8086 Microprocessor. A Seminar report on SUBMITTEDTO: SUBMITTED BY:

Size: px
Start display at page:

Download "8086 Microprocessor. A Seminar report on SUBMITTEDTO: SUBMITTED BY:"

Transcription

1 A Seminar report on 8086 Microprocessor Submitted in partial fulfillment of the requirement for the award of degree Of Electronics SUBMITTEDTO: SUBMITTED BY:

2 Preface I have made this report file on the topic 8086 Microprocessor, I have tried my best to elucidate all the relevant detail to the topic to be included in the report. While in the beginning I have tried to give a general view about this topic. My efforts and wholehearted co-corporation of each and everyone has ended on a successful note. I express my sincere gratitude to..who assisting me throughout the preparation of this topic. I thank him for providing me the reinforcement, confidence and most importantly the track for the topic whenever I needed it. INTRODUCTION 8086 is an enhanced version of 8085 that has been developed by Intel in It is a 16 bit Microprocessor. It has a powerful instruction set and it is capable to providing multiplication and division operations directly. It has 20 address lines and 16 data lines. So it can access up to 1 MB of memory. It supports two modes of operation: first is maximum mode and second is minimum mode. Minimum mode is applicable for system that has a single processor and maximum mode is used for the multiprocessor system.

3 8086 provides an additional features that it has an instruction queue capable to store six instruction bytes from the memory. The next instruction is fetched while the present instruction is being executed. So it makes the processor fast. History Microprocessor journey started with a 4-bit processor called 4004; it was made by Intel Corporation in It was 1st single chip processor. Then the idea was extended to 8- bit processors like 8008, 8080 and then 8085 (all are Intel products) was a very successful one among the 8-bit processors; however its application is very limited bcoz of its slower computing speed and other quality factors. Some years later Intel came up with its 1st 16-bit processors at the same time other manufacturers were also making processors like (by Motorola), Zilog z-80, General instrument PIC16X, MOS Technology 6502, etc...in 1979 Intel released a modified version of 8086 as Next Intel started updating 80x86 series by introducing 80286, 80386, 80486, Pentium and then Pentium series. After 80486, the next processor in series was to be said 80586, but Intel named it as Pentium bcoz of its copyright problem. Further updating in Pentium resulted in Pentium-I, Pentium-II, etc.

4 Features of is a 40 pin IC. It is a 16-bit processor. Its operating voltage is 5 volts. Its operating frequency is 5 MHz Total memory addressing capacity is 1MB (external). It has 16-bit data bus and 20-bit address bus. It has fourteen 16-bit registers. Higher throughput (speed). It has around transistors in its circuitry and it is made in HMOS technology.

5 Block Diagram of Intel 8086 The 8086 CPU is divided into two independent functional units: 1. Bus Interface Unit (BIU) 2. Execution Unit (EU)

6 Features of 8086 Microprocessor 1. Intel 8086 was launched in It was the first 16-bit microprocessor. 3. This microprocessor had major improvement over the execution speed of It is available as 40-pin Dual-Inline-Package (DIP). 5. It is available in three versions: a (5 MHz) b (8 MHz) c (10 MHz) 6. It consists of 29,000 transistors. Bus Interface Unit (BIU) The function of BIU is to: Fetch the instruction or data from memory Write the data to memory Write the data to the port Read data from the port Instruction Queue 1. To increase the execution speed, BIU fetches as many as six instruction bytes ahead to time From memory 2. All six bytes are then held in first in first out 6 byte register called instruction queue. 3. Then all bytes have to be given to EU one by one. 4. This pre fetching operation of BIU may be in parallel with execution operation of EU, which Improves the speed execution of the instruction Execution Unit (EU)

7 The functions of execution unit are: To tell BIU where to fetch the instructions or data from. To decode the instructions. To execute the instructions. The EU contains the control circuitry to perform various internal operations. A decoder in EU Decodes the instruction fetched memory to generate different internal or external control signals Required to perform the operation.eu has 16-bit ALU, which can perform arithmetic and logical Operations on 8-bit as well as 16-bit. ADDRESSING MODES OF 8086 (i) (ii) Addressing mode indicates a way of locating data or operands. Depending upon the data types used in the instruction and the memory addressing modes, any instruction may belong to one or more addressing modes or some instruction may not belong to any of the addressing modes. Thus the addressing modes describe the types of operands and the way they are accessed for executing an instruction. Here, we will present the addressing modes of the instructions depending upon their types. According to the flow of instruction execution, the instructions may be categorized as Sequential control flow instructions Control transfer instructions. Sequential control flow instructions are the instructions, which after execution, transfer control to the next instruction appearing immediately after it (in the sequence) in the program. For example, the arithmetic, logical, data transfer and processor control instructions are sequential control flow instructions. The control transfer instructions, on the other hand, transfer control to some predefined address somehow specified in the instruction after their execution. For example, INT, CALL, RET and JUMP instructions fall under this category. The addressing modes for sequential control transfer instructions are explained as follows: Immediate: In this type of addressing, immediate data is a part of instruction, and appears in the form of successive byte or bytes. Example: MOV AX, 0005H In the above example, 0005H is the immediate data. The immediate data may be 8-bit or 16-bit in size. Direct: In the direct addressing mode, a 16-bit memory address (offset) is directly specified in the instruction as a part of it. Example: MOV AX, [5000H] Here, data resides in a memory location in the data segment, whose effective address may be computed using 5000H as the offset address and content of DS as segment address. The effective address, here, is 10H*DS+5000H.

