- in a typical metal each atom contributes one electron to the delocalized electron gas describing the conduction electrons

Save this PDF as:

Size: px
Start display at page:

Download "- in a typical metal each atom contributes one electron to the delocalized electron gas describing the conduction electrons"

Transcription

1 Free Electrons in a Metal - in a typical metal each atom contributes one electron to the delocalized electron gas describing the conduction electrons - if these electrons would behave like an ideal gas each one would contribute 3/2 kt to the total energy of the solid - thus the electronic specific heat would be - how come that the specific heat of a solid at high temperatures is well described by the Dulong Petit law independently of whether the solid is a metal or an insulator - resolution: electrons are fermions and obey the Fermi-Dirac statistics (instead of the Bose- Einstein statistics of phonons or any other harmonic oscillators) - in the high temperature limit both phonons and electrons obey Maxwell-Boltzmann statistics - BUT the high temperature limits could occur at different temperatures for electrons and phonons phys4.16 Page 1 Average Occupancy per Electron State - is given by the Fermi-Dirac distribution - to find the number of electrons n(ε) at a certain energy in a metal we need to determine the number of available states g(ε) - consider free non-interacting electrons in a box described by 'standing matter waves', i.e. the same calculation as in the case of photons applies - we again consider the number of possible quantum numbers j x, j y, j z in one quadrant of a spherical shell with radius j = (j x2 +j y2 +j z2 ) 1/2 and thickness dj - here per set of spatial quantum numbers there are two different spin states m s = ± 1 (spin up and spin down) similar to the two different polarizations for photons - use relation between quantum number j and electron energy ε phys4.16 Page 2

2 Number of Free Electron States in a Metal - relation between electron matter wave quantum number j 2 = (j x, j y, j z ) 2 and electron energy ε in a 3D box - using debroglie wave length - number of electron states at energy ε in a volume V = L 3 - this number of states is independent of the actual shape of the metal and only depends on its volume, i.e. the density of electrons in the metal phys4.16 Page 3 Fermi Energy - calculate the total number of electrons at T = 0 to find the Fermi energy ε F - thus the Fermi energy is given by - depending only on the electron density n = N/V - Fermi energy in copper (Cu) - free electron density - Fermi energy - Fermi velocity phys4.16 Page 4

3 Electron Energy Distribution - number of electrons at energy ε at a thermal equilibrium temperature T - number of electrons (electron density) at different temperatures - as the Fermi energy is usually very high compared to ambient temperature, the energy distribution of the electrons does vary only weakly with T phys4.16 Page 5 Average Electron Energy - total electron energy - average electron energy - these average electron energies are very high, if the electrons were classical particles they would have to be a temperatures of several K to have these energies - specific heat of electrons - the factor of kt/ε F makes this contribution small at room temperature - at low temperatures c Ve ~ T can dominate over c V ~ T 3 phys4.16 Page 6

4 The Solid State - most of the matter in the physical world around us (on earth) is in the solid state (which is not true for the universe as a whole) - solids consist of atoms, ions or molecules closely packed together - the binding occurs either by covalent, ionic, van der Waals or metallic bonds all of which are mediated by electromagnetic forces structure: - many solids appear in crystalline structure, i.e. the constituents are arranged in a regular, repeated three dimensional pattern (a lattice) with long range order - only few solids appear as single crystals (e.g. Silicon (Si)), most consist of very many small crystallites phys4.16 Page 7 Amorphous Solids - some solids (e.g. glass, plastics) have an amorphous structure, i.e. they have no long range but only short range order - can be viewed as a very viscous (glassy) liquid which crystallizes very slowly - amorphous and crystalline B 2 O 3 melting: - in amorphous solids the bond strengths varies throughout the material - as a result melting occurs slowly and continuously - in crystalline solids most of the bonds have equal strengths and thus melting occurs at a well defined temperature phys4.16 Page 8

