Today s Objectives. Probability rules apply to inheritance at more than one locus

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Today s Objectives. Probability rules apply to inheritance at more than one locus"

Transcription

1 Figure 14.8 Segregation of alleles and fertilization as chance events Today s Objectives Use rules of probability to solve genetics problems Define dominance, incomplete dominance, and co-dominance Extend Mendelian principles to one locus with > 2 alleles Probability rules apply to inheritance at more than one locus Example 1- dihybrid cross One locus analysis the color locus? The recessive phenotype? the shape locus? Combined analysis both loci? What is the probability of the recessive phenotype at both loci? one locus and the recessive phenotype at the other one? Example 2: Cross between F 1 individuals that are heterozygous at two loci AaBb X AaBb What is the probability of a recessive homozygote at locus A and a heterozygote at locus B? Write out genotype: aabb Determine probability of each Use rules of probability to combine 1

2 Example 2 solution Probability of recessive homozygote at one locus P(aa) = 1/4 Probability of heterozygote at other locus P(Bb) = 1/2 Use multiplication rule to combine probabilities from both loci P(aaBb) =1/4 * 1/2 = 1/8 Example 2: five loci Given: One crosses two individuals that are heterozygous at 5 loci AaBbCcDdEe X AaBbCcDdEe What is the probability that an offspring will be a recessive homozygote at all 5 loci? aabbccddee Example 2 solution Probability of recessive homozygote at each locus = 1/4 Use multiplication rule to combine probabilities = (1/4) 5 Example 3: three loci Given: One crosses two individuals that are heterozygous at 3 loci What is the probability of a recessive homozygote at one locus and a heterozygote at the two other loci? 2

3 Example 3: solution Write out possible ways of getting it AaBbcc aabbcc AabbCc Calculate probabilities of each way AaBbcc = 1/2*1/2*1/4 aabbcc= 1/4*1/2*1/2 AabbCc= 1/2*1/4*1/2 Calculate sum of probabilities 1/16 +1/16 +1/16 Question 4, study guide 1 Which genotypes might an individual s parents be if that individual possesses the dominant phenotype at a locus? Genotypes for dominant phenotype: Aa, AA Parents: Aa X Aa Aa X AA AA X aa AA X AA Aa X aa Dominance relationships Complete dominance- phenotype of heterozygote identical to one of the homozygotes Incomplete dominance- phenotype of heterozygote between the homozygotes Codominance- Phenotype of heterozygote shows both homozygotes Dominance does not: Mean that one allele dominates or subdues the other one. Relate to the frequency of an allele (e.g. most peas are green, although the yellow allele is dominant to the green one) 3

4 Figure 14.9x Incomplete dominance in carnations Figure 14.9 Incomplete dominance in snapdragon color Co-dominance Can detect both alleles in the heterozygote. Codominance is usually found by conducting chemical tests or analyzing molecules Multiple alleles at one locus Each individual is diploid and can be a homozygote or a heterozygote A 1 A 1, A 1 A 2, A 2 A 2 A population may contain more than two alleles A 1, A 2, A 3 With three alleles, three homozygotes and three heterozygotes are possible A 1 A 1, A 1 A 2, A 1 A 3, A 2 A 2, A 2 A 3, A 3 A 3 4

5 F M S Codominance at an enzyme locus using electrophoresis MS MM FS MM MS Proteins separated by electrophoresis. 3 alleles in five individuals Individuals with two bands are heterozygotes Individuals with one band are homozygotes Human blood type example One locus determines blood type Three alleles are common in human populations Two alleles are dominant to the third The dominant alleles are codominant with each other Figure Multiple alleles for the ABO blood groups Blood type phenotypes Four phenotypes exist: A, B, AB, O A substance, B substance or no substance coats blood cells Blood type determined by whether antibodies react to substance 5

6 Blood type genotypes Phenotypes determined by three alleles- I a, I b, i I a and I b are codominant i is recessive Possible genotypes: I a I a homozygote, I a i heterozygote, I b I b homozygote, I b i heterozygote, ii homozygote, I a I b heterozygote 6

Chapter 9 Patterns of Inheritance

Chapter 9 Patterns of Inheritance Bio 100 Patterns of Inheritance 1 Chapter 9 Patterns of Inheritance Modern genetics began with Gregor Mendel s quantitative experiments with pea plants History of Heredity Blending theory of heredity -

More information

INTRODUCTION TO GENETICS USING TOBACCO (Nicotiana tabacum) SEEDLINGS

INTRODUCTION TO GENETICS USING TOBACCO (Nicotiana tabacum) SEEDLINGS INTRODUCTION TO GENETICS USING TOBACCO (Nicotiana tabacum) SEEDLINGS By Dr. Susan Petro Based on a lab by Dr. Elaine Winshell Nicotiana tabacum Objectives To apply Mendel s Law of Segregation To use Punnett

More information

Complex Inheritance. Mendel observed monogenic traits and no linked genes It s not usually that simple.

