Chapter 7. RandomVariate Generation 7.1. Prof. Dr. Mesut Güneş Ch. 7 RandomVariate Generation


 Johnathan Stone
 1 years ago
 Views:
Transcription
1 Chapter 7 RandomVarate Generaton 7.
2 Contents Inversetransform Technque AcceptanceRejecton Technque Specal Propertes 7.
3 Purpose & Overvew Develop understandng of generatng samples from a specfed dstrbuton as nput to a smulaton model. Illustrate some wdelyused technques for generatng random varates: Inversetransform technque Acceptancerejecton technque Specal propertes 7.3
4 Preparaton It s assumed that a source of unform [0,] random numbers ests. Lnear Congruental Method (LCM) Random numbers R, R, R, wth PDF CDF f R F R ( ) 0 0 ( ) 0 otherwse < 0 0 > f() 0 F() 0 7.4
5 Inversetransform Technque 7.5
6 Inversetransform Technque The concept: For CDF functon: r F() Generate r from unform (0,), a.k.a U(0,) Fnd, F  (r) F() F() r F() r F() r r r 7.6
7 Inversetransform Technque The nversetransform technque can be used n prncple for any dstrbuton. Most useful when the CDF F() has an nverse F  () whch s easy to compute. Requred steps. Compute the CDF of the desred random varable. Set F() R on the range of 3. Solve the equaton F() R for n terms of R 4. Generate unform random numbers R, R, R 3,... and compute the desred random varate by F  (R ) 7.7
8 Inversetransform Technque: Eample Eponental Dstrbuton PDF CDF f ( ) F( ) λe λ e Smplfcaton ln(r) λ λ Snce R and (R) are unformly dstrbuted on [0,] To generate,, 3 e e λ λ λ R R ln( R) ln( R) λ ln( R) λ F ( R) 7.8
9 Inversetransform Technque: Eample 7.9
10 Inversetransform Technque: Eample Inversetransform technque for ep(λ ) 7.0
11 Inversetransform Technque: Eample Eample: Generate 00 or 500 varates wth dstrbuton ep(λ ) Generate 00 or 500 R s wth U(0,), the hstogram of s becomes: 0,7 0,6 0,6 0,5 0,5 0,4 0,4 0,3 0,3 0, 0, 0, 0, 0 0,5,5,5 3 3,5 4 4,5 5 5,5 6 6,5 7 Emprcal Hstogram 0 0,57,5,7,30,87 3,45 4,0 4,60 5,7 5,75 Rel Prob. Theor. PDF 7.
12 Inversetransform Technque Check: Does the random varable have the desred dstrbuton? P ( 0) P( R F( 0)) F( 0) 7.
13 Inversetransform Technque: Other Dstrbutons Eamples of other dstrbutons for whch nverse CDF works are: Unform dstrbuton Webull dstrbuton Trangular dstrbuton 7.3
14 7.4 Inversetransform Technque: Unform Dstrbuton Random varable unformly dstrbuted over [a, b] ) ( ) ( ) ( a b R a a b R a R a b a R F +
15 Inversetransform Technque: Webull Dstrbuton The Webull Dstrbuton s descrbed by PDF CDF f ( ) F( ) β β α β e e ( ) β α ( ) β α The varate s e F( ) e ( ) ( ) ( ) α β α β α α β β β β R R R ln( ln( α β R) R) ln( R) β α α β β ln( ln( R) R) 7.5
16 7.6 Inversetransform Technque: Trangular Dstrbuton The CDF of a Trangular Dstrbuton wth endponts (0, ) s gven by s generated by < ) ( 0 R R R R ) ( 0 ) ( R > < < ) ( ) ( F
17 Inversetransform Technque: Emprcal Contnuous Dstrbutons When theoretcal dstrbutons are not applcable To collect emprcal data: Resample the observed data Interpolate between observed data ponts to fll n the gaps 7.7
18 Inversetransform Technque: Emprcal Contnuous Dstrbutons For a small sample set (sze n): Arrange the data from smallest to largest Set (0) 0 () () (n) Assgn the probablty /n to each nterval The slope of each lne segment s defned as a The nverse CDF s gven by ) ( ) ( ) n n Fˆ ( R) ( ) ( ( ) ( ) n + a R ( ) n () (),,,n when ( ) < n R n 7.8
19 Inversetransform Technque: Emprcal Contnuous Dstrbutons Interval PDF CDF Slope a 0.0 < < < < < R 0.7 (4) + a 4 ( R (4 ) / ( ).66 n) 7.9
20 Inversetransform Technque: Emprcal Contnuous Dstrbutons What happens for large samples of data Several hundreds or tens of thousand Frst summarze the data nto a frequency dstrbuton wth smaller number of ntervals Afterwards, ft contnuous emprcal CDF to the frequency dstrbuton Slght modfcatons Slope a ( ) c c ( ) The nverse CDF s gven by Fˆ ( R) + a R c c cumulatve probablty of the frst ntervals ( ) when c < R c ( ) 7.0
21 Inversetransform Technque: Emprcal Contnuous Dstrbutons Eample: Suppose the data collected for 00 brokenwdget repar tmes are: Interval (Hours) Frequency Relatve Frequency Cumulatve Frequency, c Slope, a Consder R 0.83: c < R < c 4.00 (4) + a 4 (R c (4) ) ( ).75 7.