8 Register: In register addressing mode, the data is stored in a register and it is referred using the particular register. All the registers, except IP, may be used in this mode. Example: MOV BX, AX. Register Indirect: Sometimes, the address of the memory location, which contains data or operand, is determined in an indirect way, using the offset registers. This mode of addressing is known as register indirect mode. In this addressing mode, the offset address of data is in either BX or SI or DI registers. The default segment is either DS or ES. The data is supposed to be available at the address pointed to by the content of any of the above registers in the default data segment. Example: MOV AX, [BX] Here, data is present in a memory location in DS whose offset address is in BX. The effective address of the data is given as 10H*DS+ [BX]. Indexed: In this addressing mode, offset of the operand is stored in one of the index registers. DS and ES are the default segments for index registers SI and DI respectively. This mode is a special case of the above discussed register indirect addressing mode. Example: MOV AX, [SI] Here, data is available at an offset address stored in SI in DS. The effective address, in this case, is computed as 10H*DS+ [SI]. Register Relative: In this addressing mode, the data is available at an effective address formed by adding an 8-bit or 16-bit displacement with the content of any one of the registers BX, BP, SI and DI in the default (either DS or ES) segment. The example given before explains this mode. Example: MOV Ax, 50H [BX] Here, effective address is given as 10H*DS+50H+ [BX]. Based Indexed: The effective address of data is formed, in this addressing mode, by adding content of a base register (any one of BX or BP) to the content of an index register (any one of SI or DI). The default segment register may be ES or DS. Example: MOV AX, [BX] [SI] Here, BX is the base register and SI is the index register. The effective address is computed as 10H*DS+ [BX] + [SI]. Relative Based Indexed: The effective address is formed by adding an 8-bit or 16-bit displacement with the sum of contents of any one of the bases registers (BX or BP) and any one of the index registers, in a default segment. Example: MOV AX, 50H [BX] [SI] Here, 50H is an immediate displacement, BX is a base register and SI is an index register. The effective address of data is computed as 160H*DS+ [BX] + [SI] + 50H.

9 For the control transfer instructions, the addressing modes depend upon whether the destination location is within the same segment or a different one. It also depends upon the method of passing the destination address to the processor. Basically, there are two addressing modes for the control transfer instructions, viz. inter-segment and intra-segment addressing modes. If the location to which the control is to be transferred lies in a different segment other than the current one, the mode is called inter-segment mode. If the destination location lies in the same segment, the mode is called intra-segment. Addressing Modes for Control Transfer Instruction Intra-segment direct mode: In this mode, the address to which the control is to be transferred lies in the same segment in which the control transfers instruction lies and appears directly in the instruction as an immediate displacement value. In this addressing mode, the displacement is computed relative to the content of the instruction pointer IP. The effective address to which the control will be transferred is given by the sum of 8 or 16 bit displacement and current content of IP. In case of jump instruction, if the signed displacement (d) is of 8 bits (i.e. 128<d<+128), we term it as short jump and if it is of 16 bits (i.e <+32768), it is termed as long jump. Intra-segment Indirect Mode: In this mode, the displacement to which the control is to be transferred is in the same segment in which the control transfer instruction lies, but it is passed to the instruction indirectly. Here, the branch address is found as the content of a register or a memory location. This addressing mode may be used in unconditional branch instructions.t Inter-segment Direct Mode: In this mode, the address to which the control is to be transferred is in a different segment. This addressing mode provides a means of branching from one code segment to another code segment. Here, the CS and IP of the destination address are specified directly in the instruction. Inter-segment Indirect Mode: In this mode, the address to which the control is to be transferred lies in a different segment and it is passed to the instruction indirectly, i.e. contents of a memory block containing four bytes, i.e. IP (LSB), IP (MSB), CS (LSB) and CS (MSB) sequentially. The starting address of the memory block may be referred using any of the addressing modes, except immediate mode.

10 Types of Microprocessors Complex Instruction Set Microprocessors: This type of microprocessor is also known as CISM. CISM classify a micro-processor in which each & every order can be executed together with several other low-level functions. These Functions are intended to carry out actions such as- uploading data into memory card, re-calling or downloading data from memory card or a complex mathematics computation in a single command. Reduced Instruction Set Microprocessors: Also known as RISC, this was intended to pace up computer microprocessors. These chips are built up under the guideline that permits the microprocessor to do a smaller amount of things within each command and this will permit it to complete more commands more rapidly. Superscalar processors:

11 This types of processor replica the hardware on the micro-processor so that it can perform numerous instructions at the same time. These replica resources can be committed arithmetic logic units or multipliers. Superscalars comprise of several operational units. Superscalar micro-processors carry out more than one command throughout a single clock cycle by concurrently transmitting numerous instructions to superfluous operational units in the processor. The Application Specific Integrated Circuit: Also known as ASIC microprocessor is intended for extremely precise purposes, which possibly will comprise- automotive emissions control or Personal Digital Assistants computers. ASICs at times is produced to specification, but can also be manufactured by making use of off-the-shelf gears. Digital Signal Multiprocessors (DSPs): DSPs are unique micro-processors employed to decode & encode video, or convert digital or video to analog and vice-versa. These operations need a micro-processor particularly excellent at carrying out mathematical calculations. DSP chips are generally employed in SONAR, mobile telephones, RADAR, home theater audio gears and cable set-top boxes. References

Feature of 8086 Microprocessor

Feature of 8086 Microprocessor 8086 Microprocessor Introduction 8086 is the first 16 bit microprocessor which has 40 pin IC and operate on 5volt power supply. which has twenty address limes and works on two modes minimum mode and maximum.