Complex Inheritance. Mendel observed monogenic traits and no linked genes It s not usually that simple. Complex Inheritance Mendel observed monogenic traits and no linked genes It s not usually that simple. Other Types of Inheritance Incomplete Dominance The phenotype of the heterozygote is intermediate

More information

MANDELIAN GENETICS. Crosses that deviate from Mandelian inherintance

MANDELIAN GENETICS. Crosses that deviate from Mandelian inherintance MANDELIAN GENETICS Crosses that deviate from Mandelian inherintance Explain codominant alleles. TO THE STUDENTS Calculate the genotypic and phenotypic ratio (1:2:1). Explain incomplete dominant alleles.

More information

GENETIC CROSSES. Monohybrid Crosses

GENETIC CROSSES. Monohybrid Crosses GENETIC CROSSES Monohybrid Crosses Objectives Explain the difference between genotype and phenotype Explain the difference between homozygous and heterozygous Explain how probability is used to predict

More information

You and Your Blood Packet #3

You and Your Blood Packet #3 You and Your Blood Packet #3 SC.7.L.16.2 AA Determining the probabilities for genotype and phenotype combinations using Punnett Squares and pedigrees. Purpose: to determine the blood type of a third generation

More information

Heredity. Sarah crosses a homozygous white flower and a homozygous purple flower. The cross results in all purple flowers.

Heredity. Sarah crosses a homozygous white flower and a homozygous purple flower. The cross results in all purple flowers. Heredity 1. Sarah is doing an experiment on pea plants. She is studying the color of the pea plants. Sarah has noticed that many pea plants have purple flowers and many have white flowers. Sarah crosses

More information

Mendelian Genetics. I. Background

Mendelian Genetics. I. Background Mendelian Genetics Objectives 1. To understand the Principles of Segregation and Independent Assortment. 2. To understand how Mendel s principles can explain transmission of characters from one generation

More information

2 18. If a boy s father has haemophilia and his mother has one gene for haemophilia. What is the chance that the boy will inherit the disease? 1. 0% 2

2 18. If a boy s father has haemophilia and his mother has one gene for haemophilia. What is the chance that the boy will inherit the disease? 1. 0% 2 1 GENETICS 1. Mendel is considered to be lucky to discover the laws of inheritance because 1. He meticulously analyzed his data statistically 2. He maintained pedigree records of various generations he

More information

Biology Final Exam Study Guide: Semester 2

Biology Final Exam Study Guide: Semester 2 Biology Final Exam Study Guide: Semester 2 Questions 1. Scientific method: What does each of these entail? Investigation and Experimentation Problem Hypothesis Methods Results/Data Discussion/Conclusion

More information

Can receive blood from: * I A I A and I A i o Type A Yes No A or AB A or O I B I B and I B i o Type B No Yes B or AB B or O

Can receive blood from: * I A I A and I A i o Type A Yes No A or AB A or O I B I B and I B i o Type B No Yes B or AB B or O Genetics of the ABO Blood Groups written by J. D. Hendrix Learning Objectives Upon completing the exercise, each student should be able: to explain the concept of blood group antigens; to list the genotypes

More information

A trait is a variation of a particular character (e.g. color, height). Traits are passed from parents to offspring through genes.

A trait is a variation of a particular character (e.g. color, height). Traits are passed from parents to offspring through genes. 1 Biology Chapter 10 Study Guide Trait A trait is a variation of a particular character (e.g. color, height). Traits are passed from parents to offspring through genes. Genes Genes are located on chromosomes

More information

Name: Class: Date: ID: A

Name: Class: Date: ID: A Name: Class: _ Date: _ Meiosis Quiz 1. (1 point) A kidney cell is an example of which type of cell? a. sex cell b. germ cell c. somatic cell d. haploid cell 2. (1 point) How many chromosomes are in a human

More information

Chapter 14: Mendel and the Gene Idea

Chapter 14: Mendel and the Gene Idea Name Period Chapter 14: Mendel and the Gene Idea If you have completed a first-year high school biology course, some of this chapter will serve as a review for the basic concepts of Mendelian genetics.

More information

Heredity - Patterns of Inheritance

Heredity - Patterns of Inheritance Heredity - Patterns of Inheritance Genes and Alleles A. Genes 1. A sequence of nucleotides that codes for a special functional product a. Transfer RNA b. Enzyme c. Structural protein d. Pigments 2. Genes

More information

Bio 102 Practice Problems Mendelian Genetics and Extensions

Bio 102 Practice Problems Mendelian Genetics and Extensions Bio 102 Practice Problems Mendelian Genetics and Extensions Short answer (show your work or thinking to get partial credit): 1. In peas, tall is dominant over dwarf. If a plant homozygous for tall is crossed

More information

Hardy-Weinberg Equilibrium Problems

Hardy-Weinberg Equilibrium Problems Hardy-Weinberg Equilibrium Problems 1. The frequency of two alleles in a gene pool is 0.19 (A) and 0.81(a). Assume that the population is in Hardy-Weinberg equilibrium. (a) Calculate the percentage of