22 Inversetransform Technque: Emprcal Contnuous Dstrbutons Problems wth emprcal dstrbutons The data n the prevous eample s restrcted n the range The underlyng dstrbuton mght have a wder range Thus, try to fnd a theoretcal dstrbuton Hnts for buldng emprcal dstrbutons based on frequency tables It s recommended to use relatvely short ntervals Number of bns ncrease Ths wll result n a more accurate estmate 7.
23 Inversetransform Technque: Contnuous Dstrbutons A number of contnuous dstrbutons do not have a closed form epresson for ther CDF, e.g. Normal Gamma F( ) ( ( ) tµ )dt ep σ π σ Beta The presented method does not work for these dstrbutons Soluton Appromate the CDF or numercally ntegrate the CDF Problem Computatonally slow 7.3
24 Inversetransform Technque: Dscrete Dstrbuton All dscrete dstrbutons can be generated va nversetransform technque Method: numercally, tablelookup procedure, algebracally, or a formula Eamples of applcaton: Emprcal Dscrete unform Geometrc 7.4
25 Inversetransform Technque: Dscrete Dstrbuton Eample: Suppose the number of shpments,, on the loadng dock of a company s ether 0,, or Data  Probablty dstrbuton: P() F() The nversetransform technque as tablelookup procedure F ( ) r < R r F( ) Set 7.5
26 Inversetransform Technque: Dscrete Dstrbuton Method  Gven R, the generaton scheme becomes: 0,,, 0.5 < 0.8 < R 0.5 R 0.8 R Table for generatng the dscrete varate Input r Output Consder R 0.73: F(  ) < R F( ) F( 0 ) < 0.73 F( ) Hence, 7.6
27 AcceptanceRejecton Technque 7.7
28 AcceptanceRejecton Technque Useful partcularly when nverse CDF does not est n closed form Thnnng Illustraton: To generate random varates, ~ U(/4,) Procedure: Step. Generate R ~ U(0,) Step. If R ¼, accept R. Step 3. If R < ¼, reject R, return to Step no Generate R Condton yes Output R R does not have the desred dstrbuton, but R condtoned (R ) on the event {R ¼} does. Effcency: Depends heavly on the ablty to mnmze the number of rejectons. 7.8
29 AcceptanceRejecton Technque: Posson Dstrbuton Probablty mass functon of a Posson Dstrbuton n α α P( N n) e n! Eactly n arrvals durng one tme unt A + A + + An < A + A + + An + An + Snce nterarrval tmes are eponentally dstrbuted we can set A ln( R ) α Well known, we derved ths generator n the begnnng of the class 7.9
30 7.30 AcceptanceRejecton Technque: Posson Dstrbuton Substtute the sum by Smplfy by multply by α, whch reverses the nequalty sgn sum of logs s the log of a product Smplfy by e ln() + > n n R e R α + < ) ln( ) ln( n n R R α α + + > > ln ln ) ln( ) ln( n n n n R R R R α α
31 AcceptanceRejecton Technque: Posson Dstrbuton Procedure of generatng a Posson random varate N s as follows. Set n0, P. Generate a random number R n+, and replace P by P R n+ 3. If P < ep(α), then accept Nn Otherwse, reject the current n, ncrease n by one, and return to step. 7.3
32 AcceptanceRejecton Technque: Posson Dstrbuton Eample: Generate three Posson varates wth mean α0. ep(0.) Varate Step : Set n 0, P Step : R , P Step 3: Snce P < ep( 0.), accept N 0 Varate Step : Set n 0, P Step : R 0.446, P Step 3: Snce P < ep(0.), accept N 0 Varate 3 Step : Set n 0, P Step : R , P Step 3: Snce P > ep(0.), reject n 0 and return to Step wth n Step : R 0.995, P Step 3: Snce P > ep(0.), reject n and return to Step wth n Step : R , P Step 3: Snce P < ep(0.), accept N 7.3
33 AcceptanceRejecton Technque: Posson Dstrbuton It took fve random numbers to generate three Posson varates In long run, the generaton of Posson varates requres some overhead! N R n+ P Accept/Reject Result P < ep( α) Accept N P < ep( α) Accept N P ep( α) Reject P ep( α) Reject P < ep( α) Accept N 7.33
34 Specal Propertes 7.34
35 Specal Propertes Based on features of partcular famly of probablty dstrbutons For eample: Drect Transformaton for normal and lognormal dstrbutons Convoluton 7.35
36 Drect Transformaton Approach for N(0,) PDF f ( ) e π CDF, No closed form avalable t F( ) e π dt 7.36
37 Drect Transformaton Approach for N(0,) Consder two standard normal random varables, Z and Z, plotted as a pont n the plane: In polar coordnates: Z B cos(α) Z B sn(α) Z (Z,Z ) B α Z 7.37
38 Drect Transformaton Chsquare dstrbuton Gven k ndependent N(0, ) random varables,,, k, then the sum s accordng to the Chsquare dstrbuton PDF χ k k f (, k) Γ ( k ) k k e 7.38
39 Drect Transformaton The followng relatonshps are known B Z + Z ~ χ dstrbuton wth degrees of freedom ep(λ /). Hence: B lnr The radus B and angle α are mutually ndependent. Z ln R cos(πr ) Z ln R sn(πr ) 7.39
40 Drect Transformaton Approach for N(µ, σ ): Generate Z ~ N(0,) µ + σ Z Approach for Lognormal(µ,σ ): Generate ~ N(µ,σ ) Y e 7.40
41 Drect Transformaton: Eample Let R and R Two standard normal random varates are generated as follows: Z Z ln(0.758) cos(π 0.489). ln(0.758) sn(π 0.489).50 To obtan normal varates wth mean µ0 and varance σ
42 Convoluton Convoluton The sum of ndependent random varables Can be appled to obtan Erlang varates Bnomal varates 7.4
43 Convoluton Erlang Dstrbuton Erlang random varable wth parameters (k, θ) can be depcted as the sum of k ndependent eponental random varables,,, k each havng mean /(k θ) k k ln kθ ln( R ) kθ k R 7.43
44 Summary Prncples of randomvarate generaton va Inversetransform technque Acceptancerejecton technque Specal propertes Important for generatng contnuous and dscrete dstrbutons 7.44
benefit is 2, paid if the policyholder dies within the year, and probability of death within the year is ).
