Introduction. Artificial Intelligence Santa Clara University 2016

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Introduction. Artificial Intelligence Santa Clara University 2016"

Transcription

1 Introduction Artificial Intelligence Santa Clara University 2016

2 What is AI Definitions of AI Thinking humanly Thinking rationally Acting humanely Acting rationally

3 Acting Humanly Turing Test (1950) Criterion: Human interrogator cannot decide whether an agent is a computer or a human being Originally communication via typewriter Total Turing Test Computer can see so that the interrogator can test reactions to visual inputs Computer can handle objects given through a hatch

4 Acting Humanly Little effort on passing the Turing test in the AI community Used in arguments against the possibility of AI Chinese Room: A group of people in an enclosed room. No-one knows Chinese Interact with outside through written communication If they learn how to pass the Turing test in Chinese, where does this knowledge of Chinese reside?

5 Thinking Humanly Cognitive science / modeling How to get inside the human mind? introspection (Phenomenologists) experiments Fallacy: If a computer performs well on a task that humans can perform well, then it has modeled human reasoning Cross fertilization: Computer vision uses insights from cognitive science

6 Thinking rationally Laws of thought Around since Aristoteles' syllogisms Made more precisely by logicians in 19th -20th centuries Logicist tradition within AI uses rules and logic engines to create intelligent systems

7 Acting rationally Agent is one who acts Rational agent acts to achieve the best (expected?) outcome Logicist agent draws interferences Rational agent acts even if it cannot draw an interference on the best possible choice of actions

8 Foundations of AI Philosophy Can formal rules be used to draw valid conclusions How does the mind arise from the brain Where does knowledge come from How does knowledge lead to action Mathematics What are the formal rules to draw valid conclusions What can be computed How do we reason with uncertain information Economics How should we make decisions to maximize payoff How should we do this when others may not go along How should we do this if payoffs happen at different points in the future Neuroscience How do brains process information Psychology How do humans and animals think and act Computer Engineering How do we build efficient computers Control theory How can artifacts operate under their own control Linguistics How does language relate to behavior

9 Neuron Axonal arborization Axon from another cell Synapse Dendrite Axon Nucleus Synapses

10 Short History of AI Gestation of AI ( ) McCulloch & Pitts (1943) model of artificial neurons Hebb (1949): Hebbian learning for artificial neural nets

11 Short History of AI Birth of AI (1956) McCarthy, Minsky, Shannon, Rochester, More, Samuel, Solomonoff, Selfridge, Newell, Simon 2 month 10 man study of AI

12 Short History of AI Early enthusiasm, great expectations ( ) First AI programs intended as prototypes General Problem Solver (GPS) - thinking humanly Physical symbol system hypothesis: a physical symbol system has the necessary and sufficient means for general intelligent action Geometric Theorem Prover LISP language Minsky s microwords: SAINT: calculus integration problems ANALOGY: geometric analogy problems as they appear on intelligence tests STUDENT: solved algebra word problems Blocks world: Manipulate a universe of geometric blocks

13 Blue Red Green Red Green Blue Green Red

14 State of the art Robotic vehicles Speech recognition Autonomous planning and scheduling Chess playing Spam fighting Logistics planning Robotics Machine Translation

15 Short History of AI A dose of reality ( ) Early predictions did not come through E.g. Russian translation program turned out to be much more complex: The spirit is willing but the flesh is weak transformed into The vodka is good but the meat is rotten Problems are not scalable Early genetic algorithms could not improve a computer program for the available CPU hours

16 Short History of AI Knowledge based systems ( ) Weak methods: Applicable to general situations, but do not scale to problem size Alternative: use domain-specific knowledge DENDRAL: Inferring molecular structure from information provided by a mass spectrometer Expert systems MYCIN medical expert system with ~450 rules could outperform junior doctors

17 Short History of AI Industrial uses of AI ( present) Boom from AI Winter as companies could not deliver on extravagant promises

18 Short History of AI Return of neural networks ( present) Back propagation is a new learning algorithm Replaces symbolic models 2015: Deep neural networks

19 Short History of AI AI adopts the scientific method Example: Speech recognition Early attempts are ad hoc Hidden Markov Models (HMM) based on a mathematical theory use large corpus of speech data

20 Short History of AI Emergence of intelligent agents ( present)

CS440/ECE448: Artificial Intelligence. Course website: http://slazebni.cs.illinois.edu/fall15/

CS440/ECE448: Artificial Intelligence. Course website: http://slazebni.cs.illinois.edu/fall15/ CS440/ECE448: Artificial Intelligence Course website: http://slazebni.cs.illinois.edu/fall15/ Last time: What is AI? Definitions from Chapter 1 of the textbook: 1. Thinking humanly 2. Acting humanly 3.

