x 2 + x 4 1 0 1
(d) If the vector b is the sum of the four columns of A, write down the complete solution to Ax = b. 1 2 3 1 1 2 x = + x 2 + x 4 1 0 0 1 0 1 2. (11 points) This problem finds the curve y = C + D 2 t which
More informationFactorization Theorems
Chapter 7 Factorization Theorems This chapter highlights a few of the many factorization theorems for matrices While some factorization results are relatively direct, others are iterative While some factorization
More informationSimilarity and Diagonalization. Similar Matrices
MATH022 Linear Algebra Brief lecture notes 48 Similarity and Diagonalization Similar Matrices Let A and B be n n matrices. We say that A is similar to B if there is an invertible n n matrix P such that
More information1 Eigenvalues and Eigenvectors
Math 20 Chapter 5 Eigenvalues and Eigenvectors Eigenvalues and Eigenvectors. Definition: A scalar λ is called an eigenvalue of the n n matrix A is there is a nontrivial solution x of Ax = λx. Such an x
More informationOrthogonal Diagonalization of Symmetric Matrices
MATH10212 Linear Algebra Brief lecture notes 57 Gram Schmidt Process enables us to find an orthogonal basis of a subspace. Let u 1,..., u k be a basis of a subspace V of R n. We begin the process of finding
More informationALGEBRAIC EIGENVALUE PROBLEM
ALGEBRAIC EIGENVALUE PROBLEM BY J. H. WILKINSON, M.A. (Cantab.), Sc.D. Technische Universes! Dsrmstedt FACHBEREICH (NFORMATiK BIBL1OTHEK Sachgebieto:. Standort: CLARENDON PRESS OXFORD 1965 Contents 1.
More informationMATH 423 Linear Algebra II Lecture 38: Generalized eigenvectors. Jordan canonical form (continued).
MATH 423 Linear Algebra II Lecture 38: Generalized eigenvectors Jordan canonical form (continued) Jordan canonical form A Jordan block is a square matrix of the form λ 1 0 0 0 0 λ 1 0 0 0 0 λ 0 0 J = 0
More informationby the matrix A results in a vector which is a reflection of the given
Eigenvalues & Eigenvectors Example Suppose Then So, geometrically, multiplying a vector in by the matrix A results in a vector which is a reflection of the given vector about the yaxis We observe that
More informationAN INTRODUCTION TO NUMERICAL METHODS AND ANALYSIS
AN INTRODUCTION TO NUMERICAL METHODS AND ANALYSIS Revised Edition James Epperson Mathematical Reviews BICENTENNIAL 0, 1 8 0 7 z ewiley wu 2007 r71 BICENTENNIAL WILEYINTERSCIENCE A John Wiley & Sons, Inc.,
More information1 Introduction to Matrices
1 Introduction to Matrices In this section, important definitions and results from matrix algebra that are useful in regression analysis are introduced. While all statements below regarding the columns
More informationMathematics (MAT) MAT 061 Basic Euclidean Geometry 3 Hours. MAT 051 PreAlgebra 4 Hours
MAT 051 PreAlgebra Mathematics (MAT) MAT 051 is designed as a review of the basic operations of arithmetic and an introduction to algebra. The student must earn a grade of C or in order to enroll in MAT
More informationSolution. Area(OABC) = Area(OAB) + Area(OBC) = 1 2 det( [ 5 2 1 2. Question 2. Let A = (a) Calculate the nullspace of the matrix A.
Solutions to Math 30 Takehome prelim Question. Find the area of the quadrilateral OABC on the figure below, coordinates given in brackets. [See pp. 60 63 of the book.] y C(, 4) B(, ) A(5, ) O x Area(OABC)
More informationELECE8104 Stochastics models and estimation, Lecture 3b: Linear Estimation in Static Systems
Stochastics models and estimation, Lecture 3b: Linear Estimation in Static Systems Minimum Mean Square Error (MMSE) MMSE estimation of Gaussian random vectors Linear MMSE estimator for arbitrarily distributed
More informationAu = = = 3u. Aw = = = 2w. so the action of A on u and w is very easy to picture: it simply amounts to a stretching by 3 and 2, respectively.