5 Crystal Defects - most crystals have deviations from perfect regularity and symmetry which are called defects - one kind of imperfection is the point defect (see figure) - they occur when (a) an atom is missing from the regular crystal structure (vacancy), (b) an additional atom of the same kind occurs (interstitial), (c) an impurity atom replaces an atom in the crystal (substitutional impurity) or (d) an impurity atom occurs at an interstitial position - defects occur due to thermal excitation, due to irradiation, due to impurities present during the formation of the material - large truly perfect crystals hardly exist (they can be pretty good though) - single crystal Si (purity 1 ppb = part per billion = 1/10 9 ), see photograph - diamond phys4.16 Page 9 Dislocations - a line defect corresponds to a missing line of atoms in a crystal, see (a), it is called a dislocation - the dislocation may move from inside the crystal towards an edge (see, b-c) releasing the stress from the crystal lattice - screw dislocation (figure) arises when the crystal is continuously displaced along a cut into the crystal forming a screw like discontinuity in which the atomic layers spiral around a single point - dislocations are created when solids are deformed - some solids get harder when they contain many dislocation (work hardening in cold rolled sheet metal) - thermally annealed crystals with less defects may be soft phys4.16 Page 10

6 Ionic Crystals - ionic crystals form between (a pair of) elements with low ionization energy and high electron affinity, - electron affinity is the energy released by an atom when an electron is added to form a negatively charged ion - in the ionic crystal sodium chloride (NaCl, see figure) one electron is transferred from Na (ionization energy 5.14 ev) to Cl (electron affinity 3.61 ev) forming ions Na + and Cl - which bind electrostatically when the total energy in the crystal is reduced from that of separate Na and Cl face centered cubic NaCL - minimum ion-ion distance is determined by balance between Coulomb attraction and repulsion due to Pauli exclusion - the cohesive energy is the energy per atom required to break a the crystal up into ions - the cohesive energy is provided by the Coulomb attraction with the neighboring ions body centered cubic CsCl phys4.16 Page 11 Attractive Coulomb Potential - find the total Coulomb energy U c between one ion (e.g. Na + ) and all its neighbors - U c is determined by the number of ions (coordination number) present at a given distance r from the ion under consideration - nearest neighbors - next nearest neighbors - summation over all nearest neighbors - with the Madelung constant α ~ for NaCL and all other face centered cubic (fcc) ionic crystals - for the body centered cubic (bcc) crystal CsCl the Madelung constant is α ~ all simple crystal structures have Madelung constants α ~ phys4.16 Page 12

7 Repulsive Potential - repulsive force due to exclusion principle with effective potential - short range force depending on a large power n ~ 8-10 of the separation r between ions (empirical model) - total energy - equilibrium position - total energy at equilibrium distance NaCl: to be reduced by E i -E aff phys4.16 Page 13 Properties of Ionic Crystals - hard, due to ionic bonds - high melting points due to large binding energy - brittle, due to repulsive forces occurring with next nearest neighbor ions when dislocations are formed - ionic crystals dissolve in polar solvents (water) but not in covalent solvents - good electrical insulators, due to strong binding of electrons to ions - transparent for visible radiation - absorbing to infrared radiation exciting lattice vibrations in the ionic crystal phys4.16 Page 14

phys4.17 Page 1 - under normal conditions (pressure, temperature) graphite is the stable phase of crystalline carbon

Covalent Crystals - covalent bonding by shared electrons in common orbitals (as in molecules) - covalent bonds lead to the strongest bound crystals, e.g. diamond in the tetrahedral structure determined

Crystalline solids. A solid crystal consists of different atoms arranged in a periodic structure.

Crystalline solids A solid crystal consists of different atoms arranged in a periodic structure. Crystals can be formed via various bonding mechanisms: Ionic bonding Covalent bonding Metallic bonding Van

Physics 551: Solid State Physics F. J. Himpsel

Physics 551: Solid State Physics F. J. Himpsel Background Most of the objects around us are in the solid state. Today s technology relies heavily on new materials, electronics is predominantly solid state.

Free Electron Fermi Gas (Kittel Ch. 6)

Free Electron Fermi Gas (Kittel Ch. 6) Role of Electrons in Solids Electrons are responsible for binding of crystals -- they are the glue that hold the nuclei together Types of binding (see next slide)

Section 3: Crystal Binding

Physics 97 Interatomic forces Section 3: rystal Binding Solids are stable structures, and therefore there exist interactions holding atoms in a crystal together. For example a crystal of sodium chloride

Solid Type of solid Type of particle

QUESTION (2015:3) Complete the table below by stating the type of solid, the type of particle, and the attractive forces between the particles in each solid. Solid Type of solid Type of particle Cu(s)

CHAPTER 10: INTERMOLECULAR FORCES: THE UNIQUENESS OF WATER Problems: 10.2, 10.6,10.15-10.33, 10.35-10.40, 10.56-10.60, 10.101-10.

