# Temperature and Heat. Chapter 17. PowerPoint Lectures for University Physics, Twelfth Edition Hugh D. Young and Roger A. Freedman

Save this PDF as:

Size: px
Start display at page:

Download "Temperature and Heat. Chapter 17. PowerPoint Lectures for University Physics, Twelfth Edition Hugh D. Young and Roger A. Freedman"

## Transcription

1 Chapter 17 Temperature and Heat PowerPoint Lectures for University Physics, Twelfth Edition Hugh D. Young and Roger A. Freedman Lectures by James Pazun Modified by P. Lam 6_17_2012

2 Topics for Chapter 17 Condition for thermal equilibrium. temperature scales thermal expansion thermal stress heat, phase changes, and calorimetry heat flows with convection, conduction, and radiation (qualitative)

3 Condition for thermal equilibrium A hot cold B A B Non-equilibrium T A > T B Net energy flows from A to B Equilibrium T A = T B No net energy flow T A =temperature of system A T B =temperature of system B

4 The zero th law of thermodynamics If A is in thermal equilibrium with C and B is in thermal equilibrium with C, then A is also in thermal equilibrium with B Simply stated: If T A =T C and T B =T C, then T A =T B

5 Application of the zero th law When the doctor takes your temperature, the doctor implicitly invokes the zero th law because the doctor assumes the thermometer has reached thermal equilibrium with your body and reading the temperature of the thermometer is the same as reading your temperature.

6 Relating the three popular temperature scales Values on the temperatures scales (Fahrenheit, Centigrade/Celsius, and Kelvin) may be readily interconverted. See Figure below. o C + 273! K & 180 ( o C) + 32 = o F 100 Absolute zero = absolute lowest temperature.

7 Calibration of Thermometers There are many physical properties which vary with temperature and hence can be used as a thermometer. Here are two examples: (1) Expansion and contraction of a liquid such as mercury or alcohol as the temperature increases or decreases, respectively. (2) Pressure of a gas inside a constant volume container increases as temperature rises. Pressure " T (in Kelvin) Thermometers are calibrate with some reproducible temperatures such as (i) (ii) Melting point of ice at 1 atmospheric pressure Boiling point of water at 1 atmospheric pressure

8 Thermal expansion linear and volume expansion A change in length accompanies a change in temperature. The amount of the change depends on the material.!l "!!T L o! = linear expansion coefficient of the material unit of! = 1/Kelvin Similarly for volume expansion:!v " "!T; V o for "small"!t, " # 3!

9 Coefficients of expansion

10 Thermal stress Thermal expansion joints allow roads to expand and contract freely without causing stress to the materials. Thermal stress - Stress (force/ area) develops in a material if it is not allowed to expand or contract as temperature changes. F A = Y "L = Y# "T ; Y = Young's modulus of the material L o The textbook use a negative sign to remind us the direction of the force F A = \$Y#"T I think that it is not necessary and may be even confusing (one more convention to remember!) You can figure out which direction is the force using common sense.

11 Thermal stress Example 17.5: An aluminum cylinder (10 cm long with crosssectional area =20cm 2 ) is used at a spacer between two rigid walls. At T=17.2 o C it just fit between the two walls. When it warms up to 22.3 o C, what is the stress (force/ area) in the cylinder and the total force it exerts on each wall? Given the Young s modulus for aluminum is 7x10 10 N/m 2 and is linear expansion coefficient is 2.4 x10-5 /K

12 Specific heat and heat capacity The specific heat of a substance reveals how much temperature will change when a given amount of heat is added or removed from the substance. Q = mc!t m = mass; c = specific heat [J/kg K] mc= heat capacity [J/K] Water is a benchmark as one gram of water will absorb 1 cal of heat to raise its temperature by 1 o C. c =1 cal g C o = 4190 J kg K

13 Specific heat values Note:Specific heat varies with temperature and pressure. These values are valid for a limited range of temperature and pressure only.