Chapter 7 Eigenvalues and Eigenvectors In this last chapter of our exploration of Linear Algebra we will revisit eigenvalues and eigenvectors of matrices, concepts that were already introduced in Geometry
More informationSection 6.1  Inner Products and Norms
Section 6.1  Inner Products and Norms Definition. Let V be a vector space over F {R, C}. An inner product on V is a function that assigns, to every ordered pair of vectors x and y in V, a scalar in F,
More informationMATH 551  APPLIED MATRIX THEORY
MATH 55  APPLIED MATRIX THEORY FINAL TEST: SAMPLE with SOLUTIONS (25 points NAME: PROBLEM (3 points A web of 5 pages is described by a directed graph whose matrix is given by A Do the following ( points
More informationComputational Optical Imaging  Optique Numerique.  Deconvolution 
Computational Optical Imaging  Optique Numerique  Deconvolution  Winter 2014 Ivo Ihrke Deconvolution Ivo Ihrke Outline Deconvolution Theory example 1D deconvolution Fourier method Algebraic method
More information1 Introduction. 2 Matrices: Definition. Matrix Algebra. Hervé Abdi Lynne J. Williams
In Neil Salkind (Ed.), Encyclopedia of Research Design. Thousand Oaks, CA: Sage. 00 Matrix Algebra Hervé Abdi Lynne J. Williams Introduction Sylvester developed the modern concept of matrices in the 9th
More informationNotes on Determinant
ENGG2012B Advanced Engineering Mathematics Notes on Determinant Lecturer: Kenneth Shum Lecture 918/02/2013 The determinant of a system of linear equations determines whether the solution is unique, without
More informationElementary Matrices and The LU Factorization
lementary Matrices and The LU Factorization Definition: ny matrix obtained by performing a single elementary row operation (RO) on the identity (unit) matrix is called an elementary matrix. There are three
More information3 Orthogonal Vectors and Matrices
3 Orthogonal Vectors and Matrices The linear algebra portion of this course focuses on three matrix factorizations: QR factorization, singular valued decomposition (SVD), and LU factorization The first
More informationMAT 200, Midterm Exam Solution. a. (5 points) Compute the determinant of the matrix A =
MAT 200, Midterm Exam Solution. (0 points total) a. (5 points) Compute the determinant of the matrix 2 2 0 A = 0 3 0 3 0 Answer: det A = 3. The most efficient way is to develop the determinant along the
More informationequations Karl Lundengård December 3, 2012 MAA704: Matrix functions and matrix equations Matrix functions Matrix equations Matrix equations, cont d
and and Karl Lundengård December 3, 2012 Solving General, Contents of todays lecture and (Kroenecker product) Solving General, Some useful from calculus and : f (x) = x n, x C, n Z + : f (x) = n x, x R,
More information2.1: MATRIX OPERATIONS
.: MATRIX OPERATIONS What are diagonal entries and the main diagonal of a matrix? What is a diagonal matrix? When are matrices equal? Scalar Multiplication 45 Matrix Addition Theorem (pg 0) Let A, B, and
More informationInner product. Definition of inner product
Math 20F Linear Algebra Lecture 25 1 Inner product Review: Definition of inner product. Slide 1 Norm and distance. Orthogonal vectors. Orthogonal complement. Orthogonal basis. Definition of inner product
More informationElementary Differential Equations
Elementary Differential Equations EIGHTH EDITION Earl D. Rainville Late Professor of Mathematics University of Michigan Phillip E. Bedient Professor Emeritus of Mathematics Franklin and Marshall College
More informationBy choosing to view this document, you agree to all provisions of the copyright laws protecting it.
This material is posted here with permission of the IEEE Such permission of the IEEE does not in any way imply IEEE endorsement of any of Helsinki University of Technology's products or services Internal
More informationDiagonalisation. Chapter 3. Introduction. Eigenvalues and eigenvectors. Reading. Definitions
Chapter 3 Diagonalisation Eigenvalues and eigenvectors, diagonalisation of a matrix, orthogonal diagonalisation fo symmetric matrices Reading As in the previous chapter, there is no specific essential
More information2. Introduction to quantum mechanics
2. Introduction to quantum mechanics 2.1 Linear algebra Dirac notation Complex conjugate Vector/ket Dual vector/bra Inner product/bracket Tensor product Complex conj. matrix Transpose of matrix Hermitian
More informationElementary Linear Algebra
Elementary Linear Algebra Kuttler January, Saylor URL: http://wwwsaylororg/courses/ma/ Saylor URL: http://wwwsaylororg/courses/ma/ Contents Some Prerequisite Topics Sets And Set Notation Functions Graphs