More information

Advanced Computer Architecture-CS501. Computer Systems Design and Architecture 2.1, 2.2, 3.2

Advanced Computer Architecture-CS501. Computer Systems Design and Architecture 2.1, 2.2, 3.2 Lecture Handout Computer Architecture Lecture No. 2 Reading Material Vincent P. Heuring&Harry F. Jordan Chapter 2,Chapter3 Computer Systems Design and Architecture 2.1, 2.2, 3.2 Summary 1) A taxonomy of

More information

MICROPROCESSOR AND MICROCOMPUTER BASICS

MICROPROCESSOR AND MICROCOMPUTER BASICS Introduction MICROPROCESSOR AND MICROCOMPUTER BASICS At present there are many types and sizes of computers available. These computers are designed and constructed based on digital and Integrated Circuit

More information

Architecture and Programming of x86 Processors

Architecture and Programming of x86 Processors Brno University of Technology Architecture and Programming of x86 Processors Microprocessor Techniques and Embedded Systems Lecture 12 Dr. Tomas Fryza December 2012 Contents A little bit of one-core Intel

More information

(Refer Slide Time: 00:01:16 min)

(Refer Slide Time: 00:01:16 min) Digital Computer Organization Prof. P. K. Biswas Department of Electronic & Electrical Communication Engineering Indian Institute of Technology, Kharagpur Lecture No. # 04 CPU Design: Tirning & Control

More information

Faculty of Engineering Student Number:

Faculty of Engineering Student Number: Philadelphia University Student Name: Faculty of Engineering Student Number: Dept. of Computer Engineering Final Exam, First Semester: 2012/2013 Course Title: Microprocessors Date: 17/01//2013 Course No:

More information

Chapter 2 Logic Gates and Introduction to Computer Architecture

Chapter 2 Logic Gates and Introduction to Computer Architecture Chapter 2 Logic Gates and Introduction to Computer Architecture 2.1 Introduction The basic components of an Integrated Circuit (IC) is logic gates which made of transistors, in digital system there are

More information

MICROPROCESSOR BCA IV Sem MULTIPLE CHOICE QUESTIONS

MICROPROCESSOR BCA IV Sem MULTIPLE CHOICE QUESTIONS MICROPROCESSOR BCA IV Sem MULTIPLE CHOICE QUESTIONS 1) Which is the microprocessor comprises: a. Register section b. One or more ALU c. Control unit 2) What is the store by register? a. data b. operands

More information

MACHINE ARCHITECTURE & LANGUAGE

MACHINE ARCHITECTURE & LANGUAGE in the name of God the compassionate, the merciful notes on MACHINE ARCHITECTURE & LANGUAGE compiled by Jumong Chap. 9 Microprocessor Fundamentals A system designer should consider a microprocessor-based

More information

Hardware: Input, Processing, and Output Devices

Hardware: Input, Processing, and Output Devices Hardware: Input, Processing, and Output Devices Computer Systems Hardware Components Execution of an Instruction Processing Characteristics and Functions Physical Characteristics of CPU Memory Characteristics

More information

UNIT III CONTROL UNIT DESIGN

UNIT III CONTROL UNIT DESIGN UNIT III CONTROL UNIT DESIGN INTRODUCTION CONTROL TRANSFER FETCH CYCLE INSTRUCTION INTERPRETATION AND EXECUTION HARDWIRED CONTROL MICROPROGRAMMED CONTROL Slides Courtesy of Carl Hamacher, Computer Organization,

More information

8086 Microprocessor (cont..)

8086 Microprocessor (cont..) 8086 Microprocessor (cont..) It is a 16 bit µp. 8086 has a 20 bit address bus can access upto 2 20 memory locations ( 1 MB). It can support upto 64K I/O ports. It provides 14, 16-bit registers. It has

More information

Model Answers HW2 - Chapter #3

Model Answers HW2 - Chapter #3 Model Answers HW2 - Chapter #3 1. The hypothetical machine of figure 3.4 also has two I/O instructions: 0011= Load AC fro I/O 0111= Store AC to I/O In these cases the 12-bit address identifies a particular

More information

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING Question Bank Subject Name: EC6504 - Microprocessor & Microcontroller Year/Sem : II/IV

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING Question Bank Subject Name: EC6504 - Microprocessor & Microcontroller Year/Sem : II/IV DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING Question Bank Subject Name: EC6504 - Microprocessor & Microcontroller Year/Sem : II/IV UNIT I THE 8086 MICROPROCESSOR 1. What is the purpose of segment registers

More information

16Bit Microprocessor : 8086

16Bit Microprocessor : 8086 16Bit Microprocessor : 8086 Features of 8086-8086 is a 16bit processor. It s ALU, internal registers works with 16bit binary word - 8086 has a 16bit data bus. It can read or write data to a memory/port

More information

LSN 2 Computer Processors

LSN 2 Computer Processors LSN 2 Computer Processors Department of Engineering Technology LSN 2 Computer Processors Microprocessors Design Instruction set Processor organization Processor performance Bandwidth Clock speed LSN 2

More information

#5. Show and the AND function can be constructed from two NAND gates.

#5. Show and the AND function can be constructed from two NAND gates. Study Questions for Digital Logic, Processors and Caches G22.0201 Fall 2009 ANSWERS Digital Logic Read: Sections 3.1 3.3 in the textbook. Handwritten digital lecture notes on the course web page. Study

More information

Overview. CISC Developments. RISC Designs. CISC Designs. VAX: Addressing Modes. Digital VAX

Overview. CISC Developments. RISC Designs. CISC Designs. VAX: Addressing Modes. Digital VAX Overview CISC Developments Over Twenty Years Classic CISC design: Digital VAX VAXÕs RISC successor: PRISM/Alpha IntelÕs ubiquitous 80x86 architecture Ð 8086 through the Pentium Pro (P6) RJS 2/3/97 Philosophy

More information

Central Processing Unit (CPU)

Central Processing Unit (CPU) Central Processing Unit (CPU) CPU is the heart and brain It interprets and executes machine level instructions Controls data transfer from/to Main Memory (MM) and CPU Detects any errors In the following