14 Phase changes and temperature behavior Example: Start with 1 kg of ice at -20 o C and add heat. Pressure=1 atm. T Not drawn to scale! Heat of vaporization gas 100 o C 0 o C -20 o C solid Heat of fusion Liquid Heat input (kj) 42kJ (42+334)=376KJ ( )=795kJ ( )kJ

15 Heats of Fusion and Heats of Vaporization

16 Calorimetry Example 17.8: (a) A 0.5 kg aluminum cup is initially at T=150 o C. 0.3kg of water at T=70 o C is poured into the cup. Assume no heat exchange with the surrounding, find the final temperature of the cup and the water. "Q total = 0 = m Al c Al (T f # T i Al ) + m w c w (T f # T i w ) 0 = (0.5)(910)(T f #150) + (0.3)(4190)(T f # 70) \$ T f = 91.3 o C (b) What happens if the initial temperature of the aluminum cup were 200 o C? "Q total = 0 = m Al c Al (T f # T i Al ) + m w c w (T f # T i w ) 0 = (0.5)(910)(T f # 200) + (0.3)(4190)(T f # 70) \$ T f =104.6 o C!! What does it mean?

17 Calorimetry Example 17.9 (change in temperature and phase): 0.25 kg of water in a cup is initially at T=25 o C. An amount ice (initially at T= - 20 o C) is poured into the cup. How much ice is needed so that the final temperature will be O o C and no ice left. Assume no heat exchange with the surrounding and the cup has negligible heat capacity.

18 Methods of heat transfer (qualitative) Heat conduction through a solid. Heat current is (1) proportional to the temperature difference (2) proportional to the crosssectional area (A) (3) inversely proportional to the length of the solid Heat current ( Joule s = Watt) " dq dt = ka T # T H C L \$ W ' % & m K( ) k = thermal conductivity of the solid

19 Convection of heat (qualitative) Heat transfer in a fluid (gas or liquid). Heat energy is carried by the movement of the hot fluid particles (if movement is restricted than there is no convection) Hot fluid (less dense) rises while cold fluid (more dense) decends. Gravity is necessary for convection.

20 Radiation of heat (qualitative) A hot object can lose energy by emitting electromagnetic radiations. On the right, an infrared photograph shows the infrared radiation given off by a person. hot cold Radiation heat current (Watt) = Ae"T 4 T = temperature of the hot object in Kelvin! A = cross - sectional area e = emissivity (depends on the nature of the object) (0 < e < 1) " = a fundamental constant # 5.67x10-8 W m 2 K 4

### Temperature Scales. temperature scales Celsius Fahrenheit Kelvin

Ch. 10-11 Concept Ch. 10 #1, 3, 7, 8, 9, 11 Ch11, # 3, 6, 11 Problems Ch10 # 3, 5, 11, 17, 21, 24, 25, 29, 33, 37, 39, 43, 47, 59 Problems: CH 11 # 1, 2, 3a, 4, 5, 6, 9, 13, 15, 22, 25, 27, 28, 35 Temperature

### Chapter 18 Temperature, Heat, and the First Law of Thermodynamics. Problems: 8, 11, 13, 17, 21, 27, 29, 37, 39, 41, 47, 51, 57

Chapter 18 Temperature, Heat, and the First Law of Thermodynamics Problems: 8, 11, 13, 17, 21, 27, 29, 37, 39, 41, 47, 51, 57 Thermodynamics study and application of thermal energy temperature quantity

### Chapter 10: Temperature and Heat

Chapter 10: Temperature and Heat 1. The temperature of a substance is A. proportional to the average kinetic energy of the molecules in a substance. B. equal to the kinetic energy of the fastest moving

### Name: Class: Date: 10. Some substances, when exposed to visible light, absorb more energy as heat than other substances absorb.

Name: Class: Date: ID: A PS Chapter 13 Review Modified True/False Indicate whether the statement is true or false. If false, change the identified word or phrase to make the statement true. 1. In all cooling

### Chapter 10 Temperature and Heat

Chapter 10 Temperature and Heat What are temperature and heat? Are they the same? What causes heat? What Is Temperature? How do we measure temperature? What are we actually measuring? Temperature and Its

### Thermodynamics is the study of heat. It s what comes into play when you drop an ice cube

Chapter 12 You re Getting Warm: Thermodynamics In This Chapter Converting between temperature scales Working with linear expansion Calculating volume expansion Using heat capacities Understanding latent