More informationThinkwell s Homeschool Algebra 2 Course Lesson Plan: 34 weeks
Thinkwell s Homeschool Algebra 2 Course Lesson Plan: 34 weeks Welcome to Thinkwell s Homeschool Algebra 2! We re thrilled that you ve decided to make us part of your homeschool curriculum. This lesson
More information1. True/False: Circle the correct answer. No justifications are needed in this exercise. (1 point each)
Math 33 AH : Solution to the Final Exam Honors Linear Algebra and Applications 1. True/False: Circle the correct answer. No justifications are needed in this exercise. (1 point each) (1) If A is an invertible
More informationInner Product Spaces
Math 571 Inner Product Spaces 1. Preliminaries An inner product space is a vector space V along with a function, called an inner product which associates each pair of vectors u, v with a scalar u, v, and
More informationLinearQuadratic Optimal Controller 10.3 Optimal Linear Control Systems
LinearQuadratic Optimal Controller 10.3 Optimal Linear Control Systems In Chapters 8 and 9 of this book we have designed dynamic controllers such that the closedloop systems display the desired transient
More informationNOTES on LINEAR ALGEBRA 1
School of Economics, Management and Statistics University of Bologna Academic Year 205/6 NOTES on LINEAR ALGEBRA for the students of Stats and Maths This is a modified version of the notes by Prof Laura
More informationArithmetic and Algebra of Matrices
Arithmetic and Algebra of Matrices Math 572: Algebra for Middle School Teachers The University of Montana 1 The Real Numbers 2 Classroom Connection: Systems of Linear Equations 3 Rational Numbers 4 Irrational
More informationNotes on Orthogonal and Symmetric Matrices MENU, Winter 2013
Notes on Orthogonal and Symmetric Matrices MENU, Winter 201 These notes summarize the main properties and uses of orthogonal and symmetric matrices. We covered quite a bit of material regarding these topics,
More information17. Inner product spaces Definition 17.1. Let V be a real vector space. An inner product on V is a function
17. Inner product spaces Definition 17.1. Let V be a real vector space. An inner product on V is a function, : V V R, which is symmetric, that is u, v = v, u. bilinear, that is linear (in both factors):
More informationx + y + z = 1 2x + 3y + 4z = 0 5x + 6y + 7z = 3
Math 24 FINAL EXAM (2/9/9  SOLUTIONS ( Find the general solution to the system of equations 2 4 5 6 7 ( r 2 2r r 2 r 5r r x + y + z 2x + y + 4z 5x + 6y + 7z 2 2 2 2 So x z + y 2z 2 and z is free. ( r
More information1 VECTOR SPACES AND SUBSPACES
1 VECTOR SPACES AND SUBSPACES What is a vector? Many are familiar with the concept of a vector as: Something which has magnitude and direction. an ordered pair or triple. a description for quantities such
More informationMATH10212 Linear Algebra. Systems of Linear Equations. Definition. An ndimensional vector is a row or a column of n numbers (or letters): a 1.
MATH10212 Linear Algebra Textbook: D. Poole, Linear Algebra: A Modern Introduction. Thompson, 2006. ISBN 0534405967. Systems of Linear Equations Definition. An ndimensional vector is a row or a column
More informationNumerical Methods for Engineers
Steven C. Chapra Berger Chair in Computing and Engineering Tufts University RaymondP. Canale Professor Emeritus of Civil Engineering University of Michigan Numerical Methods for Engineers With Software
More informationLinear Algebra Done Wrong. Sergei Treil. Department of Mathematics, Brown University
Linear Algebra Done Wrong Sergei Treil Department of Mathematics, Brown University Copyright c Sergei Treil, 2004, 2009, 2011, 2014 Preface The title of the book sounds a bit mysterious. Why should anyone
More informationLinear Equations ! 25 30 35$ & " 350 150% & " 11,750 12,750 13,750% MATHEMATICS LEARNING SERVICE Centre for Learning and Professional Development
MathsTrack (NOTE Feb 2013: This is the old version of MathsTrack. New books will be created during 2013 and 2014) Topic 4 Module 9 Introduction Systems of to Matrices Linear Equations Income = Tickets!
More informationMore than you wanted to know about quadratic forms
CALIFORNIA INSTITUTE OF TECHNOLOGY Division of the Humanities and Social Sciences More than you wanted to know about quadratic forms KC Border Contents 1 Quadratic forms 1 1.1 Quadratic forms on the unit
More information3. INNER PRODUCT SPACES
. INNER PRODUCT SPACES.. Definition So far we have studied abstract vector spaces. These are a generalisation of the geometric spaces R and R. But these have more structure than just that of a vector space.