REVIEW OF RISK MANAGEMENT CONCEPTS LOSS DISTRIBUTIONS AND INSURANCE Loss and nsurance: When someone s subject to the rsk of ncurrng a fnancal loss, the loss s generally modeled usng a random varable or
More informationCommunication Networks II Contents
8 / 1  Communcaton Networs II (Görg)  www.comnets.unbremen.de Communcaton Networs II Contents 1 Fundamentals of probablty theory 2 Traffc n communcaton networs 3 Stochastc & Marovan Processes (SP
More informationx f(x) 1 0.25 1 0.75 x 1 0 1 1 0.04 0.01 0.20 1 0.12 0.03 0.60
BIVARIATE DISTRIBUTIONS Let be a varable that assumes the values { 1,,..., n }. Then, a functon that epresses the relatve frequenc of these values s called a unvarate frequenc functon. It must be true
More informationNPAR TESTS. OneSample ChiSquare Test. Cell Specification. Observed Frequencies 1O i 6. Expected Frequencies 1EXP i 6
PAR TESTS If a WEIGHT varable s specfed, t s used to replcate a case as many tmes as ndcated by the weght value rounded to the nearest nteger. If the workspace requrements are exceeded and samplng has
More informationPSYCHOLOGICAL RESEARCH (PYC 304C) Lecture 12
14 The Chsquared dstrbuton PSYCHOLOGICAL RESEARCH (PYC 304C) Lecture 1 If a normal varable X, havng mean µ and varance σ, s standardsed, the new varable Z has a mean 0 and varance 1. When ths standardsed
More informationSCALAR A physical quantity that is completely characterized by a real number (or by its numerical value) is called a scalar. In other words, a scalar
SCALAR A phscal quantt that s completel charactered b a real number (or b ts numercal value) s called a scalar. In other words, a scalar possesses onl a magntude. Mass, denst, volume, temperature, tme,
More informationSTATISTICAL DATA ANALYSIS IN EXCEL
Mcroarray Center STATISTICAL DATA ANALYSIS IN EXCEL Lecture 6 Some Advanced Topcs Dr. Petr Nazarov 1401013 petr.nazarov@crpsante.lu Statstcal data analyss n Ecel. 6. Some advanced topcs Correcton for
More informationRecurrence. 1 Definitions and main statements
Recurrence 1 Defntons and man statements Let X n, n = 0, 1, 2,... be a MC wth the state space S = (1, 2,...), transton probabltes p j = P {X n+1 = j X n = }, and the transton matrx P = (p j ),j S def.
More information8.5 UNITARY AND HERMITIAN MATRICES. The conjugate transpose of a complex matrix A, denoted by A*, is given by
6 CHAPTER 8 COMPLEX VECTOR SPACES 5. Fnd the kernel of the lnear transformaton gven n Exercse 5. In Exercses 55 and 56, fnd the mage of v, for the ndcated composton, where and are gven by the followng
More informationThe OC Curve of Attribute Acceptance Plans
The OC Curve of Attrbute Acceptance Plans The Operatng Characterstc (OC) curve descrbes the probablty of acceptng a lot as a functon of the lot s qualty. Fgure 1 shows a typcal OC Curve. 10 8 6 4 1 3 4
More informationCausal, Explanatory Forecasting. Analysis. Regression Analysis. Simple Linear Regression. Which is Independent? Forecasting
Causal, Explanatory Forecastng Assumes causeandeffect relatonshp between system nputs and ts output Forecastng wth Regresson Analyss Rchard S. Barr Inputs System Cause + Effect Relatonshp The job of
More information1 Example 1: Axisaligned rectangles
COS 511: Theoretcal Machne Learnng Lecturer: Rob Schapre Lecture # 6 Scrbe: Aaron Schld February 21, 2013 Last class, we dscussed an analogue for Occam s Razor for nfnte hypothess spaces that, n conjuncton
More information1 Approximation Algorithms
CME 305: Dscrete Mathematcs and Algorthms 1 Approxmaton Algorthms In lght of the apparent ntractablty of the problems we beleve not to le n P, t makes sense to pursue deas other than complete solutons
More information2.4 Bivariate distributions
page 28 2.4 Bvarate dstrbutons 2.4.1 Defntons Let X and Y be dscrete r.v.s defned on the same probablty space (S, F, P). Instead of treatng them separately, t s often necessary to thnk of them actng together
More informationExperiment 8 Two Types of Pendulum
Experment 8 Two Types of Pendulum Preparaton For ths week's quz revew past experments and read about pendulums and harmonc moton Prncples Any object that swngs back and forth can be consdered a pendulum
More informationBERNSTEIN POLYNOMIALS
OnLne Geometrc Modelng Notes BERNSTEIN POLYNOMIALS Kenneth I. Joy Vsualzaton and Graphcs Research Group Department of Computer Scence Unversty of Calforna, Davs Overvew Polynomals are ncredbly useful
More informationTHE METHOD OF LEAST SQUARES THE METHOD OF LEAST SQUARES
The goal: to measure (determne) an unknown quantty x (the value of a RV X) Realsaton: n results: y 1, y 2,..., y j,..., y n, (the measured values of Y 1, Y 2,..., Y j,..., Y n ) every result s encumbered
More informationControl Charts for Means (Simulation)
Chapter 290 Control Charts for Means (Smulaton) Introducton Ths procedure allows you to study the run length dstrbuton of Shewhart (Xbar), Cusum, FIR Cusum, and EWMA process control charts for means usng
More informationInequality and The Accounting Period. Quentin Wodon and Shlomo Yitzhaki. World Bank and Hebrew University. September 2001.