More information

150127-Microprocessor & Assembly Language

150127-Microprocessor & Assembly Language Chapter 3 Z80 Microprocessor Architecture The Z 80 is one of the most talented 8 bit microprocessors, and many microprocessor-based systems are designed around the Z80. The Z80 microprocessor needs an

More information

İSTANBUL AYDIN UNIVERSITY

İSTANBUL AYDIN UNIVERSITY İSTANBUL AYDIN UNIVERSITY FACULTY OF ENGİNEERİNG SOFTWARE ENGINEERING THE PROJECT OF THE INSTRUCTION SET COMPUTER ORGANIZATION GÖZDE ARAS B1205.090015 Instructor: Prof. Dr. HASAN HÜSEYİN BALIK DECEMBER

More information

PIC MICROCONTROLLERS FOR DIGITAL FILTER IMPLEMENTATION

PIC MICROCONTROLLERS FOR DIGITAL FILTER IMPLEMENTATION PIC MICROCONTROLLERS FOR DIGITAL FILTER IMPLEMENTATION There are many devices using which we can implement the digital filter hardware. Gone are the days where we still use discrete components to implement

More information

Intel 8086 architecture

Intel 8086 architecture Intel 8086 architecture Today we ll take a look at Intel s 8086, which is one of the oldest and yet most prevalent processor architectures around. We ll make many comparisons between the MIPS and 8086

More information

MICROPROCESSOR. Exclusive for IACE Students www.iace.co.in iacehyd.blogspot.in Ph: 9700077455/422 Page 1

MICROPROCESSOR. Exclusive for IACE Students www.iace.co.in iacehyd.blogspot.in Ph: 9700077455/422 Page 1 MICROPROCESSOR A microprocessor incorporates the functions of a computer s central processing unit (CPU) on a single Integrated (IC), or at most a few integrated circuit. It is a multipurpose, programmable

More information

Chapter 2 Basic Structure of Computers. Jin-Fu Li Department of Electrical Engineering National Central University Jungli, Taiwan

Chapter 2 Basic Structure of Computers. Jin-Fu Li Department of Electrical Engineering National Central University Jungli, Taiwan Chapter 2 Basic Structure of Computers Jin-Fu Li Department of Electrical Engineering National Central University Jungli, Taiwan Outline Functional Units Basic Operational Concepts Bus Structures Software

More information

Chapter 6. Inside the System Unit. What You Will Learn... Computers Are Your Future. What You Will Learn... Describing Hardware Performance

Chapter 6. Inside the System Unit. What You Will Learn... Computers Are Your Future. What You Will Learn... Describing Hardware Performance What You Will Learn... Computers Are Your Future Chapter 6 Understand how computers represent data Understand the measurements used to describe data transfer rates and data storage capacity List the components

More information

5.4 Microcontrollers I: Introduction

5.4 Microcontrollers I: Introduction 5.4 Microcontrollers I: Introduction Dr. Tarek A. Tutunji Mechatronics Engineering Department Philadelphia University, Jordan Microcontrollers: Introduction Microprocessors were described in the last three

More information

Lecture 7: Machine-Level Programming I: Basics Mohamed Zahran (aka Z) mzahran@cs.nyu.edu http://www.mzahran.com

Lecture 7: Machine-Level Programming I: Basics Mohamed Zahran (aka Z) mzahran@cs.nyu.edu http://www.mzahran.com CSCI-UA.0201-003 Computer Systems Organization Lecture 7: Machine-Level Programming I: Basics Mohamed Zahran (aka Z) mzahran@cs.nyu.edu http://www.mzahran.com Some slides adapted (and slightly modified)

More information

Computer Organization and Architecture

Computer Organization and Architecture Computer Organization and Architecture Chapter 11 Instruction Sets: Addressing Modes and Formats Instruction Set Design One goal of instruction set design is to minimize instruction length Another goal

More information

Pentium vs. Power PC Computer Architecture and PCI Bus Interface

Pentium vs. Power PC Computer Architecture and PCI Bus Interface Pentium vs. Power PC Computer Architecture and PCI Bus Interface CSE 3322 1 Pentium vs. Power PC Computer Architecture and PCI Bus Interface Nowadays, there are two major types of microprocessors in the

More information

AUTOMATIC NIGHT LAMP WITH MORNING ALARM USING MICROPROCESSOR

AUTOMATIC NIGHT LAMP WITH MORNING ALARM USING MICROPROCESSOR AUTOMATIC NIGHT LAMP WITH MORNING ALARM USING MICROPROCESSOR INTRODUCTION This Project "Automatic Night Lamp with Morning Alarm" was developed using Microprocessor. It is the Heart of the system. The sensors

More information

CHAPTER 7: The CPU and Memory

CHAPTER 7: The CPU and Memory CHAPTER 7: The CPU and Memory The Architecture of Computer Hardware, Systems Software & Networking: An Information Technology Approach 4th Edition, Irv Englander John Wiley and Sons 2010 PowerPoint slides

More information

Intel microprocessor history. Intel x86 Architecture. Early Intel microprocessors. The IBM-AT

Intel microprocessor history. Intel x86 Architecture. Early Intel microprocessors. The IBM-AT Intel x86 Architecture Intel microprocessor history Computer Organization and Assembly Languages g Yung-Yu Chuang with slides by Kip Irvine Early Intel microprocessors Intel 8080 (1972) 64K addressable

More information

PART B QUESTIONS AND ANSWERS UNIT I

PART B QUESTIONS AND ANSWERS UNIT I PART B QUESTIONS AND ANSWERS UNIT I 1. Explain the architecture of 8085 microprocessor? Logic pin out of 8085 microprocessor Address bus: unidirectional bus, used as high order bus Data bus: bi-directional

More information

Instruction Set Architecture. or How to talk to computers if you aren t in Star Trek

Instruction Set Architecture. or How to talk to computers if you aren t in Star Trek Instruction Set Architecture or How to talk to computers if you aren t in Star Trek The Instruction Set Architecture Application Compiler Instr. Set Proc. Operating System I/O system Instruction Set Architecture

More information

Computer Organization. and Instruction Execution. August 22

Computer Organization. and Instruction Execution. August 22 Computer Organization and Instruction Execution August 22 CSC201 Section 002 Fall, 2000 The Main Parts of a Computer CSC201 Section Copyright 2000, Douglas Reeves 2 I/O and Storage Devices (lots of devices,

More information

Logical Operations. Control Unit. Contents. Arithmetic Operations. Objectives. The Central Processing Unit: Arithmetic / Logic Unit.