CHAPTER 10: INTERMOLECULAR FORCES: THE UNIQUENESS OF WATER Problems: 10.2, 10.6,10.15-10.33, 10.35-10.40, 10.56-10.60, 10.101-10.102 10.1 INTERACTIONS BETWEEN IONS Ion-ion Interactions and Lattice Energy

Chapter 13 The Chemistry of Solids

Chapter 13 The Chemistry of Solids Jeffrey Mack California State University, Sacramento Metallic & Ionic Solids Crystal Lattices Regular 3-D arrangements of equivalent LATTICE POINTS in space. Lattice

Properties of Solids

Properties of Solids Condensed Matter Physics Condensed matter physics: The study of the electronic properties of solids. Crystal structure: The atoms are arranged in extremely regular, periodic patterns.

Doped Semiconductors. Dr. Katarzyna Skorupska

Doped Semiconductors Dr. Katarzyna Skorupska 1 Doped semiconductors Increasing the conductivity of semiconductors by incorporation of foreign atoms requires increase of the concentration of mobile charge

Electrical Conductivity

Advanced Materials Science - Lab Intermediate Physics University of Ulm Solid State Physics Department Electrical Conductivity Translated by Michael-Stefan Rill January 20, 2003 CONTENTS 1 Contents 1 Introduction

9.2 Network Covalent, Ionic, and Metallic Solids

9.2 Network Covalent, Ionic, and Metallic Solids YOU ARE EXPECTED TO BE ABLE TO: Classify non-molecular solids as either network covalent solids, ionic solids, or metallic solids. Relate the physical properties

KINETIC MOLECULAR THEORY OF MATTER

KINETIC MOLECULAR THEORY OF MATTER The kinetic-molecular theory is based on the idea that particles of matter are always in motion. The theory can be used to explain the properties of solids, liquids,

Semiconductor Physics

10p PhD Course Semiconductor Physics 18 Lectures Nov-Dec 2011 and Jan Feb 2012 Literature Semiconductor Physics K. Seeger The Physics of Semiconductors Grundmann Basic Semiconductors Physics - Hamaguchi

2C Intermolecular forces, structure and properties:

Electronegativity and polarity Polar and non-polar bonds: 1) Non-Polar bonds: 2C Intermolecular forces, structure and properties: A covalent bond shares an electron pair: In a hydrogen molecule, the electrons

Ch. 4: Imperfections in Solids Part 1. Dr. Feras Fraige

Ch. 4: Imperfections in Solids Part 1 Dr. Feras Fraige Outline Defects in Solids 0D, Point defects vacancies Interstitials impurities, weight and atomic composition 1D, Dislocations edge screw 2D, Grain

Type of Chemical Bonds

Type of Chemical Bonds Covalent bond Polar Covalent bond Ionic bond Hydrogen bond Metallic bond Van der Waals bonds. Covalent Bonds Covalent bond: bond in which one or more pairs of electrons are shared

Chapter 8 Molecules. Some molecular bonds involve sharing of electrons between atoms. These are covalent bonds.

Chapter 8 Molecules (We have only three days for chapter 8!) 8.1 The Molecular Bond A molecule is an electrically neutral group of atoms held together strongly enough to behave as a single particle. A

Defects Introduction. Bonding + Structure + Defects. Properties

Defects Introduction Bonding + Structure + Defects Properties The processing determines the defects Composition Bonding type Structure of Crystalline Processing factors Defects Microstructure Types of

Explain the ionic bonds, covalent bonds and metallic bonds and give one example for each type of bonds.

Problem 1 Explain the ionic bonds, covalent bonds and metallic bonds and give one example for each type of bonds. Ionic Bonds Two neutral atoms close to each can undergo an ionization process in order

BOND TYPES: THE CLASSIFICATION OF SUBSTANCES

BOND TYPES: THE CLASSIFICATION OF SUBSTANCES Every (pure) substance has a unique set of intrinsic properties which distinguishes it from all other substances. What inferences, if any can be made from a

Several important material properties are determined on the type and characteristic interatomic/interionic/intermolecular bonds:

Interatomic and intermolecular forces. What will be covered? 1. Binding energy: basic concepts 2. Ionic bonding. 3. Chemical bonding. a. Primary bonds. b. Secondary bonds. Why do we need to know this material?

AS Chemistry Revision Notes Unit 1 Atomic Structure, Bonding And Periodicity

AS Chemistry Revision Notes Unit Atomic Structure, Bonding And Periodicity Atomic Structure. All atoms have a mass number, A (the number of nucleons), and a proton number, Z (the number of protons). 2.