More information

Chapter 21 Active Reading Guide The Evolution of Populations

Chapter 21 Active Reading Guide The Evolution of Populations Name: Roksana Korbi AP Biology Chapter 21 Active Reading Guide The Evolution of Populations This chapter begins with the idea that we focused on as we closed Chapter 19: Individuals do not evolve! Populations

More information

Mendelian inheritance and the

Mendelian inheritance and the Mendelian inheritance and the most common genetic diseases Cornelia Schubert, MD, University of Goettingen, Dept. Human Genetics EUPRIM-Net course Genetics, Immunology and Breeding Mangement German Primate

More information

Blood Stains at the Crime Scene Forensic Investigation

Blood Stains at the Crime Scene Forensic Investigation Blood Stains at the Crime Scene Forensic Investigation Introduction Blood stains at a crime scene can be crucial in solving the crime. Numerous analytical techniques can be used to study blood stains.

More information

11.1 The Work of Gregor Mendel

11.1 The Work of Gregor Mendel 11.1 The Work of Gregor Mendel Lesson Objectives Describe Mendel s studies and conclusions about inheritance. Describe what happens during segregation. Lesson Summary The Experiments of Gregor Mendel The

More information

Name: 4. A typical phenotypic ratio for a dihybrid cross is a) 9:1 b) 3:4 c) 9:3:3:1 d) 1:2:1:2:1 e) 6:3:3:6

Name: 4. A typical phenotypic ratio for a dihybrid cross is a) 9:1 b) 3:4 c) 9:3:3:1 d) 1:2:1:2:1 e) 6:3:3:6 Name: Multiple-choice section Choose the answer which best completes each of the following statements or answers the following questions and so make your tutor happy! 1. Which of the following conclusions

More information

Chapter 23. (Mendelian) Population. Gene Pool. Genetic Variation. Population Genetics

Chapter 23. (Mendelian) Population. Gene Pool. Genetic Variation. Population Genetics 30 25 Chapter 23 Population Genetics Frequency 20 15 10 5 0 A B C D F Grade = 57 Avg = 79.5 % (Mendelian) Population A group of interbreeding, sexually reproducing organisms that share a common set of

More information

Punnett Square: Monohybird Crosses

Punnett Square: Monohybird Crosses Punnett Squares A Punnett square is a mathematical device used by geneticists to show combinations of gametes and to predict offspring ratios. There are a few fundamental concepts of Punnett squares that

More information

2 GENETIC DATA ANALYSIS

2 GENETIC DATA ANALYSIS 2.1 Strategies for learning genetics 2 GENETIC DATA ANALYSIS We will begin this lecture by discussing some strategies for learning genetics. Genetics is different from most other biology courses you have

More information

Genetics Lecture Notes 7.03 2005. Lectures 1 2

Genetics Lecture Notes 7.03 2005. Lectures 1 2 Genetics Lecture Notes 7.03 2005 Lectures 1 2 Lecture 1 We will begin this course with the question: What is a gene? This question will take us four lectures to answer because there are actually several

More information

Chapter 4 Pedigree Analysis in Human Genetics. Chapter 4 Human Heredity by Michael Cummings 2006 Brooks/Cole-Thomson Learning

Chapter 4 Pedigree Analysis in Human Genetics. Chapter 4 Human Heredity by Michael Cummings 2006 Brooks/Cole-Thomson Learning Chapter 4 Pedigree Analysis in Human Genetics Mendelian Inheritance in Humans Pigmentation Gene and Albinism Fig. 3.14 Two Genes Fig. 3.15 The Inheritance of Human Traits Difficulties Long generation time

More information

A and B are not absolutely linked. They could be far enough apart on the chromosome that they assort independently.

A and B are not absolutely linked. They could be far enough apart on the chromosome that they assort independently. Name Section 7.014 Problem Set 5 Please print out this problem set and record your answers on the printed copy. Answers to this problem set are to be turned in to the box outside 68-120 by 5:00pm on Friday

More information

GENETICS OF HUMAN BLOOD TYPE

GENETICS OF HUMAN BLOOD TYPE GENETICS OF HUMAN BLOOD TYPE Introduction The genetics of blood types is relatively simple when considering any one blood protein. However, the complexity increases when one considers all the different

More information

Mendelian and Non-Mendelian Heredity Grade Ten

Mendelian and Non-Mendelian Heredity Grade Ten Ohio Standards Connection: Life Sciences Benchmark C Explain the genetic mechanisms and molecular basis of inheritance. Indicator 6 Explain that a unit of hereditary information is called a gene, and genes

More information

CCR Biology - Chapter 7 Practice Test - Summer 2012

CCR Biology - Chapter 7 Practice Test - Summer 2012 Name: Class: Date: CCR Biology - Chapter 7 Practice Test - Summer 2012 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. A person who has a disorder caused

More information

7A The Origin of Modern Genetics

7A The Origin of Modern Genetics Life Science Chapter 7 Genetics of Organisms 7A The Origin of Modern Genetics Genetics the study of inheritance (the study of how traits are inherited through the interactions of alleles) Heredity: the

More information

C1. A gene pool is all of the genes present in a particular population. Each type of gene within a gene pool may exist in one or more alleles.