Inequalty and The Accountng Perod Quentn Wodon and Shlomo Ytzha World Ban and Hebrew Unversty September Abstract Income nequalty typcally declnes wth the length of tme taen nto account for measurement.
More informationDEFINING %COMPLETE IN MICROSOFT PROJECT
CelersSystems DEFINING %COMPLETE IN MICROSOFT PROJECT PREPARED BY James E Aksel, PMP, PMISP, MVP For Addtonal Informaton about Earned Value Management Systems and reportng, please contact: CelersSystems,
More informationTime Series Analysis in Studies of AGN Variability. Bradley M. Peterson The Ohio State University
Tme Seres Analyss n Studes of AGN Varablty Bradley M. Peterson The Oho State Unversty 1 Lnear Correlaton Degree to whch two parameters are lnearly correlated can be expressed n terms of the lnear correlaton
More informationModule 2 LOSSLESS IMAGE COMPRESSION SYSTEMS. Version 2 ECE IIT, Kharagpur
Module LOSSLESS IMAGE COMPRESSION SYSTEMS Lesson 3 Lossless Compresson: Huffman Codng Instructonal Objectves At the end of ths lesson, the students should be able to:. Defne and measure source entropy..
More informationNMT EE 589 & UNM ME 482/582 ROBOT ENGINEERING. Dr. Stephen Bruder NMT EE 589 & UNM ME 482/582
NMT EE 589 & UNM ME 482/582 ROBOT ENGINEERING Dr. Stephen Bruder NMT EE 589 & UNM ME 482/582 7. Root Dynamcs 7.2 Intro to Root Dynamcs We now look at the forces requred to cause moton of the root.e. dynamcs!!
More informationTHE DISTRIBUTION OF LOAN PORTFOLIO VALUE * Oldrich Alfons Vasicek
HE DISRIBUION OF LOAN PORFOLIO VALUE * Oldrch Alfons Vascek he amount of captal necessary to support a portfolo of debt securtes depends on the probablty dstrbuton of the portfolo loss. Consder a portfolo
More informationLecture 2: Single Layer Perceptrons Kevin Swingler
Lecture 2: Sngle Layer Perceptrons Kevn Sngler kms@cs.str.ac.uk Recap: McCullochPtts Neuron Ths vastly smplfed model of real neurons s also knon as a Threshold Logc Unt: W 2 A Y 3 n W n. A set of synapses
More informationThe covariance is the two variable analog to the variance. The formula for the covariance between two variables is
Regresson Lectures So far we have talked only about statstcs that descrbe one varable. What we are gong to be dscussng for much of the remander of the course s relatonshps between two or more varables.
More informationWhat is Candidate Sampling
What s Canddate Samplng Say we have a multclass or mult label problem where each tranng example ( x, T ) conssts of a context x a small (mult)set of target classes T out of a large unverse L of possble
More informationLuby s Alg. for Maximal Independent Sets using Pairwise Independence
Lecture Notes for Randomzed Algorthms Luby s Alg. for Maxmal Independent Sets usng Parwse Independence Last Updated by Erc Vgoda on February, 006 8. Maxmal Independent Sets For a graph G = (V, E), an ndependent
More informationRisk Model of LongTerm Production Scheduling in Open Pit Gold Mining
Rsk Model of LongTerm Producton Schedulng n Open Pt Gold Mnng R Halatchev 1 and P Lever 2 ABSTRACT Open pt gold mnng s an mportant sector of the Australan mnng ndustry. It uses large amounts of nvestments,
More informationBinomial Link Functions. Lori Murray, Phil Munz
Bnomal Lnk Functons Lor Murray, Phl Munz Bnomal Lnk Functons Logt Lnk functon: ( p) p ln 1 p Probt Lnk functon: ( p) 1 ( p) Complentary Log Log functon: ( p) ln( ln(1 p)) Motvatng Example A researcher
More informationLoop Parallelization
  Loop Parallelzaton C52 Complaton steps: nested loops operatng on arrays, sequentell executon of teraton space DECLARE B[..,..+] FOR I :=.. FOR J :=.. I B[I,J] := B[I,J]+B[I,J] ED FOR ED FOR analyze
More informationRotation Kinematics, Moment of Inertia, and Torque
Rotaton Knematcs, Moment of Inerta, and Torque Mathematcally, rotaton of a rgd body about a fxed axs s analogous to a lnear moton n one dmenson. Although the physcal quanttes nvolved n rotaton are qute
More informationVasicek s Model of Distribution of Losses in a Large, Homogeneous Portfolio
Vascek s Model of Dstrbuton of Losses n a Large, Homogeneous Portfolo Stephen M Schaefer London Busness School Credt Rsk Electve Summer 2012 Vascek s Model Important method for calculatng dstrbuton of
More informationSupport Vector Machines
Support Vector Machnes Max Wellng Department of Computer Scence Unversty of Toronto 10 Kng s College Road Toronto, M5S 3G5 Canada wellng@cs.toronto.edu Abstract Ths s a note to explan support vector machnes.