Test 8: Review Questions

Name: Thursday, February 14, 2008 Test 8: Review Questions 1. Based on bond type, which compound has the highest melting point? 1. CH OH 3. CaCl 3 2 2. C H 4. CCl 6 14 4 2. Which compound contains ionic

Electronic Structure and the Periodic Table Learning Outcomes

Electronic Structure and the Periodic Table Learning Outcomes (a) Electronic structure (i) Electromagnetic spectrum and associated calculations Electromagnetic radiation may be described in terms of waves.

Size effects. Lecture 6 OUTLINE

Size effects 1 MTX9100 Nanomaterials Lecture 6 OUTLINE -Why does size influence the material s properties? -How does size influence the material s performance? -Why are properties of nanoscale objects

Matter, Materials, Crystal Structure and Bonding. Chris J. Pickard

Matter, Materials, Crystal Structure and Bonding Chris J. Pickard Why should a theorist care? Where the atoms are determines what they do Where the atoms can be determines what we can do Overview of Structure

Chem 106 Thursday Feb. 3, 2011

Chem 106 Thursday Feb. 3, 2011 Chapter 13: -The Chemistry of Solids -Phase Diagrams - (no Born-Haber cycle) 2/3/2011 1 Approx surface area (Å 2 ) 253 258 Which C 5 H 12 alkane do you think has the highest

Chapter 5: Diffusion. 5.1 Steady-State Diffusion

: Diffusion Diffusion: the movement of particles in a solid from an area of high concentration to an area of low concentration, resulting in the uniform distribution of the substance Diffusion is process

CHAPTER 7: DISLOCATIONS AND STRENGTHENING

CHAPTER 7: DISLOCATIONS AND STRENGTHENING ISSUES TO ADDRESS... Why are dislocations observed primarily in metals and alloys? Mech 221 - Notes 7 1 DISLOCATION MOTION Produces plastic deformation, in crystalline

Crystal Defects p. 2. Point Defects: Vacancies. Department of Materials Science and Engineering University of Virginia. Lecturer: Leonid V.

Crystal Defects p. 1 A two-dimensional representation of a perfect single crystal with regular arrangement of atoms. But nothing is perfect, and structures of real materials can be better represented by

Minerals in granite. The igneous rock granite is composed of many separate grains of several main minerals. Figure 2.1

Minerals in granite The igneous rock granite is composed of many separate grains of several main minerals Figure 2.1 What is a mineral? Naturally occurring solid Specific chemical composition Crystal structure

Lecture 8: Extrinsic semiconductors - mobility

Lecture 8: Extrinsic semiconductors - mobility Contents Carrier mobility. Lattice scattering......................... 2.2 Impurity scattering........................ 3.3 Conductivity in extrinsic semiconductors............

Lecture 2: Semiconductors: Introduction

Lecture 2: Semiconductors: Introduction Contents 1 Introduction 1 2 Band formation in semiconductors 2 3 Classification of semiconductors 5 4 Electron effective mass 10 1 Introduction Metals have electrical

Chapter Outline Dislocations and Strengthening Mechanisms

Chapter Outline Dislocations and Strengthening Mechanisms What is happening in material during plastic deformation? Dislocations and Plastic Deformation Motion of dislocations in response to stress Slip

- thus, the total number of atoms per second that absorb a photon is

Stimulated Emission of Radiation - stimulated emission is referring to the emission of radiation (a photon) from one quantum system at its transition frequency induced by the presence of other photons

Bonding in Elements and Compounds. Covalent

Bonding in Elements and Compounds Structure of solids, liquids and gases Types of bonding between atoms and molecules Ionic Covalent Metallic Many compounds between metals & nonmetals (salts), e.g. Na,

Name Class Date. What is ionic bonding? What happens to atoms that gain or lose electrons? What kinds of solids are formed from ionic bonds?