C1. A gene pool is all of the genes present in a particular population. Each type of gene within a gene pool may exist in one or more alleles. C1. A gene pool is all of the genes present in a particular population. Each type of gene within a gene pool may exist in one or more alleles. The prevalence of an allele within the gene pool is described

More information

Biology 1406 Exam 4 Notes Cell Division and Genetics Ch. 8, 9

Biology 1406 Exam 4 Notes Cell Division and Genetics Ch. 8, 9 Biology 1406 Exam 4 Notes Cell Division and Genetics Ch. 8, 9 Ch. 8 Cell Division Cells divide to produce new cells must pass genetic information to new cells - What process of DNA allows this? Two types

More information

Why Is He Different from Both Parents? The Genetics of ABO Blood Types

Why Is He Different from Both Parents? The Genetics of ABO Blood Types Why Is He Different from Both Parents? The Genetics of ABO Blood Types by Jun Liang, Science Department, Borough of Manhattan Community College / City University of New York William J. Rice, Simons Electron

More information

Allele Frequencies and Hardy Weinberg Equilibrium

Allele Frequencies and Hardy Weinberg Equilibrium Allele Frequencies and Hardy Weinberg Equilibrium Summer Institute in Statistical Genetics 013 Module 8 Topic Allele Frequencies and Genotype Frequencies How do allele frequencies relate to genotype frequencies

More information

CHAPTER 6 GENETIC RECOMBINATION IN EUKARYOTES + CHAP[TER 14, PAGES 456-459)

CHAPTER 6 GENETIC RECOMBINATION IN EUKARYOTES + CHAP[TER 14, PAGES 456-459) CHAPTER 6 GENETIC RECOMBINATION IN EUKARYOTES + CHAP[TER 14, PAGES 456-459) Questions to be addressed: 1. How can we predict the inheritance patterns of more than one gene? 2. How does the position of

More information

CHAPTER 10 BLOOD GROUPS: ABO AND Rh

CHAPTER 10 BLOOD GROUPS: ABO AND Rh CHAPTER 10 BLOOD GROUPS: ABO AND Rh The success of human blood transfusions requires compatibility for the two major blood group antigen systems, namely ABO and Rh. The ABO system is defined by two red

More information

Chapter 16 How Populations Evolve

Chapter 16 How Populations Evolve Title Chapter 16 How Populations Evolve Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Population Genetics A population is all of the members of a single species

More information

somatic cell egg genotype gamete polar body phenotype homologous chromosome trait dominant autosome genetics recessive

somatic cell egg genotype gamete polar body phenotype homologous chromosome trait dominant autosome genetics recessive CHAPTER 6 MEIOSIS AND MENDEL Vocabulary Practice somatic cell egg genotype gamete polar body phenotype homologous chromosome trait dominant autosome genetics recessive CHAPTER 6 Meiosis and Mendel sex

More information

Heredity and Prenatal Development: Chapter 3

Heredity and Prenatal Development: Chapter 3 Genetics 1 DEP 4053 Christine L. Ruva, Ph.D. Heredity and Prenatal Development: Chapter 3 PRINCIPLES OF HEREDITARY TRANSMISSION Genotype Phenotype Chromosomes: in the nucleus of the cell store and transmit

More information

The Blood Group Systems. Inheritance and Genetics

The Blood Group Systems. Inheritance and Genetics The Blood Group Systems Inheritance and Genetics History of Blood Groups and Blood Transfusions Experiments with blood transfusions have been carried out for hundreds of years. Many patients have died

More information

Genetic Polymorphism. References. The story so far. We can explain how these dominant and recessive traits are inherited

Genetic Polymorphism. References. The story so far. We can explain how these dominant and recessive traits are inherited Week 1, Hilary Term Genetic Polymorphism Biology Hon. Mods: Cells and Genes 1.4 Genes 2 Human Sciences Prelims: Genetics and Evolution Lecturer: Rosalind Harding email: rosalind.harding@zoo.ox.ac.uk http://www.stats.ox.ac.uk/~harding

More information

Cell Division. Use Target Reading Skills. This section explains how cells grow and divide.