Logical Operations. Control Unit. Contents. Arithmetic Operations. Objectives. The Central Processing Unit: Arithmetic / Logic Unit. Objectives The Central Processing Unit: What Goes on Inside the Computer Chapter 4 Identify the components of the central processing unit and how they work together and interact with memory Describe how

More information

Design and Implementation of 64-Bit RISC Processor for Industry Automation

Design and Implementation of 64-Bit RISC Processor for Industry Automation , pp.427-434 http://dx.doi.org/10.14257/ijunesst.2015.8.1.37 Design and Implementation of 64-Bit RISC Processor for Industry Automation P. Devi Pradeep 1 and D.Srinivasa Rao 2 1,2 Assistant Professor,

More information

Chapter 1 Computer System Overview

Chapter 1 Computer System Overview Operating Systems: Internals and Design Principles Chapter 1 Computer System Overview Eighth Edition By William Stallings Operating System Exploits the hardware resources of one or more processors Provides

More information

Computer Organization and Architecture

Computer Organization and Architecture Computer Organization and Architecture Chapter 14 Instruction Level Parallelism and Superscalar Processors What does Superscalar mean? Common instructions (arithmetic, load/store, conditional branch) can

More information

CPU Organization and Assembly Language

CPU Organization and Assembly Language COS 140 Foundations of Computer Science School of Computing and Information Science University of Maine October 2, 2015 Outline 1 2 3 4 5 6 7 8 Homework and announcements Reading: Chapter 12 Homework:

More information

Purpose and function of the CPU

Purpose and function of the CPU Purpose and function of the CPU Teacher s Notes Lesson Plan Length 60 mins Specification Link 212/a_b Learning objective Candidates should be able to: (a) state the purpose of the CPU (b) describe the

More information

NTE2053 Integrated Circuit 8 Bit MPU Compatible A/D Converter

NTE2053 Integrated Circuit 8 Bit MPU Compatible A/D Converter NTE2053 Integrated Circuit 8 Bit MPU Compatible A/D Converter Description: The NTE2053 is a CMOS 8 bit successive approximation Analog to Digital converter in a 20 Lead DIP type package which uses a differential

More information

ASSEMBLY PROGRAMMING ON A VIRTUAL COMPUTER

ASSEMBLY PROGRAMMING ON A VIRTUAL COMPUTER ASSEMBLY PROGRAMMING ON A VIRTUAL COMPUTER Pierre A. von Kaenel Mathematics and Computer Science Department Skidmore College Saratoga Springs, NY 12866 (518) 580-5292 pvonk@skidmore.edu ABSTRACT This paper

More information

Introduction to Microprocessors

Introduction to Microprocessors Introduction to Microprocessors Yuri Baida yuri.baida@gmail.com yuriy.v.baida@intel.com October 2, 2010 Moscow Institute of Physics and Technology Agenda Background and History What is a microprocessor?

More information

Central Processing Unit

Central Processing Unit Chapter 4 Central Processing Unit 1. CPU organization and operation flowchart 1.1. General concepts The primary function of the Central Processing Unit is to execute sequences of instructions representing

More information

Outline. Lecture 3. Basics. Logical vs. physical memory. 8086 physical memory. x86 byte ordering

Outline. Lecture 3. Basics. Logical vs. physical memory. 8086 physical memory. x86 byte ordering Outline Lecture 3 bout Memory ddressing memory Data types MOV instruction ddressing modes Instruction format Dr. Dimitrios S. Nikolopoulos SL/UIU Basics Logical vs. physical memory Memory in the x processors

More information

More on Pipelining and Pipelines in Real Machines CS 333 Fall 2006 Main Ideas Data Hazards RAW WAR WAW More pipeline stall reduction techniques Branch prediction» static» dynamic bimodal branch prediction

More information

CS 16: Assembly Language Programming for the IBM PC and Compatibles

CS 16: Assembly Language Programming for the IBM PC and Compatibles CS 16: Assembly Language Programming for the IBM PC and Compatibles First, a little about you Your name Have you ever worked with/used/played with assembly language? If so, talk about it Why are you taking

More information

ADVANCED PROCESSOR ARCHITECTURES AND MEMORY ORGANISATION Lesson-12: ARM

ADVANCED PROCESSOR ARCHITECTURES AND MEMORY ORGANISATION Lesson-12: ARM ADVANCED PROCESSOR ARCHITECTURES AND MEMORY ORGANISATION Lesson-12: ARM 1 The ARM architecture processors popular in Mobile phone systems 2 ARM Features ARM has 32-bit architecture but supports 16 bit

More information

CISC, RISC, and DSP Microprocessors

CISC, RISC, and DSP Microprocessors CISC, RISC, and DSP Microprocessors Douglas L. Jones ECE 497 Spring 2000 4/6/00 CISC, RISC, and DSP D.L. Jones 1 Outline Microprocessors circa 1984 RISC vs. CISC Microprocessors circa 1999 Perspective:

More information

C8051F020 Utilization in an Embedded Digital Design Project Course. Daren R. Wilcox Southern Polytechnic State University Marietta, Georgia