CHAPTER 1 2 Ionic Bonds SECTION Chemical Bonding BEFORE YOU READ After you read this section, you should be able to answer these questions: What is ionic bonding? What happens to atoms that gain or lose

Unit 12 Practice Test

Name: Class: Date: ID: A Unit 12 Practice Test Multiple Choice Identify the choice that best completes the statement or answers the question. 1) A solid has a very high melting point, great hardness, and

Each grain is a single crystal with a specific orientation. Imperfections

Crystal Structure / Imperfections Almost all materials crystallize when they solidify; i.e., the atoms are arranged in an ordered, repeating, 3-dimensional pattern. These structures are called crystals

Crystal Chemistry. This document last updated on 22-Sep-2014

Page 1 of 14 EENS 2110 Tulane University Crystal Chemistry Mineralogy Prof. Stephen A. Nelson This document last updated on 22-Sep-2014 As we have been discussing for the last several weeks, crystals,

Name period AP chemistry Unit 2 worksheet Practice problems

Name period AP chemistry Unit 2 worksheet Practice problems 1. What are the SI units for a. Wavelength of light b. frequency of light c. speed of light Meter hertz (s -1 ) m s -1 (m/s) 2. T/F (correct

L5. P1. Lecture 5. Solids. The free electron gas

Lecture 5 Page 1 Lecture 5 L5. P1 Solids The free electron gas In a solid state, a few loosely bound valence (outermost and not in completely filled shells) elections become detached from atoms and move

Modern Construction Materials Prof. Ravindra Gettu Department of Civil Engineering Indian Institute of Technology, Madras

Modern Construction Materials Prof. Ravindra Gettu Department of Civil Engineering Indian Institute of Technology, Madras Module - 2 Lecture - 2 Part 2 of 2 Review of Atomic Bonding II We will continue

Which substance contains positive ions immersed in a sea of mobile electrons? A) O2(s) B) Cu(s) C) CuO(s) D) SiO2(s)

BONDING MIDTERM REVIEW 7546-1 - Page 1 1) Which substance contains positive ions immersed in a sea of mobile electrons? A) O2(s) B) Cu(s) C) CuO(s) D) SiO2(s) 2) The bond between hydrogen and oxygen in

, to obtain a way to calculate stress from the energy function U(r).

BIOEN 36 013 LECTURE : MOLECULAR BASIS OF ELASTICITY Estimating Young s Modulus from Bond Energies and Structures First we consider solids, which include mostly nonbiological materials, such as metals,

Properties of Ionic and Covalent Compounds. Intermolecular Forces

Properties of Ionic and Covalent Compounds Intermolecular Forces Physical Properties & Bond Types Physical properties of substances are affected by the attractive forces between particles Greater attraction

Objectives. PAM1014 Introduction to Radiation Physics. Constituents of Atoms. Atoms. Atoms. Atoms. Basic Atomic Theory

PAM1014 Introduction to Radiation Physics Basic Atomic Theory Objectives Introduce and Molecules The periodic Table Electronic Energy Levels Atomic excitation & de-excitation Ionisation Molecules Constituents

Introduction to materials science and engineering. structures and properties of materials. Materials Engineering

.Materials Science o The discipline of investigating the relationships that exist between the structures and properties of materials. Materials Engineering o The discipline of designing or engineering

Chapter 8 Basic Concepts of the Chemical Bonding

Chapter 8 Basic Concepts of the Chemical Bonding 1. There are paired and unpaired electrons in the Lewis symbol for a phosphorus atom. (a). 4, 2 (b). 2, 4 (c). 4, 3 (d). 2, 3 Explanation: Read the question

Chapter 10 Liquids & Solids

1 Chapter 10 Liquids & Solids * 10.1 Polar Covalent Bonds & Dipole Moments - van der Waals constant for water (a = 5.28 L 2 atm/mol 2 ) vs O 2 (a = 1.36 L 2 atm/mol 2 ) -- water is polar (draw diagram)

Chapter Outline Dislocations and Strengthening Mechanisms

Chapter Outline Dislocations and Strengthening Mechanisms What is happening in material during plastic deformation? Dislocations and Plastic Deformation Motion of dislocations in response to stress Slip

S block elements p block elements and chemical bonding -1

S block elements p block elements and chemical bonding -1 1.Group I elements do not occur free (native state) in the nature because a. They are unstable b. Their compounds with other elements are highly

Chapter 13 - LIQUIDS AND SOLIDS

Chapter 13 - LIQUIDS AND SOLIDS Problems to try at end of chapter: Answers in Appendix I: 1,3,5,7b,9b,15,17,23,25,29,31,33,45,49,51,53,61 13.1 Properties of Liquids 1. Liquids take the shape of their container,

Metals and Nonmetals

The Periodic Table and Atomic Properties The periodic table originally came from the observation that when the elements are arranged by atomic mass, properties recur periodically. (Mendeleev) Now we understand