Cell Division. Use Target Reading Skills. This section explains how cells grow and divide. Cell Processes and Energy Name Date Class Cell Processes and Energy Guided Reading and Study Cell Division This section explains how cells grow and divide. Use Target Reading Skills As you read, make a

More information

Blood Type Testing Lab Report Section 1101 Nattanit Trakullapphan (Nam) Chawalnrath Wongdeshanan (Kat)

Blood Type Testing Lab Report Section 1101 Nattanit Trakullapphan (Nam) Chawalnrath Wongdeshanan (Kat) Blood Type Testing Lab Report Section 1101 Nattanit Trakullapphan (Nam) Chawalnrath Wongdeshanan (Kat) Introduction: figure 1.1 (Blood type n.d.) figure 1.2 (Blood type, Antigens-Antibodies n.d.) Multiple

More information

The Making of the Fittest: Natural Selection in Humans

The Making of the Fittest: Natural Selection in Humans OVERVIEW MENDELIN GENETIC, PROBBILITY, PEDIGREE, ND CHI-QURE TTITIC This classroom lesson uses the information presented in the short film The Making of the Fittest: Natural election in Humans (http://www.hhmi.org/biointeractive/making-fittest-natural-selection-humans)

More information

c. Law of Independent Assortment: Alleles separate and do not have an effect on another allele.

c. Law of Independent Assortment: Alleles separate and do not have an effect on another allele. Level Genetics Review KEY Describe the 3 laws that Gregor Mendel established after working with pea plants. a. Law of Dominance: states that the effect of a recessive allele is not observed when a dominant

More information

Problems 1-6: In tomato fruit, red flesh color is dominant over yellow flesh color, Use R for the Red allele and r for the yellow allele.

Problems 1-6: In tomato fruit, red flesh color is dominant over yellow flesh color, Use R for the Red allele and r for the yellow allele. Genetics Problems Name ANSWER KEY Problems 1-6: In tomato fruit, red flesh color is dominant over yellow flesh color, Use R for the Red allele and r for the yellow allele. 1. What would be the genotype

More information

HEREDITY (B) In domestic cats, the gene for Tabby stripes (T) is dominant over the gene for no stripes (t)

HEREDITY (B) In domestic cats, the gene for Tabby stripes (T) is dominant over the gene for no stripes (t) GENETIC CROSSES In minks, a single gene controls coat color. The allele for a brown (B) coat is dominant to the allele for silver-blue (b) coats. 1. A homozygous brown mink was crossed with a silverblue

More information

Mendel s work. Biology CLIL lesson. Istituto tecnico industriale A. MALIGNANI Udine. Docente:Prof. Annamaria Boasso

Mendel s work. Biology CLIL lesson. Istituto tecnico industriale A. MALIGNANI Udine. Docente:Prof. Annamaria Boasso Istituto tecnico industriale A. MALIGNANI Udine Docente:Prof. Annamaria Boasso Modulo di genetica realizzato per l applicazione in classi seconde. Durata: 4 ore Biology CLIL lesson Mendel s work Objectives

More information

CCpp X ccpp. CcPp X CcPp. CP Cp cp cp. Purple. White. Purple CcPp. Purple Ccpp White. White. Summary: 9/16 purple, 7/16 white

CCpp X ccpp. CcPp X CcPp. CP Cp cp cp. Purple. White. Purple CcPp. Purple Ccpp White. White. Summary: 9/16 purple, 7/16 white P F 1 CCpp X ccpp Cp Cp CcPp X CcPp F 2 CP Cp cp cp CP Cp cp cp CCPP CCPp CcPP CcPp CCPp CCpp CcPp Ccpp CcPP CcPp ccpp ccpp Summary: 9/16 purple, 7/16 white CcPp Ccpp ccpp ccpp AABB X aabb P AB ab Gametes

More information

Population Genetics -- Evolutionary Stasis and the Hardy-Weinberg Principles 1

Population Genetics -- Evolutionary Stasis and the Hardy-Weinberg Principles 1 Population Genetics -- Evolutionary Stasis and the Hardy-Weinberg Principles 1 Review and Introduction Mendel presented the first successful theory of the inheritance of biological variation. He viewed

More information

What about two traits? Dihybrid Crosses

What about two traits? Dihybrid Crosses What about two traits? Dihybrid Crosses! Consider two traits for pea: Color: Y (yellow) and y (green) Shape: R (round) and r (wrinkled)! Each dihybrid plant produces 4 gamete types of equal frequency.

More information

Two copies of each autosomal gene affect phenotype.

Two copies of each autosomal gene affect phenotype. SECTION 7.1 CHROMOSOMES AND PHENOTYPE Study Guide KEY CONCEPT The chromosomes on which genes are located can affect the expression of traits. VOCABULARY carrier sex-linked gene X chromosome inactivation

More information

Incomplete Dominance and Codominance

Incomplete Dominance and Codominance Name: Date: Period: Incomplete Dominance and Codominance 1. In Japanese four o'clock plants red (R) color is incompletely dominant over white (r) flowers, and the heterozygous condition (Rr) results in

More information

STUDENT ID NUMBER, LAST NAME,

STUDENT ID NUMBER, LAST NAME, EBIO 1210: General Biology 1 Name Exam 3 June 25, 2013 To receive credit for this exam, you MUST bubble in your STUDENT ID NUMBER, LAST NAME, and FIRST NAME No. 2 pencils only You may keep this exam to