More informationCalculation of Sampling Weights
Perre Foy Statstcs Canada 4 Calculaton of Samplng Weghts 4.1 OVERVIEW The basc sample desgn used n TIMSS Populatons 1 and 2 was a twostage stratfed cluster desgn. 1 The frst stage conssted of a sample
More information1. Fundamentals of probability theory 2. Emergence of communication traffic 3. Stochastic & Markovian Processes (SP & MP)
6.3 /  Communcaton Networks II (Görg) SS20  www.comnets.unbremen.de Communcaton Networks II Contents. Fundamentals of probablty theory 2. Emergence of communcaton traffc 3. Stochastc & Markovan Processes
More informationSIMPLE LINEAR CORRELATION
SIMPLE LINEAR CORRELATION Smple lnear correlaton s a measure of the degree to whch two varables vary together, or a measure of the ntensty of the assocaton between two varables. Correlaton often s abused.
More informationConversion between the vector and raster data structures using Fuzzy Geographical Entities
Converson between the vector and raster data structures usng Fuzzy Geographcal Enttes Cdála Fonte Department of Mathematcs Faculty of Scences and Technology Unversty of Combra, Apartado 38, 3 454 Combra,
More informationCHAPTER 14 MORE ABOUT REGRESSION
CHAPTER 14 MORE ABOUT REGRESSION We learned n Chapter 5 that often a straght lne descrbes the pattern of a relatonshp between two quanttatve varables. For nstance, n Example 5.1 we explored the relatonshp
More information1. Measuring association using correlation and regression
How to measure assocaton I: Correlaton. 1. Measurng assocaton usng correlaton and regresson We often would lke to know how one varable, such as a mother's weght, s related to another varable, such as a
More informationINTRODUCTION TO MONTE CARLO SIMULATION. Samik Raychaudhuri
Proceedngs of the 2008 Wnter Smulaton Conference S. J. Mason, R. R. Hll, L. Mönch, O. Rose, T. Jefferson, J. W. Fowler eds. INTRODUCTION TO MONTE CARLO SIMULATION Samk Raychaudhur Oracle Crystal Ball Global
More informationv a 1 b 1 i, a 2 b 2 i,..., a n b n i.
SECTION 8.4 COMPLEX VECTOR SPACES AND INNER PRODUCTS 455 8.4 COMPLEX VECTOR SPACES AND INNER PRODUCTS All the vector spaces we have studed thus far n the text are real vector spaces snce the scalars are
More information+ + +   This circuit than can be reduced to a planar circuit
MeshCurrent Method The meshcurrent s analog of the nodeoltage method. We sole for a new set of arables, mesh currents, that automatcally satsfy KCLs. As such, meshcurrent method reduces crcut soluton to
More informationFormula of Total Probability, Bayes Rule, and Applications
1 Formula of Total Probablty, Bayes Rule, and Applcatons Recall that for any event A, the par of events A and A has an ntersecton that s empty, whereas the unon A A represents the total populaton of nterest.
More informationInstitute of Informatics, Faculty of Business and Management, Brno University of Technology,Czech Republic
Lagrange Multplers as Quanttatve Indcators n Economcs Ivan Mezník Insttute of Informatcs, Faculty of Busness and Management, Brno Unversty of TechnologCzech Republc Abstract The quanttatve role of Lagrange
More informationSTART Selected Topics in Assurance
START Selected Topcs n Assurance Related Technologes Table of Contents Introducton Some Statstcal Bacground Fttng Normal and Lognormal Dstrbuton Fttng an Exponental Dstrbuton Fttng a Webull Dstrbuton A
More informationA random variable is a variable whose value depends on the outcome of a random event/experiment.