Solid State Detectors = Semi-Conductor based Detectors

Solid State Detectors = Semi-Conductor based Detectors Materials and their properties Energy bands and electronic structure Charge transport and conductivity Boundaries: the p-n junction Charge collection

Chapter 2. Atomic Structure and Interatomic Bonding

Chapter 2. Atomic Structure and Interatomic Bonding Interatomic Bonding Bonding forces and energies Primary interatomic bonds Secondary bonding Molecules Bonding Forces and Energies Considering the interaction

Chapter 2: Atomic Structure and Chemical Bonding

Chapter 2: Atomic Structure and Chemical Bonding Materials Molecules Atoms Atoms = protons (p) + neutrons (n) + electrons (e) Protons and neutrons are made of quarks Quantitative measurements need units:

Introduction to Materials Science, Chapter 13, Structure and Properties of Ceramics. Chapter Outline: Ceramics

Chapter Outline: Ceramics Chapter 13: Structure and Properties of Ceramics Crystal Structures Silicate Ceramics Carbon Imperfections in Ceramics Optional reading: 13.6 13.10 Chapter 14: Applications and

ME 612 Metal Forming and Theory of Plasticity. 1. Introduction

Metal Forming and Theory of Plasticity Yrd.Doç. e mail: azsenalp@gyte.edu.tr Makine Mühendisliği Bölümü Gebze Yüksek Teknoloji Enstitüsü In general, it is possible to evaluate metal forming operations

7. Gases, Liquids, and Solids 7.1 Kinetic Molecular Theory of Matter

7. Gases, Liquids, and Solids 7.1 Kinetic Molecular Theory of Matter Kinetic Molecular Theory of Matter The Kinetic Molecular Theory of Matter is a concept that basically states that matter is composed

Chapter 8 Basic Concepts of Chemical Bonding

Chapter 8 Basic Concepts of Chemical Bonding Why do TiCl 4 and TiCl 3 have different colors?... different chemical properties?... different physical states? Chemical Bonding and Properties Difference in

Chapter 10 - Liquids and Solids

Chapter 10 - Liquids and Solids 10.1 Intermolecular Forces A. Dipole-Dipole Forces 1. Attraction between molecules with dipole moments a. Maximizes (+) ----- ( - ) interactions b. Minimizes (+) ----- (

100% ionic compounds do not exist but predominantly ionic compounds are formed when metals combine with non-metals.

2.21 Ionic Bonding 100% ionic compounds do not exist but predominantly ionic compounds are formed when metals combine with non-metals. Forming ions Metal atoms lose electrons to form +ve ions. Non-metal

Chapter 4: Structure and Properties of Ionic and Covalent Compounds

Chapter 4: Structure and Properties of Ionic and Covalent Compounds 4.1 Chemical Bonding o Chemical Bond - the force of attraction between any two atoms in a compound. o Interactions involving valence

States of Matter CHAPTER 10 REVIEW SECTION 1. Name Date Class. Answer the following questions in the space provided.

CHAPTER 10 REVIEW States of Matter SECTION 1 SHORT ANSWER Answer the following questions in the space provided. 1. Identify whether the descriptions below describe an ideal gas or a real gas. ideal gas

Lesmahagow High School CfE Higher Chemistry. Chemical Changes & Structure Structure and Bonding

Lesmahagow High School CfE Higher Chemistry Chemical Changes & Structure Structure and Bonding Page 1 of 26 No. Learning Outcome Understanding? 1 2 The bonding types of the first twenty elements; metallic

Solidification, Crystallization & Glass Transition

Solidification, Crystallization & Glass Transition Cooling the Melt solidification Crystallization versus Formation of Glass Parameters related to the formaton of glass Effect of cooling rate Glass transition

CHAPTER 6 Chemical Bonding

CHAPTER 6 Chemical Bonding SECTION 1 Introduction to Chemical Bonding OBJECTIVES 1. Define Chemical bond. 2. Explain why most atoms form chemical bonds. 3. Describe ionic and covalent bonding.. 4. Explain

Unit 2 Periodic Behavior and Ionic Bonding

Unit 2 Periodic Behavior and Ionic Bonding 6.1 Organizing the Elements I. The Periodic Law A. The physical and chemical properties of the elements are periodic functions of their atomic numbers B. Elements

COVALENT BOND VS IONIC BOND

COVALENT BOND VS IONIC BOND You have seen how elements are similar to us and as you know them closely you will find some more similarities to our behaviour. You must have experienced the law of attraction

Lecture 3: Optical Properties of Bulk and Nano. 5 nm

Lecture 3: Optical Properties of Bulk and Nano 5 nm First H/W#1 is due Sept. 10 Course Info The Previous Lecture Origin frequency dependence of χ in real materials Lorentz model (harmonic oscillator model)

Draw a ring around the correct answer to complete each sentence. 11. Ammonia can be reacted with an acid to produce the salt ammonium nitrate.