More information

Chapter 3. Chapter Outline. Chapter Outline 9/11/10. Heredity and Evolu4on

Chapter 3. Chapter Outline. Chapter Outline 9/11/10. Heredity and Evolu4on Chapter 3 Heredity and Evolu4on Chapter Outline The Cell DNA Structure and Function Cell Division: Mitosis and Meiosis The Genetic Principles Discovered by Mendel Mendelian Inheritance in Humans Misconceptions

More information

I. Genes found on the same chromosome = linked genes

I. Genes found on the same chromosome = linked genes Genetic recombination in Eukaryotes: crossing over, part 1 I. Genes found on the same chromosome = linked genes II. III. Linkage and crossing over Crossing over & chromosome mapping I. Genes found on the

More information

Bio 102 Practice Problems Mendelian Genetics: Beyond Pea Plants

Bio 102 Practice Problems Mendelian Genetics: Beyond Pea Plants Bio 102 Practice Problems Mendelian Genetics: Beyond Pea Plants Short answer (show your work or thinking to get partial credit): 1. In four-o'clock flowers, red flower color (R) is incompletely dominant

More information

CHROMOSOMES AND INHERITANCE

CHROMOSOMES AND INHERITANCE SECTION 12-1 REVIEW CHROMOSOMES AND INHERITANCE VOCABULARY REVIEW Distinguish between the terms in each of the following pairs of terms. 1. sex chromosome, autosome 2. germ-cell mutation, somatic-cell

More information

Genetics 1. Defective enzyme that does not make melanin. Very pale skin and hair color (albino)

Genetics 1. Defective enzyme that does not make melanin. Very pale skin and hair color (albino) Genetics 1 We all know that children tend to resemble their parents. Parents and their children tend to have similar appearance because children inherit genes from their parents and these genes influence

More information

Genetics Module B, Anchor 3

Genetics Module B, Anchor 3 Genetics Module B, Anchor 3 Key Concepts: - An individual s characteristics are determines by factors that are passed from one parental generation to the next. - During gamete formation, the alleles for

More information

Cat caryotype (38 chromosomes)

Cat caryotype (38 chromosomes) CAT GENETICS Cat caryotype (38 chromosomes) D Dense pigment d dilute pigment L short hair dominant l long hair monohybrid dihybrid Cat Genetics and Mosaicism The Calico phenotype reflects transcriptional

More information

Incomplete dominance for flower colour in Mirabilis jalapa

Incomplete dominance for flower colour in Mirabilis jalapa Incomplete dominance for flower colour in Mirabilis jalapa R 1 R 1 R 2 R 2 R 1 R 2 R 1 Red pigment R 2 No pigment Co-dominance at an isozyme locus (gene for an enzyme) Alcohol dehydrogenase in pollen of

More information

Human Blood Types: Codominance and Multiple Alleles. Codominance: both alleles in the heterozygous genotype express themselves fully

Human Blood Types: Codominance and Multiple Alleles. Codominance: both alleles in the heterozygous genotype express themselves fully Human Blood Types: Codominance and Multiple Alleles Codominance: both alleles in the heterozygous genotype express themselves fully Multiple alleles: three or more alleles for a trait are found in the

More information

Genetics for the Novice

Genetics for the Novice Genetics for the Novice by Carol Barbee Wait! Don't leave yet. I know that for many breeders any article with the word genetics in the title causes an immediate negative reaction. Either they quickly turn

More information

GENETIC TRAITS IN HARRY POTTER DOMAIN 3-GENETICS

GENETIC TRAITS IN HARRY POTTER DOMAIN 3-GENETICS Learning Outcomes: Students will be able to: Define the basic genetic terms and concepts DNA, chromosome, gene, allele, homozygous, heterozygous, recessive and dominant genes, genotype, phenotype, and

More information

Basic Principles of Forensic Molecular Biology and Genetics. Population Genetics

Basic Principles of Forensic Molecular Biology and Genetics. Population Genetics Basic Principles of Forensic Molecular Biology and Genetics Population Genetics Significance of a Match What is the significance of: a fiber match? a hair match? a glass match? a DNA match? Meaning of

More information

Using Blood Tests to Identify Babies and Criminals

Using Blood Tests to Identify Babies and Criminals Using Blood Tests to Identify Babies and Criminals Copyright, 2012, by Drs. Jennifer Doherty and Ingrid Waldron, Department of Biology, University of Pennsylvania 1 I. Were the babies switched? Two couples

More information

Population Genetics. Population Genetics. Allele frequency. Allele frequency, Example. Allele frequency, Example cont. Genotype frequency

Population Genetics. Population Genetics. Allele frequency. Allele frequency, Example. Allele frequency, Example cont. Genotype frequency Population Genetics Population Genetics Social Patterns and Evolutionary Forces in Human Populations How do genes behave in populations What is a population? A population is a subdivision of a species

More information

5 GENETIC LINKAGE AND MAPPING

5 GENETIC LINKAGE AND MAPPING 5 GENETIC LINKAGE AND MAPPING 5.1 Genetic Linkage So far, we have considered traits that are affected by one or two genes, and if there are two genes, we have assumed that they assort independently. However,