Random varables and Probablty dstrbutons A random varable s a varable whose value depends on the outcome of a random event/experment. For example, the score on the roll of a de, the heght of a randomly
More informationgreatest common divisor
4. GCD 1 The greatest common dvsor of two ntegers a and b (not both zero) s the largest nteger whch s a common factor of both a and b. We denote ths number by gcd(a, b), or smply (a, b) when there s no
More informationA hybrid global optimization algorithm based on parallel chaos optimization and outlook algorithm
Avalable onlne www.ocpr.com Journal of Chemcal and Pharmaceutcal Research, 2014, 6(7):18841889 Research Artcle ISSN : 09757384 CODEN(USA) : JCPRC5 A hybrd global optmzaton algorthm based on parallel
More informationRing structure of splines on triangulations
www.oeaw.ac.at Rng structure of splnes on trangulatons N. Vllamzar RICAMReport 201448 www.rcam.oeaw.ac.at RING STRUCTURE OF SPLINES ON TRIANGULATIONS NELLY VILLAMIZAR Introducton For a trangulated regon
More informationThe Application of Fractional Brownian Motion in Option Pricing
Vol. 0, No. (05), pp. 738 http://dx.do.org/0.457/jmue.05.0..6 The Applcaton of Fractonal Brownan Moton n Opton Prcng Qngxn Zhou School of Basc Scence,arbn Unversty of Commerce,arbn zhouqngxn98@6.com
More informationErrorPropagation.nb 1. Error Propagation
ErrorPropagaton.nb Error Propagaton Suppose that we make observatons of a quantty x that s subject to random fluctuatons or measurement errors. Our best estmate of the true value for ths quantty s then
More informationRetailers must constantly strive for excellence in operations; extremely narrow profit margins
Managng a Retaler s Shelf Space, Inventory, and Transportaton Gerard Cachon 300 SH/DH, The Wharton School, Unversty of Pennsylvana, Phladelpha, Pennsylvana 90 cachon@wharton.upenn.edu http://opm.wharton.upenn.edu/cachon/
More informationCHAPTER 9 SECONDLAW ANALYSIS FOR A CONTROL VOLUME. blank
CHAPTER 9 SECONDLAW ANALYSIS FOR A CONTROL VOLUME blank SONNTAG/BORGNAKKE STUDY PROBLEM 91 9.1 An deal steam turbne A steam turbne receves 4 kg/s steam at 1 MPa 300 o C and there are two ext flows, 0.5
More informationCharacterization of Assembly. Variation Analysis Methods. A Thesis. Presented to the. Department of Mechanical Engineering. Brigham Young University
Characterzaton of Assembly Varaton Analyss Methods A Thess Presented to the Department of Mechancal Engneerng Brgham Young Unversty In Partal Fulfllment of the Requrements for the Degree Master of Scence
More informationPortfolio Loss Distribution
Portfolo Loss Dstrbuton Rsky assets n loan ortfolo hghly llqud assets holdtomaturty n the bank s balance sheet Outstandngs The orton of the bank asset that has already been extended to borrowers. Commtment
More informationA DYNAMIC CRASHING METHOD FOR PROJECT MANAGEMENT USING SIMULATIONBASED OPTIMIZATION. Michael E. Kuhl Radhamés A. TolentinoPeña
Proceedngs of the 2008 Wnter Smulaton Conference S. J. Mason, R. R. Hll, L. Mönch, O. Rose, T. Jefferson, J. W. Fowler eds. A DYNAMIC CRASHING METHOD FOR PROJECT MANAGEMENT USING SIMULATIONBASED OPTIMIZATION
More informationNew bounds in BalogSzemerédiGowers theorem
New bounds n BalogSzemerédGowers theorem By Tomasz Schoen Abstract We prove, n partcular, that every fnte subset A of an abelan group wth the addtve energy κ A 3 contans a set A such that A κ A and A
More informationLinear Regression Analysis for STARDEX
Lnear Regresson Analss for STARDEX Malcolm Halock, Clmatc Research Unt The followng document s an overvew of lnear regresson methods for reference b members of STARDEX. Whle t ams to cover the most common
More informationFragility Based Rehabilitation Decision Analysis
.171. Fraglty Based Rehabltaton Decson Analyss Cagdas Kafal Graduate Student, School of Cvl and Envronmental Engneerng, Cornell Unversty Research Supervsor: rcea Grgoru, Professor Summary A method s presented
More informationRapid Estimation Method for Data Capacity and Spectrum Efficiency in Cellular Networks
Rapd Estmaton ethod for Data Capacty and Spectrum Effcency n Cellular Networs C.F. Ball, E. Humburg, K. Ivanov, R. üllner Semens AG, Communcatons oble Networs unch, Germany carsten.ball@semens.com Abstract
More informationRiskbased Fatigue Estimate of Deep Water Risers  Course Project for EM388F: Fracture Mechanics, Spring 2008
Rskbased Fatgue Estmate of Deep Water Rsers  Course Project for EM388F: Fracture Mechancs, Sprng 2008 Chen Sh Department of Cvl, Archtectural, and Envronmental Engneerng The Unversty of Texas at Austn
More informationLecture 3: Force of Interest, Real Interest Rate, Annuity
Lecture 3: Force of Interest, Real Interest Rate, Annuty Goals: Study contnuous compoundng and force of nterest Dscuss real nterest rate Learn annutymmedate, and ts present value Study annutydue, and
More informationEconomic Interpretation of Regression. Theory and Applications
Economc Interpretaton of Regresson Theor and Applcatons Classcal and Baesan Econometrc Methods Applcaton of mathematcal statstcs to economc data for emprcal support Economc theor postulates a qualtatve
More informationGENETIC ALGORITHM FOR PROJECT SCHEDULING AND RESOURCE ALLOCATION UNDER UNCERTAINTY
Int. J. Mech. Eng. & Rob. Res. 03 Fady Safwat et al., 03 Research Paper ISS 78 049 www.jmerr.com Vol., o. 3, July 03 03 IJMERR. All Rghts Reserved GEETIC ALGORITHM FOR PROJECT SCHEDULIG AD RESOURCE ALLOCATIO
More informationThe Magnetic Field. Concepts and Principles. Moving Charges. Permanent Magnets
. The Magnetc Feld Concepts and Prncples Movng Charges All charged partcles create electrc felds, and these felds can be detected by other charged partcles resultng n electrc force. However, a completely
More informationSupplementary material: Assessing the relevance of node features for network structure