### Thermodynamics AP Physics B. Multiple Choice Questions

Thermodynamics AP Physics B Name Multiple Choice Questions 1. What is the name of the following statement: When two systems are in thermal equilibrium with a third system, then they are in thermal equilibrium

### Final Exam. Wednesday, December 10. 1:30 4:30 pm. University Centre Rooms

16.102 Final Exam Wednesday, December 10 1:30 4:30 pm University Centre Rooms 210 224 30 questions, multiple choice The whole course, equal weighting Formula sheet provided 26 Lab and Tutorial Marks Final

### Answer, Key Homework 6 David McIntyre 1

Answer, Key Homework 6 David McIntyre 1 This print-out should have 0 questions, check that it is complete. Multiple-choice questions may continue on the next column or page: find all choices before making

### Phys222 W11 Quiz 1: Chapters 19-21 Keys. Name:

Name:. In order for two objects to have the same temperature, they must a. be in thermal equilibrium.

### The student knows that matter has measurable physical properties and those properties determine how matter is classified, changed, and used.

TEKS 5.5B The student knows that matter has measurable physical properties and those properties determine how matter is classified, changed, and used. The student is expected to: (B) identify the boiling

### Heat as Energy Transfer. Heat is energy transferred from one object to another because of a difference in temperature

Unit of heat: calorie (cal) Heat as Energy Transfer Heat is energy transferred from one object to another because of a difference in temperature 1 cal is the amount of heat necessary to raise the temperature

### Mechanisms of Heat Transfer. Amin Sabzevari

Mechanisms of Heat Transfer Amin Sabzevari Outline Definition of Heat and Temperature Conduction, Convection, Radiation Demonstrations and Examples What is Heat? Heat is the spontaneous flow of energy

### PSS 17.1: The Bermuda Triangle

Assignment 6 Consider 6.0 g of helium at 40_C in the form of a cube 40 cm. on each side. Suppose 2000 J of energy are transferred to this gas. (i) Determine the final pressure if the process is at constant

### Type: Single Date: Homework: READ 12.8, Do CONCEPT Q. # (14) Do PROBLEMS (40, 52, 81) Ch. 12

Type: Single Date: Objective: Latent Heat Homework: READ 12.8, Do CONCEPT Q. # (14) Do PROBLEMS (40, 52, 81) Ch. 12 AP Physics B Date: Mr. Mirro Heat and Phase Change When bodies are heated or cooled their

### Thermochemistry. r2 d:\files\courses\1110-20\99heat&thermorans.doc. Ron Robertson

Thermochemistry r2 d:\files\courses\1110-20\99heat&thermorans.doc Ron Robertson I. What is Energy? A. Energy is a property of matter that allows work to be done B. Potential and Kinetic Potential energy

### The First Law of Thermodynamics

The First aw of Thermodynamics Q and W are process (path)-dependent. (Q W) = E int is independent of the process. E int = E int,f E int,i = Q W (first law) Q: + heat into the system; heat lost from the

### THERMOCHEMISTRY & DEFINITIONS

THERMOCHEMISTRY & DEFINITIONS Thermochemistry is the study of the study of relationships between chemistry and energy. All chemical changes and many physical changes involve exchange of energy with the

### Chapter 10 Temperature and Heat

Chapter 10 Temperature and Heat GOALS When you have mastered the contents of this chapter, you will be able to achieve the following goals: Definitions Define each of the following terms, and use it an

### Temperature. Temperature

Chapter 8 Temperature Temperature a number that corresponds to the warmth or coldness of an object measured by a thermometer is a per-particle property no upper limit definite limit on lower end Temperature

### Calorimetry: Determining the Heat of Fusion of Ice and the Heat of Vaporization of Liquid Nitrogen - Chemistry I Acc

Calorimetry: Determining the Heat of Fusion of Ice and the Heat of Vaporization of Liquid Nitrogen - Chemistry I Acc O B J E C T I V E 1. Using a simple calorimeter, Determine the heat of fusion of ice

### 2. Room temperature: C. Kelvin. 2. Room temperature:

Temperature I. Temperature is the quantity that tells how hot or cold something is compared with a standard A. Temperature is directly proportional to the average kinetic energy of molecular translational