More informationThe Hadamard Product
The Hadamard Product Elizabeth Million April 12, 2007 1 Introduction and Basic Results As inexperienced mathematicians we may have once thought that the natural definition for matrix multiplication would
More information2.5 Elementary Row Operations and the Determinant
2.5 Elementary Row Operations and the Determinant Recall: Let A be a 2 2 matrtix : A = a b. The determinant of A, denoted by det(a) c d or A, is the number ad bc. So for example if A = 2 4, det(a) = 2(5)
More informationCITY UNIVERSITY LONDON. BEng Degree in Computer Systems Engineering Part II BSc Degree in Computer Systems Engineering Part III PART 2 EXAMINATION
No: CITY UNIVERSITY LONDON BEng Degree in Computer Systems Engineering Part II BSc Degree in Computer Systems Engineering Part III PART 2 EXAMINATION ENGINEERING MATHEMATICS 2 (resit) EX2005 Date: August
More informationBASIC THEORY AND APPLICATIONS OF THE JORDAN CANONICAL FORM
BASIC THEORY AND APPLICATIONS OF THE JORDAN CANONICAL FORM JORDAN BELL Abstract. This paper gives a basic introduction to the Jordan canonical form and its applications. It looks at the Jordan canonical
More informationThe Characteristic Polynomial
Physics 116A Winter 2011 The Characteristic Polynomial 1 Coefficients of the characteristic polynomial Consider the eigenvalue problem for an n n matrix A, A v = λ v, v 0 (1) The solution to this problem
More informationPrinciples of Digital Communication
Principles of Digital Communication Robert G. Gallager January 5, 2008 ii Preface: introduction and objectives The digital communication industry is an enormous and rapidly growing industry, roughly comparable
More informationMATH MathematicsNursing. MATH Remedial Mathematics IBusiness & Economics. MATH Remedial Mathematics IIBusiness and Economics
MATH 090  MathematicsNursing MATH 091  Remedial Mathematics IBusiness & Economics MATH 094  Remedial Mathematics IIBusiness and Economics MATH 095  Remedial Mathematics IScience (3 CH) MATH 096
More information( ) which must be a vector
MATH 37 Linear Transformations from Rn to Rm Dr. Neal, WKU Let T : R n R m be a function which maps vectors from R n to R m. Then T is called a linear transformation if the following two properties are
More informationLinear Algebra Done Wrong. Sergei Treil. Department of Mathematics, Brown University
Linear Algebra Done Wrong Sergei Treil Department of Mathematics, Brown University Copyright c Sergei Treil, 2004, 2009, 2011, 2014 Preface The title of the book sounds a bit mysterious. Why should anyone
More informationLinear Codes. In the V[n,q] setting, the terms word and vector are interchangeable.
Linear Codes Linear Codes In the V[n,q] setting, an important class of codes are the linear codes, these codes are the ones whose code words form a subvector space of V[n,q]. If the subspace of V[n,q]
More informationEigenvalues and Eigenvectors
Chapter 6 Eigenvalues and Eigenvectors 6. Introduction to Eigenvalues Linear equations Ax D b come from steady state problems. Eigenvalues have their greatest importance in dynamic problems. The solution
More informationFinite Dimensional Hilbert Spaces and Linear Inverse Problems
Finite Dimensional Hilbert Spaces and Linear Inverse Problems ECE 174 Lecture Supplement Spring 2009 Ken KreutzDelgado Electrical and Computer Engineering Jacobs School of Engineering University of California,
More informationSolving Systems of Linear Equations
LECTURE 5 Solving Systems of Linear Equations Recall that we introduced the notion of matrices as a way of standardizing the expression of systems of linear equations In today s lecture I shall show how
More informationWHICH LINEARFRACTIONAL TRANSFORMATIONS INDUCE ROTATIONS OF THE SPHERE?
WHICH LINEARFRACTIONAL TRANSFORMATIONS INDUCE ROTATIONS OF THE SPHERE? JOEL H. SHAPIRO Abstract. These notes supplement the discussion of linear fractional mappings presented in a beginning graduate course
More informationApplied Multivariate Analysis
Neil H. Timm Applied Multivariate Analysis With 42 Figures Springer Contents Preface Acknowledgments List of Tables List of Figures vii ix xix xxiii 1 Introduction 1 1.1 Overview 1 1.2 Multivariate Models
More informationEE 580 Linear Control Systems VI. State Transition Matrix
EE 580 Linear Control Systems VI. State Transition Matrix Department of Electrical Engineering Pennsylvania State University Fall 2010 6.1 Introduction Typical signal spaces are (infinitedimensional vector
More informationNumerical Methods I Solving Linear Systems: Sparse Matrices, Iterative Methods and NonSquare Systems
Numerical Methods I Solving Linear Systems: Sparse Matrices, Iterative Methods and NonSquare Systems Aleksandar Donev Courant Institute, NYU 1 donev@courant.nyu.edu 1 Course G63.2010.001 / G22.2420001,
More informationSCHWEITZER ENGINEERING LABORATORIES, COMERCIAL LTDA.