Supplementary materal: Assessng the relevance of node features for network structure Gnestra Bancon, 1 Paolo Pn,, 3 and Matteo Marsl 1 1 The Abdus Salam Internatonal Center for Theoretcal Physcs, Strada
More informationExhaustive Regression. An Exploration of RegressionBased Data Mining Techniques Using Super Computation
Exhaustve Regresson An Exploraton of RegressonBased Data Mnng Technques Usng Super Computaton Antony Daves, Ph.D. Assocate Professor of Economcs Duquesne Unversty Pttsburgh, PA 58 Research Fellow The
More informationIn our example i = r/12 =.0825/12 At the end of the first month after your payment is received your amount owed is. P (1 + i) A
Amortzed loans: Suppose you borrow P dollars, e.g., P = 100, 000 for a house wth a 30 year mortgage wth an nterest rate of 8.25% (compounded monthly). In ths type of loan you make equal payments of A dollars
More informationOptimal Bidding Strategies for Generation Companies in a DayAhead Electricity Market with Risk Management Taken into Account
Amercan J. of Engneerng and Appled Scences (): 86, 009 ISSN 94700 009 Scence Publcatons Optmal Bddng Strateges for Generaton Companes n a DayAhead Electrcty Market wth Rsk Management Taken nto Account
More informationToday s class. Chapter 13. Sources of uncertainty. Decision making with uncertainty
Today s class Probablty theory Bayesan nference From the ont dstrbuton Usng ndependence/factorng From sources of evdence Chapter 13 1 2 Sources of uncertanty Uncertan nputs Mssng data Nosy data Uncertan
More informationChapter 4 ECONOMIC DISPATCH AND UNIT COMMITMENT
Chapter 4 ECOOMIC DISATCH AD UIT COMMITMET ITRODUCTIO A power system has several power plants. Each power plant has several generatng unts. At any pont of tme, the total load n the system s met by the
More informationUsing Series to Analyze Financial Situations: Present Value
2.8 Usng Seres to Analyze Fnancal Stuatons: Present Value In the prevous secton, you learned how to calculate the amount, or future value, of an ordnary smple annuty. The amount s the sum of the accumulated
More informationAnalysis of EnergyConserving Access Protocols for Wireless Identification Networks
From the Proceedngs of Internatonal Conference on Telecommuncaton Systems (ITC97), March 223, 1997. 1 Analyss of EnergyConservng Access Protocols for Wreless Identfcaton etworks Imrch Chlamtac a, Chara
More informationTexas Instruments 30Xa Calculator
Teas Instruments 30Xa Calculator Keystrokes for the TI30Xa are shown for a few topcs n whch keystrokes are unque. Start by readng the Quk Start secton. Then, before begnnng a specfc unt of the tet, check
More informationThe Analysis of Covariance. ERSH 8310 Keppel and Wickens Chapter 15
The Analyss of Covarance ERSH 830 Keppel and Wckens Chapter 5 Today s Class Intal Consderatons Covarance and Lnear Regresson The Lnear Regresson Equaton TheAnalyss of Covarance Assumptons Underlyng the
More informationThe Choice of Direct Dealing or Electronic Brokerage in Foreign Exchange Trading
The Choce of Drect Dealng or Electronc Brokerage n Foregn Exchange Tradng Mchael Melvn & Ln Wen Arzona State Unversty Introducton Electronc Brokerage n Foregn Exchange Start from a base of zero n 1992
More informationJoint Resource Allocation and BaseStation. Assignment for the Downlink in CDMA Networks
Jont Resource Allocaton and BaseStaton 1 Assgnment for the Downlnk n CDMA Networks Jang Won Lee, Rav R. Mazumdar, and Ness B. Shroff School of Electrcal and Computer Engneerng Purdue Unversty West Lafayette,
More informationProject Networks With MixedTime Constraints
Project Networs Wth MxedTme Constrants L Caccetta and B Wattananon Western Australan Centre of Excellence n Industral Optmsaton (WACEIO) Curtn Unversty of Technology GPO Box U1987 Perth Western Australa
More informationThe Performance Analysis Of A M/M/2/2+1 Retrial Queue With Unreliable Server
Journal of Statstcal Scence and Applcaton, October 5, Vol. 3, No. 9, 6374 do:.765/384/5.9.3 D DAV I D PUBLISHING The Performance Analyss Of A M/M//+ Retral Queue Wth Unrelable Server R. Kalyanaraman
More informationFORCED CONVECTION HEAT TRANSFER IN A DOUBLE PIPE HEAT EXCHANGER
FORCED CONVECION HEA RANSFER IN A DOUBLE PIPE HEA EXCHANGER Dr. J. Mchael Doster Department of Nuclear Engneerng Box 7909 North Carolna State Unversty Ralegh, NC 276957909 Introducton he convectve heat
More informationAPPLICATIONS OF VARIATIONAL PRINCIPLES TO DYNAMICS AND CONSERVATION LAWS IN PHYSICS
APPLICATIONS OF VAIATIONAL PINCIPLES TO DYNAMICS AND CONSEVATION LAWS IN PHYSICS DANIEL J OLDE Abstract. Much of physcs can be condensed and smplfed usng the prncple of least acton from the calculus of
More informationSPEE Recommended Evaluation Practice #6 Definition of Decline Curve Parameters Background:
SPEE Recommended Evaluaton Practce #6 efnton of eclne Curve Parameters Background: The producton hstores of ol and gas wells can be analyzed to estmate reserves and future ol and gas producton rates and
More informationSome geometric probability problems involving the Eulerian numbers
Some geometrc probablty problems nvolvng the Euleran numbers Frank Schmdt Rodca Smon Department of Mathematcs The George Washngton Unversty Washngton, DC 20052 smon@math.gwu.edu Dedcated to Herb Wlf on
More informationA Simple Economic Model about the Teamwork Pedagogy
Appled Mathematcal Scences, Vol. 6, 01, no. 1, 130 A Smple Economc Model about the Teamwork Pedagog Gregor L. Lght Department of Management, Provdence College Provdence, Rhode Island 0918, USA glght@provdence.edu
More informationQuantization Effects in Digital Filters
Quantzaton Effects n Dgtal Flters Dstrbuton of Truncaton Errors In two's complement representaton an exact number would have nfntely many bts (n general). When we lmt the number of bts to some fnte value
More informationSolution: Let i = 10% and d = 5%. By definition, the respective forces of interest on funds A and B are. i 1 + it. S A (t) = d (1 dt) 2 1. = d 1 dt.