Q. This question is about salts of ammonia and salts of lead. (a) Ammonia dissolves in water to make an alkaline solution. Draw a ring around the correct answer to complete each sentence. The ph of a solution

H 2O gas: molecules are very far apart

Non-Covalent Molecular Forces 2/27/06 3/1/06 How does this reaction occur: H 2 O (liquid) H 2 O (gas)? Add energy H 2O gas: molecules are very far apart H 2O liquid: bonding between molecules Use heat

ANSWER KEY. Energy Levels, Electrons and IONIC Bonding It s all about the Give and Take!

ANSWER KEY Energy Levels, Electrons and IONIC Bonding It s all about the Give and Take! From American Chemical Society Middle School Chemistry Unit: Chapter 4 Content Statements: Distinguish the difference

CHEMISTRY STANDARDS BASED RUBRIC ATOMIC STRUCTURE AND BONDING

CHEMISTRY STANDARDS BASED RUBRIC ATOMIC STRUCTURE AND BONDING Essential Standard: STUDENTS WILL UNDERSTAND THAT THE PROPERTIES OF MATTER AND THEIR INTERACTIONS ARE A CONSEQUENCE OF THE STRUCTURE OF MATTER,

2) Remember the Pauli exclusion principle. 3) Hund s rule of maximum multiplicity Energy

Building up the atoms in the periodic table 1) The Aufbau ( building up ) principle: lowest energy orbitals are filled first 1s, then 2s, then 2p, then 3s, then 3p, etc. 2) Remember the Pauli exclusion

Chemical Bonds: A Preview Chapter 9 Section 1.1 Forces called chemical bonds hold atoms together in molecules and keep ions in place in solid ionic

Chemical Bonds: A Preview Chapter 9 Section 1.1 Forces called chemical bonds hold atoms together in molecules and keep ions in place in solid ionic compounds. Chemical bonds are electrostatic forces; they

Chapter Outline. Diffusion - how do atoms move through solids?

Chapter Outline iffusion - how do atoms move through solids? iffusion mechanisms Vacancy diffusion Interstitial diffusion Impurities The mathematics of diffusion Steady-state diffusion (Fick s first law)

The Crystal Structures of Solids

The Crystal Structures of Solids Crystals of pure substances can be analyzed using X-ray diffraction methods to provide valuable information. The type and strength of intramolecular forces, density, molar

Kinetic Molecular Theory. Chapter 5. KE AVE and Average Velocity. Graham s Law of Effusion. Chapter 7. Real Gases

hapter 5 1. Kinetic Molecular Theory. 2. Average kinetic energy and velocity. 3. Graham s Law of Effusion. 4. Real gases and the van der Waals equation. Kinetic Molecular Theory The curves below represent

FYS3410 - Vår 2014 (Kondenserte fasers fysikk) http://www.uio.no/studier/emner/matnat/fys/fys3410/v14/index.html

FYS3410 - Vår 2014 (Kondenserte fasers fysikk) http://www.uio.no/studier/emner/matnat/fys/fys3410/v14/index.html Pensum: Solid State Physics by Philip Hofmann (Chapters 1-7 and 11) Andrej Kuznetsov delivery

POLAR COVALENT BONDS Ionic compounds form repeating. Covalent compounds form distinct. Consider adding to NaCl(s) vs. H 2 O(s):

POLAR COVALENT BONDS Ionic compounds form repeating. Covalent compounds form distinct. Consider adding to NaCl(s) vs. H 2 O(s): Sometimes when atoms of two different elements form a bond by sharing an

Chapter Outline. Review of Atomic Structure Electrons, Protons, Neutrons, Quantum mechanics of atoms, Electron states, The Periodic Table

Review of Atomic Structure Electrons, Protons, Neutrons, Quantum mechanics of atoms, Electron states, The Periodic Table Atomic Bonding in Solids Bonding Energies and Forces Periodic Table Chapter Outline