### Lecture 30 - Chapter 6 Thermal & Energy Systems (Examples) 1

Potential Energy ME 101: Thermal and Energy Systems Chapter 7 - Examples Gravitational Potential Energy U = mgδh Relative to a reference height Increase in elevation increases U Decrease in elevation decreases

### Heat and Temperature. Temperature Scales. Thermometers and Temperature Scales

Heat and Temperature Thermometers and Temperature Scales The mercury-based one you see here relies on the fact that mercury expands at a predictable rate with temperature. The scale of the thermometer

### UNIT 6a TEST REVIEW. 1. A weather instrument is shown below.

UNIT 6a TEST REVIEW 1. A weather instrument is shown below. Which weather variable is measured by this instrument? 1) wind speed 3) cloud cover 2) precipitation 4) air pressure 2. Which weather station

### 2.0 Heat affects matter in different ways

2.0 Heat affects matter in different ways 2.1 States of Matter and The Particle Model of Matter Matter is made up of tiny particles and exists in three states: solid, liquid and gas. The Particle Model

### Gas Laws. The kinetic theory of matter states that particles which make up all types of matter are in constant motion.

Name Period Gas Laws Kinetic energy is the energy of motion of molecules. Gas state of matter made up of tiny particles (atoms or molecules). Each atom or molecule is very far from other atoms or molecules.

### Energy. Work. Potential Energy. Kinetic Energy. Learning Check 2.1. Energy. Energy. makes objects move. makes things stop. is needed to do work.

Chapter 2 Energy and Matter Energy 2.1 Energy Energy makes objects move. makes things stop. is needed to do work. 1 2 Work Potential Energy Work is done when you climb. you lift a bag of groceries. you

### Expansion and Compression of a Gas

Physics 6B - Winter 2011 Homework 4 Solutions Expansion and Compression of a Gas In an adiabatic process, there is no heat transferred to or from the system i.e. dq = 0. The first law of thermodynamics

### CHAPTER 14 THE CLAUSIUS-CLAPEYRON EQUATION

CHAPTER 4 THE CAUIU-CAPEYRON EQUATION Before starting this chapter, it would probably be a good idea to re-read ections 9. and 9.3 of Chapter 9. The Clausius-Clapeyron equation relates the latent heat

### Heat Transfer. Phys101 Lectures 35, 36. Key points: Heat as Energy Transfer Specific Heat Heat Transfer: Conduction, Convection, Radiation

Phys101 Lectures 35, 36 Heat Transfer Key points: Heat as Energy Transfer Specific Heat Heat Transfer: Conduction, Convection, Radiation Ref: 16-1,3,4,10. Page 1 19-1 Heat as Energy Transfer We often speak

### REASONING AND SOLUTION

39. REASONING AND SOLUTION The heat released by the blood is given by Q cm T, in which the specific heat capacity c of the blood (water) is given in Table 12.2. Then Therefore, T Q cm 2000 J 0.8 C [4186

### PARADISE VALLEY COMMUNITY COLLEGE PHYSICS 101 - INTRODUCTION TO PHYSICS LABORATORY. Calorimetry

PARADISE VALLEY COMMUNITY COLLEGE PHYSICS 101 - INTRODUCTION TO PHYSICS LABORATORY Calorimetry Equipment Needed: Large styrofoam cup, thermometer, hot water, cold water, ice, beaker, graduated cylinder,

### 1. At which temperature would a source radiate the least amount of electromagnetic energy? 1) 273 K 3) 32 K 2) 212 K 4) 5 K

1. At which temperature would a source radiate the least amount of electromagnetic energy? 1) 273 K 3) 32 K 2) 212 K 4) 5 K 2. How does the amount of heat energy reflected by a smooth, dark-colored concrete

### Thermodynamics Heat & Work The First Law of Thermodynamics

Thermodynamics Heat & Work The First Law of Thermodynamics Lana Sheridan De Anza College April 20, 2016 Last time applying the ideal gas equation thermal energy heat capacity phase changes Overview latent

### The Equipartition Theorem

The Equipartition Theorem Degrees of freedom are associated with the kinetic energy of translations, rotation, vibration and the potential energy of vibrations. A result from classical statistical mechanics

### Chapter 4: Transfer of Thermal Energy

Chapter 4: Transfer of Thermal Energy Goals of Period 4 Section 4.1: To define temperature and thermal energy Section 4.2: To discuss three methods of thermal energy transfer. Section 4.3: To describe