C8051F020 Utilization in an Embedded Digital Design Project Course. Daren R. Wilcox Southern Polytechnic State University Marietta, Georgia C8051F020 Utilization in an Embedded Digital Design Project Course Daren R. Wilcox Southern Polytechnic State University Marietta, Georgia Abstract In this paper, the utilization of the C8051F020 in an

More information

MICROCONTROLLER BASED TEMPERATURE INDICATOR SUBMITTED BY:

MICROCONTROLLER BASED TEMPERATURE INDICATOR SUBMITTED BY: MICROCONTROLLER BASED TEMPERATURE INDICATOR SUBMITTED BY: 1 INTRODUCTION The aim of this project is to design an ambient temperature measurement circuit. The motivation for doing this project is the fact

More information

Learning Outcomes. Simple CPU Operation and Buses. Composition of a CPU. A simple CPU design

Learning Outcomes. Simple CPU Operation and Buses. Composition of a CPU. A simple CPU design Learning Outcomes Simple CPU Operation and Buses Dr Eddie Edwards eddie.edwards@imperial.ac.uk At the end of this lecture you will Understand how a CPU might be put together Be able to name the basic components

More information

Unit A451: Computer systems and programming. Section 2: Computing Hardware 1/5: Central Processing Unit

Unit A451: Computer systems and programming. Section 2: Computing Hardware 1/5: Central Processing Unit Unit A451: Computer systems and programming Section 2: Computing Hardware 1/5: Central Processing Unit Section Objectives Candidates should be able to: (a) State the purpose of the CPU (b) Understand the

More information

The x86 PC: Assembly Language, Design, and Interfacing 5 th Edition

The x86 PC: Assembly Language, Design, and Interfacing 5 th Edition Online Instructor s Manual to accompany The x86 PC: Assembly Language, Design, and Interfacing 5 th Edition Muhammad Ali Mazidi Janice Gillispie Mazidi Danny Causey Prentice Hall Boston Columbus Indianapolis

More information

Transparent D Flip-Flop

Transparent D Flip-Flop Transparent Flip-Flop The RS flip-flop forms the basis of a number of 1-bit storage devices in digital electronics. ne such device is shown in the figure, where extra combinational logic converts the input

More information

VREFout CFG B TMS TCK TDI TDO CS ENSPI

VREFout CFG B TMS TCK TDI TDO CS ENSPI Using SPI to Control isppac80 and isppac81 October 2002 Application Note AN6037 Introduction This application note describes how to use the Serial Peripheral Interface (SPI) to adjust the gain, select

More information

Interfacing Analog to Digital Data Converters

Interfacing Analog to Digital Data Converters Converters In most of the cases, the PIO 8255 is used for interfacing the analog to digital converters with microprocessor. We have already studied 8255 interfacing with 8086 as an I/O port, in previous

More information

COMPUTER HARDWARE. Input- Output and Communication Memory Systems

COMPUTER HARDWARE. Input- Output and Communication Memory Systems COMPUTER HARDWARE Input- Output and Communication Memory Systems Computer I/O I/O devices commonly found in Computer systems Keyboards Displays Printers Magnetic Drives Compact disk read only memory (CD-ROM)

More information

a storage location directly on the CPU, used for temporary storage of small amounts of data during processing.

a storage location directly on the CPU, used for temporary storage of small amounts of data during processing. CS143 Handout 18 Summer 2008 30 July, 2008 Processor Architectures Handout written by Maggie Johnson and revised by Julie Zelenski. Architecture Vocabulary Let s review a few relevant hardware definitions:

More information

Open Architecture Design for GPS Applications Yves Théroux, BAE Systems Canada

Open Architecture Design for GPS Applications Yves Théroux, BAE Systems Canada Open Architecture Design for GPS Applications Yves Théroux, BAE Systems Canada BIOGRAPHY Yves Théroux, a Project Engineer with BAE Systems Canada (BSC) has eight years of experience in the design, qualification,

More information

8086 Processor 1.1 Introduction

8086 Processor 1.1 Introduction 1 8086 Processor 1.1 Introduction Intel marketed the first microprocessor, named the 4004. This device caused a revolution in the electronics industry because previous electronic systems had a fixed functionality.

More information

The Von Neumann Model. University of Texas at Austin CS310H - Computer Organization Spring 2010 Don Fussell

The Von Neumann Model. University of Texas at Austin CS310H - Computer Organization Spring 2010 Don Fussell The Von Neumann Model University of Texas at Austin CS310H - Computer Organization Spring 2010 Don Fussell The Stored Program Computer 1943: ENIAC Presper Eckert and John Mauchly -- first general electronic

More information

CS101 Lecture 26: Low Level Programming. John Magee 30 July 2013 Some material copyright Jones and Bartlett. Overview/Questions

CS101 Lecture 26: Low Level Programming. John Magee 30 July 2013 Some material copyright Jones and Bartlett. Overview/Questions CS101 Lecture 26: Low Level Programming John Magee 30 July 2013 Some material copyright Jones and Bartlett 1 Overview/Questions What did we do last time? How can we control the computer s circuits? How

More information

CSE 30321 Computer Architecture I Fall 2009 Final Exam December 18, 2009

CSE 30321 Computer Architecture I Fall 2009 Final Exam December 18, 2009 CSE 30321 Computer Architecture I Fall 2009 Final Exam December 18, 2009 Test Guidelines: 1. Place your name on EACH page of the test in the space provided. 2. every question in the space provided. If

More information

Technical Product Specifications Dell Dimension 2400 Created by: Scott Puckett

Technical Product Specifications Dell Dimension 2400 Created by: Scott Puckett Technical Product Specifications Dell Dimension 2400 Created by: Scott Puckett Page 1 of 11 Table of Contents Technical Product Specifications Model 3 PC Technical Diagrams Front Exterior Specifications