Temperature Scales. temperature scales Celsius Fahrenheit Kelvin

Ch. 10-11 Concept Ch. 10 #1, 3, 7, 8, 9, 11 Ch11, # 3, 6, 11 Problems Ch10 # 3, 5, 11, 17, 21, 24, 25, 29, 33, 37, 39, 43, 47, 59 Problems: CH 11 # 1, 2, 3a, 4, 5, 6, 9, 13, 15, 22, 25, 27, 28, 35 Temperature

Ceramic Materials. Chapter 3: Bond Energy and Properties

Ceramic Materials Chapter 3: Bond Energy and Properties F. Filser & L.J. Gauckler ETH-Zürich, Departement Materials frank.filser@mat.ethz.ch HS 27 1 Goal of this Chapter is to develop semiquantitative

DO PHYSICS ONLINE FROM QUANTA TO QUARKS QUANTUM (WAVE) MECHANICS

DO PHYSICS ONLINE FROM QUANTA TO QUARKS QUANTUM (WAVE) MECHANICS Quantum Mechanics or wave mechanics is the best mathematical theory used today to describe and predict the behaviour of particles and waves.

Chapter Outline. Defects Introduction (I)

Crystals are like people, it is the defects in them which tend to make them interesting! - Colin Humphreys. Defects in Solids Chapter Outline 0D, Point defects vacancies interstitials impurities, weight

Sample Exercise 12.1 Calculating Packing Efficiency

Sample Exercise 12.1 Calculating Packing Efficiency It is not possible to pack spheres together without leaving some void spaces between the spheres. Packing efficiency is the fraction of space in a crystal

Multiple Choice (4 points each): Answer on blue form; be sure to code in your name and ID.

Multiple Choice (4 points each): Answer on blue form; be sure to code in your name and ID. 1. The Bohr model of the atom works reasonably well in the calculation of energy levels in hydrogen. What other

AP CHEMISTRY CHAPTER REVIEW CHAPTER 6: ELECTRONIC STRUCTURE AND THE PERIODIC TABLE

AP CHEMISTRY CHAPTER REVIEW CHAPTER 6: ELECTRONIC STRUCTURE AND THE PERIODIC TABLE You should be familiar with the wavelike properties of light: frequency ( ), wavelength ( ), and energy (E) as well as

Lecture 3: Optical Properties of Bulk and Nano. 5 nm

Lecture 3: Optical Properties of Bulk and Nano 5 nm The Previous Lecture Origin frequency dependence of χ in real materials Lorentz model (harmonic oscillator model) 0 e - n( ) n' n '' n ' = 1 + Nucleus

GEOL 2311 Midquarter Exam I Name Crystal Chemistry Score: / 100

GEOL 2311 Midquarter Exam I Name Crystal Chemistry Score: / 100 1. Chose a subdiscipline of geology and describe how mineralogy plays a central role in that field. (2 pts) Looking for reasonable answers

Chapter 8 Concepts of Chemical Bonding

Chapter 8 Concepts of Chemical Bonding Chemical Bonds Three types: Ionic Electrostatic attraction between ions Covalent Sharing of electrons Metallic Metal atoms bonded to several other atoms Ionic Bonding

4.5 Physical Properties: Solubility

4.5 Physical Properties: Solubility When a solid, liquid or gaseous solute is placed in a solvent and it seems to disappear, mix or become part of the solvent, we say that it dissolved. The solute is said

Name Class Date. In the space provided, write the letter of the term or phrase that best completes each statement or best answers each question.

Assessment Chapter Test A Chapter: States of Matter In the space provided, write the letter of the term or phrase that best completes each statement or best answers each question. 1. The kinetic-molecular

(1) e.g. H hydrogen that has lost 1 electron c. anion - negatively charged atoms that gain electrons 16-2. (1) e.g. HCO 3 bicarbonate anion

GS106 Chemical Bonds and Chemistry of Water c:wou:gs106:sp2002:chem.wpd I. Introduction A. Hierarchy of chemical substances 1. atoms of elements - smallest particles of matter with unique physical and

Assessment Schedule 2015 Chemistry: Demonstrate understanding of bonding, structure, properties and energy changes (91164)

NCEA Level 2 Chemistry (91164) 2015 page 1 of 7 Assessment Schedule 2015 Chemistry: Demonstrate understanding of bonding, structure, properties and energy changes (91164) Evidence Statement Q Evidence