### Problem # 2 Determine the kinds of intermolecular forces present in each element or compound:

Chapter 11 Homework solutions Problem # 2 Determine the kinds of intermolecular forces present in each element or compound: A. Kr B. NCl 3 C. SiH 4 D. HF SOLUTION: Kr is a single atom, hence it can have

### Chemistry 13: States of Matter

Chemistry 13: States of Matter Name: Period: Date: Chemistry Content Standard: Gases and Their Properties The kinetic molecular theory describes the motion of atoms and molecules and explains the properties

### = 800 kg/m 3 (note that old units cancel out) 4.184 J 1000 g = 4184 J/kg o C

Units and Dimensions Basic properties such as length, mass, time and temperature that can be measured are called dimensions. Any quantity that can be measured has a value and a unit associated with it.

### dm 3. dm 3 ) b Find the buoyant force (noste) on the stone when immersed in water. B = r f Vg)

CHAPTER 9 1 Archimedes Law The magnitude of the buoyant force always equals the weight of the fluid displaced by the object Noste nesteessä on yhtä suuri kuin syrjäytetyn nestemäärän paino. Hpätee myös

### ENERGY. Thermochemistry. Heat. Temperature & Heat. Thermometers & Temperature. Temperature & Heat. Energy is the capacity to do work.

ENERGY Thermochemistry Energy is the capacity to do work. Chapter 6 Kinetic Energy thermal, mechanical, electrical, sound Potential Energy chemical, gravitational, electrostatic Heat Heat, or thermal energy,

### HEAT UNIT 1.1 KINETIC THEORY OF GASES. 1.1.1 Introduction. 1.1.2 Postulates of Kinetic Theory of Gases

UNIT HEAT. KINETIC THEORY OF GASES.. Introduction Molecules have a diameter of the order of Å and the distance between them in a gas is 0 Å while the interaction distance in solids is very small. R. Clausius

### Temperature, Expansion, Ideal Gas Law

Temperature, Expansion, Ideal Gas Law Physics 1425 Lecture 30 Michael Fowler, UVa Everything s Made of Atoms This idea was only fully accepted about 100 years ago in part because of Einstein s analysis

### Basic Concepts of Thermodynamics

Basic Concepts of Thermodynamics Every science has its own unique vocabulary associated with it. recise definition of basic concepts forms a sound foundation for development of a science and prevents possible

### Test 5 Review questions. 1. As ice cools from 273 K to 263 K, the average kinetic energy of its molecules will

Name: Thursday, December 13, 2007 Test 5 Review questions 1. As ice cools from 273 K to 263 K, the average kinetic energy of its molecules will 1. decrease 2. increase 3. remain the same 2. The graph below

### TEACHER BACKGROUND INFORMATION THERMAL ENERGY

TEACHER BACKGROUND INFORMATION THERMAL ENERGY In general, when an object performs work on another object, it does not transfer all of its energy to that object. Some of the energy is lost as heat due to

### ES 106 Laboratory # 2 HEAT AND TEMPERATURE

ES 106 Laboratory # 2 HEAT AND TEMPERATURE Introduction Heat transfer is the movement of heat energy from one place to another. Heat energy can be transferred by three different mechanisms: convection,

### Practical Applications of Freezing by Boiling Process

Practical Applications of Freezing by Boiling Process Kenny Gotlieb, Sasha Mitchell and Daniel Walsh Physics Department, Harvard-Westlake School 37 Coldwater Canyon, N. Hollywood, CA 9164 Introduction

Thermochemistry Reading: Chapter 5 (omit 5.8) As you read ask yourself What is meant by the terms system and surroundings? How are they related to each other? How does energy get transferred between them?

### KINETIC THEORY AND THERMODYNAMICS

KINETIC THEORY AND THERMODYNAMICS 1. Basic ideas Kinetic theory based on experiments, which proved that a) matter contains particles and quite a lot of space between them b) these particles always move

### L A T E N T H E A T O F F U S I O N

Class Date Name Partner(s) L A T E N T H E A T O F F U S I O N Materials LoggerPro Software and Real Time Physics Thermodynamics Experiment Files Stainless Steel Temperature Probes (2) Styrofoam Cup Film

### Entropy Changes & Processes

Entropy Changes & Processes Chapter 4 of Atkins: he Second Law: he Concepts Section 4.3, 7th edition; 3.3, 8th edition Entropy of Phase ransition at the ransition emperature Expansion of the Perfect Gas

### Use tongs and wear goggles when removing the samples from the pot of boiling water. Protect your eyes against accidental splashes!