Pocket book of Electrical Engineering Formulas Content 1. Elementary Algebra and Geometry 1. Fundamental Properties (real numbers) 1 2. Exponents 2 3. Fractional Exponents 2 4. Irrational Exponents 2 5.
More informationDETERMINANTS. b 2. x 2
DETERMINANTS 1 Systems of two equations in two unknowns A system of two equations in two unknowns has the form a 11 x 1 + a 12 x 2 = b 1 a 21 x 1 + a 22 x 2 = b 2 This can be written more concisely in
More informationMatrices, Determinants and Linear Systems
September 21, 2014 Matrices A matrix A m n is an array of numbers in rows and columns a 11 a 12 a 1n r 1 a 21 a 22 a 2n r 2....... a m1 a m2 a mn r m c 1 c 2 c n We say that the dimension of A is m n (we
More informationMATH10212 Linear Algebra B Homework 7
MATH22 Linear Algebra B Homework 7 Students are strongly advised to acquire a copy of the Textbook: D C Lay, Linear Algebra and its Applications Pearson, 26 (or other editions) Normally, homework assignments
More informationLecture notes on linear algebra
Lecture notes on linear algebra David Lerner Department of Mathematics University of Kansas These are notes of a course given in Fall, 2007 and 2008 to the Honors sections of our elementary linear algebra
More informationPYKC Jan710. Lecture 1 Slide 1
Aims and Objectives E 2.5 Signals & Linear Systems Peter Cheung Department of Electrical & Electronic Engineering Imperial College London! By the end of the course, you would have understood: Basic signal
More informationSimilar matrices and Jordan form
Similar matrices and Jordan form We ve nearly covered the entire heart of linear algebra once we ve finished singular value decompositions we ll have seen all the most central topics. A T A is positive
More informationThe Singular Value Decomposition in Symmetric (Löwdin) Orthogonalization and Data Compression
The Singular Value Decomposition in Symmetric (Löwdin) Orthogonalization and Data Compression The SVD is the most generally applicable of the orthogonaldiagonalorthogonal type matrix decompositions Every
More informationUnivariate and Multivariate Methods PEARSON. Addison Wesley
Time Series Analysis Univariate and Multivariate Methods SECOND EDITION William W. S. Wei Department of Statistics The Fox School of Business and Management Temple University PEARSON Addison Wesley Boston
More informationLinear Algebraic Equations, SVD, and the PseudoInverse
Linear Algebraic Equations, SVD, and the PseudoInverse Philip N. Sabes October, 21 1 A Little Background 1.1 Singular values and matrix inversion For nonsmmetric matrices, the eigenvalues and singular
More information5. Orthogonal matrices
L Vandenberghe EE133A (Spring 2016) 5 Orthogonal matrices matrices with orthonormal columns orthogonal matrices tall matrices with orthonormal columns complex matrices with orthonormal columns 51 Orthonormal
More informationLU Factoring of NonInvertible Matrices
ACM Communications in Computer Algebra, LU Factoring of NonInvertible Matrices D. J. Jeffrey Department of Applied Mathematics, The University of Western Ontario, London, Ontario, Canada N6A 5B7 Revised
More informationNumerical Recipes in C++
Numerical Recipes in C++ The Art of Scientific Computing Second Edition William H. Press Los Alamos National Laboratory Saul A. Teukolsky Department of Physics, Cornell University William T. Vetterling
More informationEC9A0: Presessional Advanced Mathematics Course
University of Warwick, EC9A0: Presessional Advanced Mathematics Course Peter J. Hammond & Pablo F. Beker 1 of 55 EC9A0: Presessional Advanced Mathematics Course Slides 1: Matrix Algebra Peter J. Hammond
More informationMA 242 LINEAR ALGEBRA C1, Solutions to Second Midterm Exam
MA 4 LINEAR ALGEBRA C, Solutions to Second Midterm Exam Prof. Nikola Popovic, November 9, 6, 9:3am  :5am Problem (5 points). Let the matrix A be given by 5 6 5 4 5 (a) Find the inverse A of A, if it exists.
More informationPrinciples of Scientific Computing Linear Algebra I, Theory and Conditioning
Principles of Scientific Computing Linear Algebra I, Theory and Conditioning Jonathan Goodman last revised February 22, 2006 1 1 Introduction Linear algebra and calculus are the basic tools of quantitative
More information