More information

Ex) A tall green pea plant (TTGG) is crossed with a short white pea plant (ttgg). TT or Tt = tall tt = short GG or Gg = green gg = white

Ex) A tall green pea plant (TTGG) is crossed with a short white pea plant (ttgg). TT or Tt = tall tt = short GG or Gg = green gg = white Worksheet: Dihybrid Crosses U N I T 3 : G E N E T I C S STEP 1: Determine what kind of problem you are trying to solve. STEP 2: Determine letters you will use to specify traits. STEP 3: Determine parent

More information

Variations on a Human Face Lab

Variations on a Human Face Lab Variations on a Human Face Lab Introduction: Have you ever wondered why everybody has a different appearance even if they are closely related? It is because of the large variety or characteristics that

More information

7 POPULATION GENETICS

7 POPULATION GENETICS 7 POPULATION GENETICS 7.1 INTRODUCTION Most humans are susceptible to HIV infection. However, some people seem to be able to avoid infection despite repeated exposure. Some resistance is due to a rare

More information

LAB 11 Natural Selection (version 2)

LAB 11 Natural Selection (version 2) LAB 11 Natural Selection (version 2) Overview In this laboratory you will demonstrate the process of evolution by natural selection by carrying out a predator/prey simulation. Through this exercise you

More information

BCOR101 Midterm II Wednesday, October 26, 2005

BCOR101 Midterm II Wednesday, October 26, 2005 BCOR101 Midterm II Wednesday, October 26, 2005 Name Key Please show all of your work. 1. A donor strain is trp+, pro+, met+ and a recipient strain is trp-, pro-, met-. The donor strain is infected with

More information

STD. XII Sci. Triumph Biology

STD. XII Sci. Triumph Biology Useful for all Medical Entrance Examinations held across India. STD. XII Sci. Triumph Biology Based on Maharashtra Board Syllabus Fifth Edition: May 2015 Salient Features Exhaustive subtopic wise coverage

More information

AP Biology PowerPoint Notes Chapter 11 & 12 Patterns of Heredity and Human Genetics

AP Biology PowerPoint Notes Chapter 11 & 12 Patterns of Heredity and Human Genetics AP Biology PowerPoint Notes Chapter 11 & 12 Patterns of Heredity and Human Genetics Mendelism and Genotype Genotype must be considered an integrated whole of all the genes because genes often work together

More information

Prof. Arjumand S. Warsy Department of Biochemistry College of Science, King Saud University, Riyadh

Prof. Arjumand S. Warsy Department of Biochemistry College of Science, King Saud University, Riyadh GENOTYPE, PHENOTYPE AND GENE FREQUENCIES Prof. Arjumand S. Warsy Department of Biochemistry College of Science, King Saud University, Riyadh Introduction Genotype is the genetic makeup of an individual

More information

Honors Biology Practice Questions #1. Name. 6. Seastars have a diploid number of 24 chromosomes. The haploid number would be

Honors Biology Practice Questions #1. Name. 6. Seastars have a diploid number of 24 chromosomes. The haploid number would be Honors Biology Practice Questions #1 1. Donkeys have 68 chromosomes in each body cell. If a donkey cell undergoes meiosis, how many chromosomes should be in each gamete? A. 18 B. 34 C. 68 D. 132 2. A sperm

More information

LAB 9: Genetics Take-Home Lab

LAB 9: Genetics Take-Home Lab LAB 9: Genetics Take-Home Lab The science of genetics touches every aspect of our lives. Agriculture, industry, medicine, criminology, conservation, materials science and many other fields employ the concepts

More information

MCAS Biology. Review Packet

MCAS Biology. Review Packet MCAS Biology Review Packet 1 Name Class Date 1. Define organic. THE CHEMISTRY OF LIFE 2. All living things are made up of 6 essential elements: SPONCH. Name the six elements of life. S N P C O H 3. Elements

More information

Biological Sciences Initiative

Biological Sciences Initiative Biological Sciences Initiative HHMI This activity is an adaptation of an exercise originally published by L. A. Welch. 1993. A model of microevolution in action. The American Biology Teacher. 55(6), 362-365.

More information

Workshop on Microevolution

Workshop on Microevolution Workshop on Microevolution by Dana Krempels I. Discuss the meaning of: a. species f. heritable traits (consider "nature vs. nurture") b. population g. lethal alleles c. gene pool h. adaptive, maladaptive,

More information

BIO 184 Page 1 Spring 2013 NAME VERSION 1 EXAM 3: KEY. Instructions: PRINT your Name and Exam version Number on your Scantron

BIO 184 Page 1 Spring 2013 NAME VERSION 1 EXAM 3: KEY. Instructions: PRINT your Name and Exam version Number on your Scantron BIO 184 Page 1 Spring 2013 EXAM 3: KEY Instructions: PRINT your Name and Exam version Number on your Scantron Example: PAULA SMITH, EXAM 2 VERSION 1 Write your name CLEARLY at the top of every page of

More information

If you crossed a homozygous, black guinea pig with a white guinea pig, what would be the phenotype(s)

If you crossed a homozygous, black guinea pig with a white guinea pig, what would be the phenotype(s) Biological Principles Name: In guinea pigs, black hair (B) is dominant to white hair (b). Homozygous black guinea pig White guinea pig Heterozygous black guinea pig Genotype Phenotype Why is there no heterozygous

More information

2. The Law of Independent Assortment Members of one pair of genes (alleles) segregate independently of members of other pairs.