Calorimetry Lab Purpose: Students will measure latent heat and specific heat. PLEASE READ the entire handout before starting. You won t know what to do unless you understand how it works! Introduction:

### Reversible & Irreversible Processes

Reversible & Irreversible Processes Example of a Reversible Process: Cylinder must be pulled or pushed slowly enough (quasistatically) that the system remains in thermal equilibrium (isothermal). Change

### The First Law of Thermodynamics: Closed Systems. Heat Transfer

The First Law of Thermodynamics: Closed Systems The first law of thermodynamics can be simply stated as follows: during an interaction between a system and its surroundings, the amount of energy gained

### Science Department Mark Erlenwein, Assistant Principal

Staten Island Technical High School Vincent A. Maniscalco, Principal The Physical Setting: CHEMISTRY Science Department Mark Erlenwein, Assistant Principal - Unit 1 - Matter and Energy Lessons 9-14 Heat,

### 13.1 The Nature of Gases. What is Kinetic Theory? Kinetic Theory and a Model for Gases. Chapter 13: States of Matter. Principles of Kinetic Theory

Chapter 13: States of Matter The Nature of Gases The Nature of Gases kinetic molecular theory (KMT), gas pressure (pascal, atmosphere, mm Hg), kinetic energy The Nature of Liquids vaporization, evaporation,

### Name Class Date STUDY GUIDE FOR CONTENT MASTERY

Atmosphere SECTION 11.1 Atmospheric Basics In your textbook, read about the composition of the atmosphere. Circle the letter of the choice that best completes the statement. 1. Most of Earth s atmosphere

### Chapter 16 Temperature and Heat

The determination of temperature has long been recognized as a problem of the greatest importance in physical science. It has accordingly been made a subject of most careful attention, and, especially

### q = (mass) x (specific heat) x T = m c T (1)

Experiment: Heat Effects and Calorimetry Heat is a form of energy, sometimes called thermal energy, which can pass spontaneously from an object at a high temperature to an object at a lower temperature.

### The final numerical answer given is correct but the math shown does not give that answer.

Note added to Homework set 7: The solution to Problem 16 has an error in it. The specific heat of water is listed as c 1 J/g K but should be c 4.186 J/g K The final numerical answer given is correct but

### Measuring Temperature

Measuring Temperature The standard metric unit of temperature is the degree Celsius ( C). Water freezes at 0 C. Water boils at 100 C. The Fahrenheit scale is used only in the United States. Why Do We Need

### 3. Of energy, work, enthalpy, and heat, how many are state functions? a) 0 b) 1 c) 2 d) 3 e) 4 ANS: c) 2 PAGE: 6.1, 6.2

1. A gas absorbs 0.0 J of heat and then performs 15.2 J of work. The change in internal energy of the gas is a) 24.8 J b) 14.8 J c) 55.2 J d) 15.2 J ANS: d) 15.2 J PAGE: 6.1 2. Calculate the work for the

### Calorimetry and Enthalpy. Chapter 5.2

Calorimetry and Enthalpy Chapter 5.2 Heat Capacity Specific heat capacity (c) is the quantity of thermal energy required to raise the temperature of 1g of a substance by 1⁰C The units for specific heat

### 3.3 Phase Changes Charactaristics of Phase Changes phase change

When at least two states of the same substance are present, scientists describe each different state as a phase. A phase change is the reversible physical change that occurs when a substance changes from

### Chapter 1: Chemistry: Measurements and Methods

Chapter 1: Chemistry: Measurements and Methods 1.1 The Discovery Process o Chemistry - The study of matter o Matter - Anything that has mass and occupies space, the stuff that things are made of. This

### Specific Heat Capacity and Latent Heat Questions A2 Physics

1. An electrical heater is used to heat a 1.0 kg block of metal, which is well lagged. The table shows how the temperature of the block increased with time. temp/ C 20.1 23.0 26.9 30.0 33.1 36.9 time/s