Chapter 9 Revew problems 9.1 Interest rate measurement Example 9.1. Fund A accumulates at a smple nterest rate of 10%. Fund B accumulates at a smple dscount rate of 5%. Fnd the pont n tme at whch the forces
More informationBenefits of MultiEchelon Inventory Control
2012, Lund Lund Unversty Lund Insttute of Technology Dvson of Producton Management Department of Industral Management and Logstcs Benefts of MultEchelon Inventory Control A case study at Tetra Pak Author:
More informationn + d + q = 24 and.05n +.1d +.25q = 2 { n + d + q = 24 (3) n + 2d + 5q = 40 (2)
MATH 16T Exam 1 : Part I (InClass) Solutons 1. (0 pts) A pggy bank contans 4 cons, all of whch are nckels (5 ), dmes (10 ) or quarters (5 ). The pggy bank also contans a con of each denomnaton. The total
More informationThe circuit shown on Figure 1 is called the common emitter amplifier circuit. The important subsystems of this circuit are:
polar Juncton Transstor rcuts Voltage and Power Amplfer rcuts ommon mtter Amplfer The crcut shown on Fgure 1 s called the common emtter amplfer crcut. The mportant subsystems of ths crcut are: 1. The basng
More informationz(t) = z 1 (t) + t(z 2 z 1 ) z(t) = 1 + i + t( 2 3i (1 + i)) z(t) = 1 + i + t( 3 4i); 0 t 1
(4.): ontours. Fnd an admssble parametrzaton. (a). the lne segment from z + to z 3. z(t) z (t) + t(z z ) z(t) + + t( 3 ( + )) z(t) + + t( 3 4); t (b). the crcle jz j 4 traversed once clockwse startng at
More informationPerformance Analysis of Energy Consumption of Smartphone Running Mobile Hotspot Application
Internatonal Journal of mart Grd and lean Energy Performance Analyss of Energy onsumpton of martphone Runnng Moble Hotspot Applcaton Yun on hung a chool of Electronc Engneerng, oongsl Unversty, 511 angdodong,
More informationEfficient Striping Techniques for Variable Bit Rate Continuous Media File Servers æ
Effcent Strpng Technques for Varable Bt Rate Contnuous Meda Fle Servers æ Prashant J. Shenoy Harrck M. Vn Department of Computer Scence, Department of Computer Scences, Unversty of Massachusetts at Amherst
More informationLinear Circuits Analysis. Superposition, Thevenin /Norton Equivalent circuits
Lnear Crcuts Analyss. Superposton, Theenn /Norton Equalent crcuts So far we hae explored tmendependent (resste) elements that are also lnear. A tmendependent elements s one for whch we can plot an / cure.
More informationCS 2750 Machine Learning. Lecture 17a. Clustering. CS 2750 Machine Learning. Clustering
Lecture 7a Clusterng Mlos Hauskrecht mlos@cs.ptt.edu 539 Sennott Square Clusterng Groups together smlar nstances n the data sample Basc clusterng problem: dstrbute data nto k dfferent groups such that
More informationMAPP. MERIS level 3 cloud and water vapour products. Issue: 1. Revision: 0. Date: 9.12.1998. Function Name Organisation Signature Date
Ttel: Project: Doc. No.: MERIS level 3 cloud and water vapour products MAPP MAPPATBDClWVL3 Issue: 1 Revson: 0 Date: 9.12.1998 Functon Name Organsaton Sgnature Date Author: Bennartz FUB Preusker FUB Schüller
More informationOptimal outpatient appointment scheduling
Health Care Manage Sc (27) 1:217 229 DOI 1.17/s17297915 Optmal outpatent appontment schedulng Gudo C. Kaandorp Ger Koole Receved: 15 March 26 / Accepted: 28 February 27 / Publshed onlne: 23 May 27 Sprnger
More informationSketching Sampled Data Streams
Sketchng Sampled Data Streams Florn Rusu, Aln Dobra CISE Department Unversty of Florda Ganesvlle, FL, USA frusu@cse.ufl.edu adobra@cse.ufl.edu Abstract Samplng s used as a unversal method to reduce the
More informationCALL ADMISSION CONTROL IN WIRELESS MULTIMEDIA NETWORKS
CALL ADMISSION CONTROL IN WIRELESS MULTIMEDIA NETWORKS Novella Bartoln 1, Imrch Chlamtac 2 1 Dpartmento d Informatca, Unverstà d Roma La Sapenza, Roma, Italy novella@ds.unroma1.t 2 Center for Advanced
More informationExtending Probabilistic Dynamic Epistemic Logic
Extendng Probablstc Dynamc Epstemc Logc Joshua Sack May 29, 2008 Probablty Space Defnton A probablty space s a tuple (S, A, µ), where 1 S s a set called the sample space. 2 A P(S) s a σalgebra: a set
More information