2. The Law of Independent Assortment Members of one pair of genes (alleles) segregate independently of members of other pairs. 1. The Law of Segregation: Genes exist in pairs and alleles segregate from each other during gamete formation, into equal numbers of gametes. Progeny obtain one determinant from each parent. 2. The Law

More information

Basics of Marker Assisted Selection

Basics of Marker Assisted Selection asics of Marker ssisted Selection Chapter 15 asics of Marker ssisted Selection Julius van der Werf, Department of nimal Science rian Kinghorn, Twynam Chair of nimal reeding Technologies University of New

More information

Exam 1. CSS/Hort 430. 2008 All questions worth 2 points

Exam 1. CSS/Hort 430. 2008 All questions worth 2 points Exam 1. CSS/Hort 430. 2008 All questions worth 2 points 1. A general definition of plants is they are eukaryotic, multi-cellular organisms and are usually photosynthetic. In this definition, eukaryotic

More information

Genetics test questions

Genetics test questions Class: Date: Genetics test questions Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. 1. Pea plants were particularly well suited for use in

More information

INTRODUCTION TO DROSOPHILA GENETICS

INTRODUCTION TO DROSOPHILA GENETICS INTRODUCTION TO DROSOPHILA GENETICS DROSOPHILA CULTURE We will study basic principles of Mendelian inheritance with the use of the fruit fly, Drosophila melanogaster [the name means black-bodied fruit-lover

More information

Mendelian Genetics in Drosophila

Mendelian Genetics in Drosophila Mendelian Genetics in Drosophila Lab objectives: 1) To familiarize you with an important research model organism,! Drosophila melanogaster. 2) Introduce you to normal "wild type" and various mutant phenotypes.

More information

DNA Determines Your Appearance!

DNA Determines Your Appearance! DNA Determines Your Appearance! Summary DNA contains all the information needed to build your body. Did you know that your DNA determines things such as your eye color, hair color, height, and even the

More information

Eukaryotic Cells and the Cell Cycle

Eukaryotic Cells and the Cell Cycle Eukaryotic Cells and the Cell Cycle Mitosis, Meiosis, & Fertilization Learning Goals: After completing this laboratory exercise you will be able to: 1. Identify the stages of the cell cycle. 2. Follow

More information

Chromosomes, Mapping, and the Meiosis Inheritance Connection

Chromosomes, Mapping, and the Meiosis Inheritance Connection Chromosomes, Mapping, and the Meiosis Inheritance Connection Carl Correns 1900 Chapter 13 First suggests central role for chromosomes Rediscovery of Mendel s work Walter Sutton 1902 Chromosomal theory

More information

BioBoot Camp Genetics

BioBoot Camp Genetics BioBoot Camp Genetics BIO.B.1.2.1 Describe how the process of DNA replication results in the transmission and/or conservation of genetic information DNA Replication is the process of DNA being copied before

More information

Laboratory Procedure Manual. Rh Phenotyping

Laboratory Procedure Manual. Rh Phenotyping Exercise 4 Textbook: Quinley, Chapter 8 Skills: 20 Points Objectives:. State the antigens of the Rh blood group system. 2. Define the terms dominant, codominant, heterozygous, and homozygous as they relate

More information

Bio EOC Topics for Cell Reproduction: Bio EOC Questions for Cell Reproduction:

Bio EOC Topics for Cell Reproduction: Bio EOC Questions for Cell Reproduction: Bio EOC Topics for Cell Reproduction: Asexual vs. sexual reproduction Mitosis steps, diagrams, purpose o Interphase, Prophase, Metaphase, Anaphase, Telophase, Cytokinesis Meiosis steps, diagrams, purpose

More information

Phenotypes and Genotypes of Single Crosses

Phenotypes and Genotypes of Single Crosses GENETICS PROBLEM PACKET- Gifted NAME PER Phenotypes and Genotypes of Single Crosses Use these characteristics about plants to answer the following questions. Round seed is dominant over wrinkled seed Yellow

More information

Deterministic computer simulations were performed to evaluate the effect of maternallytransmitted

Deterministic computer simulations were performed to evaluate the effect of maternallytransmitted Supporting Information 3. Host-parasite simulations Deterministic computer simulations were performed to evaluate the effect of maternallytransmitted parasites on the evolution of sex. Briefly, the simulations

More information