### vap H = RT 1T 2 = 30.850 kj mol 1 100 kpa = 341 K

Thermodynamics: Examples for chapter 6. 1. The boiling point of hexane at 1 atm is 68.7 C. What is the boiling point at 1 bar? The vapor pressure of hexane at 49.6 C is 53.32 kpa. Assume that the vapor

### 1. The Kinetic Theory of Matter states that all matter is composed of atoms and molecules that are in a constant state of constant random motion

Physical Science Period: Name: ANSWER KEY Date: Practice Test for Unit 3: Ch. 3, and some of 15 and 16: Kinetic Theory of Matter, States of matter, and and thermodynamics, and gas laws. 1. The Kinetic

### Chapter 3 Assessment. Name: Class: Date: ID: A. Multiple Choice Identify the choice that best completes the statement or answers the question.

Name: Class: _ Date: _ ID: A Chapter 3 Assessment Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Which state of matter has a definite volume but a variable

### Forms of Energy. Freshman Seminar

Forms of Energy Freshman Seminar Energy Energy The ability & capacity to do work Energy can take many different forms Energy can be quantified Law of Conservation of energy In any change from one form

### Preview of Period 5: Thermal Energy, the Microscopic Picture

Preview of Period 5: Thermal Energy, the Microscopic Picture 5.1 Temperature and Molecular Motion What is evaporative cooling? 5.2 Temperature and Phase Changes How much energy is required for a phase

### AP* Chemistry THERMOCHEMISTRY

AP* Chemistry THERMOCHEMISTRY Terms for you to learn that will make this unit understandable: Energy (E) the ability to do work or produce heat ; the sum of all potential and kinetic energy in a system

### Chapter 4 Practice Quiz

Chapter 4 Practice Quiz 1. Label each box with the appropriate state of matter. A) I: Gas II: Liquid III: Solid B) I: Liquid II: Solid III: Gas C) I: Solid II: Liquid III: Gas D) I: Gas II: Solid III:

### There is no such thing as heat energy

There is no such thing as heat energy We have used heat only for the energy transferred between the objects at different temperatures, and thermal energy to describe the energy content of the objects.

Name: Class: Date: Grade 11A Science Related Reading/Physics Conduction, Convention & Radiation Physics Gr11A Pre Reading Activity Using prior knowledge, write the definition for each vocabulary term.

### EXPERIMENT 15: Ideal Gas Law: Molecular Weight of a Vapor

EXPERIMENT 15: Ideal Gas Law: Molecular Weight of a Vapor Purpose: In this experiment you will use the ideal gas law to calculate the molecular weight of a volatile liquid compound by measuring the mass,

### 01 The Nature of Fluids

01 The Nature of Fluids WRI 1/17 01 The Nature of Fluids (Water Resources I) Dave Morgan Prepared using Lyx, and the Beamer class in L A TEX 2ε, on September 12, 2007 Recommended Text 01 The Nature of

### Section 7. Laws of Thermodynamics: Too Hot, Too Cold, Just Right. What Do You See? What Do You Think? Investigate.

Chapter 6 Electricity for Everyone Section 7 Laws of Thermodynamics: Too Hot, Too Cold, Just Right What Do You See? Learning Outcomes In this section, you will Assess experimentally the final temperature

### Name Date Class THERMOCHEMISTRY. SECTION 17.1 THE FLOW OF ENERGY HEAT AND WORK (pages 505 510)

17 THERMOCHEMISTRY SECTION 17.1 THE FLOW OF ENERGY HEAT AND WORK (pages 505 510) This section explains the relationship between energy and heat, and distinguishes between heat capacity and specific heat.

### Materials 10-mL graduated cylinder l or 2-L beaker, preferably tall-form Thermometer

VAPOR PRESSURE OF WATER Introduction At very low temperatures (temperatures near the freezing point), the rate of evaporation of water (or any liquid) is negligible. But as its temperature increases, more

### What Is Heat? What Is Heat?

What Is Heat? Paul shivered inside the wood cabin. It was cold outside, and inside the cabin it wasn t much warmer. Paul could hear the rain beating down on the roof. Every few minutes there would be a

### Heat evolved by the reaction = Heat absorbed by the water + Heat absorbed by the bomb

ENERGY OF A PEANUT AN EXPERIMENT IN CALORIMETRY 2011, 2010, 2002, 1995, by David A. Katz. All rights reserved. Reproduction permitted for educational use provided original copyright is included. INTRODUCTION:

### Name Class Date. In the space provided, write the letter of the term or phrase that best completes each statement or best answers each question.