More information

ARM Cortex A9. Alyssa Colyette Xiao Ling Zhuang

ARM Cortex A9. Alyssa Colyette Xiao Ling Zhuang ARM Cortex A9 Alyssa Colyette Xiao Ling Zhuang Outline Introduction ARMv7-A ISA Cortex-A9 Microarchitecture o Single and Multicore Processor Advanced Multicore Technologies Integrating System on Chips

More information

what operations can it perform? how does it perform them? on what kind of data? where are instructions and data stored?

what operations can it perform? how does it perform them? on what kind of data? where are instructions and data stored? Inside the CPU how does the CPU work? what operations can it perform? how does it perform them? on what kind of data? where are instructions and data stored? some short, boring programs to illustrate the

More information

An Overview of Stack Architecture and the PSC 1000 Microprocessor

An Overview of Stack Architecture and the PSC 1000 Microprocessor An Overview of Stack Architecture and the PSC 1000 Microprocessor Introduction A stack is an important data handling structure used in computing. Specifically, a stack is a dynamic set of elements in which

More information

MP3 Player CSEE 4840 SPRING 2010 PROJECT DESIGN. zl2211@columbia.edu. ml3088@columbia.edu

MP3 Player CSEE 4840 SPRING 2010 PROJECT DESIGN. zl2211@columbia.edu. ml3088@columbia.edu MP3 Player CSEE 4840 SPRING 2010 PROJECT DESIGN Zheng Lai Zhao Liu Meng Li Quan Yuan zl2215@columbia.edu zl2211@columbia.edu ml3088@columbia.edu qy2123@columbia.edu I. Overview Architecture The purpose

More information

A+ Guide to Managing and Maintaining Your PC, 7e. Chapter 1 Introducing Hardware

A+ Guide to Managing and Maintaining Your PC, 7e. Chapter 1 Introducing Hardware A+ Guide to Managing and Maintaining Your PC, 7e Chapter 1 Introducing Hardware Objectives Learn that a computer requires both hardware and software to work Learn about the many different hardware components

More information

BCD (ASCII) Arithmetic. Where and Why is BCD used? Packed BCD, ASCII, Unpacked BCD. BCD Adjustment Instructions AAA. Example

BCD (ASCII) Arithmetic. Where and Why is BCD used? Packed BCD, ASCII, Unpacked BCD. BCD Adjustment Instructions AAA. Example BCD (ASCII) Arithmetic We will first look at unpacked BCD which means strings that look like '4567'. Bytes then look like 34h 35h 36h 37h OR: 04h 05h 06h 07h x86 processors also have instructions for packed

More information

CS:APP Chapter 4 Computer Architecture. Wrap-Up. William J. Taffe Plymouth State University. using the slides of

CS:APP Chapter 4 Computer Architecture. Wrap-Up. William J. Taffe Plymouth State University. using the slides of CS:APP Chapter 4 Computer Architecture Wrap-Up William J. Taffe Plymouth State University using the slides of Randal E. Bryant Carnegie Mellon University Overview Wrap-Up of PIPE Design Performance analysis

More information

Dept. of Computers Science and Engineering, MMU

Dept. of Computers Science and Engineering, MMU Dept. of Computers Science and Engineering, MMU Microprocessor & its Applications Prepared by- Nancy Bindal Dept. of CSE, mmu,mullana Module Contents The curriculum consists of 5 modules with 8085 as the

More information

A s we saw in Chapter 4, a CPU contains three main sections: the register section,

A s we saw in Chapter 4, a CPU contains three main sections: the register section, 6 CPU Design A s we saw in Chapter 4, a CPU contains three main sections: the register section, the arithmetic/logic unit (ALU), and the control unit. These sections work together to perform the sequences

More information

8-Bit Flash Microcontroller for Smart Cards. AT89SCXXXXA Summary. Features. Description. Complete datasheet available under NDA

8-Bit Flash Microcontroller for Smart Cards. AT89SCXXXXA Summary. Features. Description. Complete datasheet available under NDA Features Compatible with MCS-51 products On-chip Flash Program Memory Endurance: 1,000 Write/Erase Cycles On-chip EEPROM Data Memory Endurance: 100,000 Write/Erase Cycles 512 x 8-bit RAM ISO 7816 I/O Port

More information

Let s put together a Manual Processor

Let s put together a Manual Processor Lecture 14 Let s put together a Manual Processor Hardware Lecture 14 Slide 1 The processor Inside every computer there is at least one processor which can take an instruction, some operands and produce

More information

Computer Performance. Topic 3. Contents. Prerequisite knowledge Before studying this topic you should be able to:

Computer Performance. Topic 3. Contents. Prerequisite knowledge Before studying this topic you should be able to: 55 Topic 3 Computer Performance Contents 3.1 Introduction...................................... 56 3.2 Measuring performance............................... 56 3.2.1 Clock Speed.................................

More information

CHAPTER 6: Computer System Organisation 1. The Computer System's Primary Functions

CHAPTER 6: Computer System Organisation 1. The Computer System's Primary Functions CHAPTER 6: Computer System Organisation 1. The Computer System's Primary Functions All computers, from the first room-sized mainframes, to today's powerful desktop, laptop and even hand-held PCs, perform

More information

DDR4 Memory Technology on HP Z Workstations

DDR4 Memory Technology on HP Z Workstations Technical white paper DDR4 Memory Technology on HP Z Workstations DDR4 is the latest memory technology available for main memory on mobile, desktops, workstations, and server computers. DDR stands for

More information

Objective. Input Output. Raul Queiroz Feitosa. This chapter presents concepts, structures and functions involved in I/O operation.

Objective. Input Output. Raul Queiroz Feitosa. This chapter presents concepts, structures and functions involved in I/O operation. Input Output Raul Queiroz Feitosa Parts of these slides are from the support material provided by W. Stallings Objective This chapter presents concepts, structures and functions involved in I/O operation.

More information

Monitors and Graphic Adapters

Monitors and Graphic Adapters Monitors and Graphic Adapters To the process of displaying the information a graphic adapter and monitor are involved. Graphic adapter: an element between a processor (and its I/O bus) and a monitor. They

More information

Chapter 5 Instructor's Manual

Chapter 5 Instructor's Manual The Essentials of Computer Organization and Architecture Linda Null and Julia Lobur Jones and Bartlett Publishers, 2003 Chapter 5 Instructor's Manual Chapter Objectives Chapter 5, A Closer Look at Instruction

More information

Introduction to RISC Processor. ni logic Pvt. Ltd., Pune

Introduction to RISC Processor. ni logic Pvt. Ltd., Pune Introduction to RISC Processor ni logic Pvt. Ltd., Pune AGENDA What is RISC & its History What is meant by RISC Architecture of MIPS-R4000 Processor Difference Between RISC and CISC Pros and Cons of RISC

More information

Programming Logic controllers

Programming Logic controllers Programming Logic controllers Programmable Logic Controller (PLC) is a microprocessor based system that uses programmable memory to store instructions and implement functions such as logic, sequencing,

More information

DAC Digital To Analog Converter

DAC Digital To Analog Converter DAC Digital To Analog Converter DAC Digital To Analog Converter Highlights XMC4000 provides two digital to analog converters. Each can output one analog value. Additional multiple analog waves can be generated

More information

Management Challenge. Managing Hardware Assets. Central Processing Unit. What is a Computer System?

Management Challenge. Managing Hardware Assets. Central Processing Unit. What is a Computer System? Management Challenge Managing Hardware Assets What computer processing and storage capability does our organization need to handle its information and business transactions? What arrangement of computers

More information

Instruction Set Architectures

Instruction Set Architectures Instruction Set Architectures Early trend was to add more and more instructions to new CPUs to do elaborate operations (CISC) VAX architecture had an instruction to multiply polynomials! RISC philosophy

More information

Switch Fabric Implementation Using Shared Memory

Switch Fabric Implementation Using Shared Memory Order this document by /D Switch Fabric Implementation Using Shared Memory Prepared by: Lakshmi Mandyam and B. Kinney INTRODUCTION Whether it be for the World Wide Web or for an intra office network, today

More information

Reduced Instruction Set Computer vs Complex Instruction Set Computers

Reduced Instruction Set Computer vs Complex Instruction Set Computers RISC vs CISC Reduced Instruction Set Computer vs Complex Instruction Set Computers for a given benchmark the performance of a particular computer: P = 1 I C 1 S where P = time to execute I = number of

More information

Sample Project List. Software Reverse Engineering

Sample Project List. Software Reverse Engineering Sample Project List Software Reverse Engineering Automotive Computing Electronic power steering Embedded flash memory Inkjet printer software Laptop computers Laptop computers PC application software Software

More information

Serial port interface for microcontroller embedded into integrated power meter

Serial port interface for microcontroller embedded into integrated power meter Serial port interface for microcontroller embedded into integrated power meter Mr. Borisav Jovanović, Prof. dr. Predrag Petković, Prof. dr. Milunka Damnjanović, Faculty of Electronic Engineering Nis, Serbia

More information

Generations of the computer. processors.

Generations of the computer. processors. . Piotr Gwizdała 1 Contents 1 st Generation 2 nd Generation 3 rd Generation 4 th Generation 5 th Generation 6 th Generation 7 th Generation 8 th Generation Dual Core generation Improves and actualizations

More information

Computer Architecture Lecture 2: Instruction Set Principles (Appendix A) Chih Wei Liu 劉 志 尉 National Chiao Tung University cwliu@twins.ee.nctu.edu.

Computer Architecture Lecture 2: Instruction Set Principles (Appendix A) Chih Wei Liu 劉 志 尉 National Chiao Tung University cwliu@twins.ee.nctu.edu. Computer Architecture Lecture 2: Instruction Set Principles (Appendix A) Chih Wei Liu 劉 志 尉 National Chiao Tung University cwliu@twins.ee.nctu.edu.tw Review Computers in mid 50 s Hardware was expensive

More information

Computer Architecture TDTS10

Computer Architecture TDTS10 why parallelism? Performance gain from increasing clock frequency is no longer an option. Outline Computer Architecture TDTS10 Superscalar Processors Very Long Instruction Word Processors Parallel computers

More information

ADS9850 Signal Generator Module

ADS9850 Signal Generator Module 1. Introduction ADS9850 Signal Generator Module This module described here is based on ADS9850, a CMOS, 125MHz, and Complete DDS Synthesizer. The AD9850 is a highly integrated device that uses advanced

More information

CHAPTER 2: HARDWARE BASICS: INSIDE THE BOX

CHAPTER 2: HARDWARE BASICS: INSIDE THE BOX CHAPTER 2: HARDWARE BASICS: INSIDE THE BOX Multiple Choice: 1. Processing information involves: A. accepting information from the outside world. B. communication with another computer. C. performing arithmetic

More information

Simple Network Management Protocol

Simple Network Management Protocol A Seminar Report on Simple Network Management Protocol Submitted in partial fulfillment of the requirement for the award of degree Of Computer Science SUBMITTED TO: SUBMITTED BY: www.studymafia.org www.studymafia.org

More information

Computer Systems Structure Main Memory Organization

Computer Systems Structure Main Memory Organization Computer Systems Structure Main Memory Organization Peripherals Computer Central Processing Unit Main Memory Computer Systems Interconnection Communication lines Input Output Ward 1 Ward 2 Storage/Memory

More information