Assessment Chapter Test A Chapter: States of Matter In the space provided, write the letter of the term or phrase that best completes each statement or best answers each question. 1. The kinetic-molecular

### AP Chem Lab 2 Quiz #1 Calorimetry. Conceptual Understanding. Write complete sentences to show your understanding.

AP Chem Lab 2 Quiz #1 Calorimetry Name Conceptual Understanding. Write complete sentences to show your understanding. Differentiate between kinetic energy and potential energy. Energy may be transferred

### The Ideal Gas Law. Gas Constant. Applications of the Gas law. P = ρ R T. Lecture 2: Atmospheric Thermodynamics

Lecture 2: Atmospheric Thermodynamics Ideal Gas Law (Equation of State) Hydrostatic Balance Heat and Temperature Conduction, Convection, Radiation Latent Heating Adiabatic Process Lapse Rate and Stability

### What is Energy? What is the relationship between energy and work?

What is Energy? What is the relationship between energy and work? Compare kinetic and potential energy What are the different types of energy? What is energy? Energy is the ability to do work. Great, but

### Energy Flow in Marine Ecosystem

Energy Flow in Marine Ecosystem Introduction Marin ecosystem is a functional system and consists of living groups and the surrounding environment It is composed of some groups and subgroups 1. The physical

### CHAPTER 2 Energy and Earth

CHAPTER 2 Energy and Earth This chapter is concerned with the nature of energy and how it interacts with Earth. At this stage we are looking at energy in an abstract form though relate it to how it affect

### CALORIMETRY AND HESS LAW: FINDING H o FOR THE COMBUSTION OF MAGNESIUM

Experiment 12J FV 7/16/06 CALORIMETRY AND HESS LAW: FINDING H o FOR THE COMBUSTION OF MAGNESIUM MATERIALS: Styrofoam coffee cup and lid, thermometer, magnetic stirrer, magnetic stir bar, 50-mL and 100-

### Heat Transfer and Energy

What is Heat? Heat Transfer and Energy Heat is Energy in Transit. Recall the First law from Thermodynamics. U = Q - W What did we mean by all the terms? What is U? What is Q? What is W? What is Heat Transfer?

### Every mathematician knows it is impossible to understand an elementary course in thermodynamics. ~V.I. Arnold

Every mathematician knows it is impossible to understand an elementary course in thermodynamics. ~V.I. Arnold Radiation Radiation: Heat energy transmitted by electromagnetic waves Q t = εσat 4 emissivity

### 18 Q0 a speed of 45.0 m/s away from a moving car. If the car is 8 Q0 moving towards the ambulance with a speed of 15.0 m/s, what Q0 frequency does a

First Major T-042 1 A transverse sinusoidal wave is traveling on a string with a 17 speed of 300 m/s. If the wave has a frequency of 100 Hz, what 9 is the phase difference between two particles on the

### Rusty Walker, Corporate Trainer Hill PHOENIX

Refrigeration 101 Rusty Walker, Corporate Trainer Hill PHOENIX Compressor Basic Refrigeration Cycle Evaporator Condenser / Receiver Expansion Device Vapor Compression Cycle Cooling by the removal of heat

### Chapter 12 - Liquids and Solids

Chapter 12 - Liquids and Solids 12-1 Liquids I. Properties of Liquids and the Kinetic Molecular Theory A. Fluids 1. Substances that can flow and therefore take the shape of their container B. Relative

Steady Heat Conduction In thermodynamics, we considered the amount of heat transfer as a system undergoes a process from one equilibrium state to another. hermodynamics gives no indication of how long

### Chapter 3 Process Variables. Mass and Volume

Chapter 3 Process Variables Process: to a chemical engineer, the set of tasks or operations that accomplish a chemical or material transformation to produce a product Feed or inputs: raw materials and