More information

COMP 590: Artificial Intelligence

COMP 590: Artificial Intelligence COMP 590: Artificial Intelligence Today Course overview What is AI? Examples of AI today Who is this course for? An introductory survey of AI techniques for students who have not previously had an exposure

More information

What is Artificial Intelligence?

What is Artificial Intelligence? CSE 3401: Intro to Artificial Intelligence & Logic Programming Introduction Required Readings: Russell & Norvig Chapters 1 & 2. Lecture slides adapted from those of Fahiem Bacchus. 1 What is AI? What is

More information

Artificial Intelligence Introduction

Artificial Intelligence Introduction Artificial Intelligence Introduction Andrea Torsello What is Artificial Intelligence? There is no universally accepted definition of Artificial Intelligence A.I. is the endevour of building an intelligent

More information

CSC384 Intro to Artificial Intelligence

CSC384 Intro to Artificial Intelligence CSC384 Intro to Artificial Intelligence What is Artificial Intelligence? What is Intelligence? Are these Intelligent? CSC384, University of Toronto 3 What is Intelligence? Webster says: The capacity to

More information

Artificial Intelligence

Artificial Intelligence Artificial Intelligence Chapter 1 Chapter 1 1 Outline What is AI? A brief history The state of the art Chapter 1 2 What is AI? Systems that think like humans Systems that think rationally Systems that

More information

Acting humanly: The Turing test. Artificial Intelligence. Thinking humanly: Cognitive Science. Outline. What is AI?

Acting humanly: The Turing test. Artificial Intelligence. Thinking humanly: Cognitive Science. Outline. What is AI? Acting humanly: The Turing test Artificial Intelligence Turing (1950) Computing machinery and intelligence : Can machines think? Can machines behave intelligently? Operational test for intelligent behavior:

More information

Appendices master s degree programme Artificial Intelligence 2014-2015

Appendices master s degree programme Artificial Intelligence 2014-2015 Appendices master s degree programme Artificial Intelligence 2014-2015 Appendix I Teaching outcomes of the degree programme (art. 1.3) 1. The master demonstrates knowledge, understanding and the ability

More information

History of Artificial Intelligence. Introduction to Intelligent Systems

History of Artificial Intelligence. Introduction to Intelligent Systems History of Artificial Intelligence Introduction to Intelligent Systems What is An Intelligent System? A more difficult question is: What is intelligence? This question has puzzled philosophers, biologists

More information

Lecture 1: Introduction to Neural Networks Kevin Swingler / Bruce Graham

Lecture 1: Introduction to Neural Networks Kevin Swingler / Bruce Graham Lecture 1: Introduction to Neural Networks Kevin Swingler / Bruce Graham kms@cs.stir.ac.uk 1 What are Neural Networks? Neural Networks are networks of neurons, for example, as found in real (i.e. biological)

More information

Artificial Neural Networks and Support Vector Machines. CS 486/686: Introduction to Artificial Intelligence

Artificial Neural Networks and Support Vector Machines. CS 486/686: Introduction to Artificial Intelligence Artificial Neural Networks and Support Vector Machines CS 486/686: Introduction to Artificial Intelligence 1 Outline What is a Neural Network? - Perceptron learners - Multi-layer networks What is a Support

More information

Introduction to Machine Learning and Data Mining. Prof. Dr. Igor Trajkovski trajkovski@nyus.edu.mk

Introduction to Machine Learning and Data Mining. Prof. Dr. Igor Trajkovski trajkovski@nyus.edu.mk Introduction to Machine Learning and Data Mining Prof. Dr. Igor Trakovski trakovski@nyus.edu.mk Neural Networks 2 Neural Networks Analogy to biological neural systems, the most robust learning systems

More information

Neural networks. Chapter 20, Section 5 1

Neural networks. Chapter 20, Section 5 1 Neural networks Chapter 20, Section 5 Chapter 20, Section 5 Outline Brains Neural networks Perceptrons Multilayer perceptrons Applications of neural networks Chapter 20, Section 5 2 Brains 0 neurons of

More information

15-381: Artificial Intelligence. Introduction and Overview

15-381: Artificial Intelligence. Introduction and Overview 15-381: Artificial Intelligence Introduction and Overview Course data All up-to-date info is on the course web page: - http://www.cs.cmu.edu/afs/cs.cmu.edu/academic/class/15381-s07/www/ Instructors: -

More information

Learning is a very general term denoting the way in which agents:

Learning is a very general term denoting the way in which agents: What is learning? Learning is a very general term denoting the way in which agents: Acquire and organize knowledge (by building, modifying and organizing internal representations of some external reality);

More information

COMP-424: Artificial intelligence. Lecture 1: Introduction to AI!

COMP-424: Artificial intelligence. Lecture 1: Introduction to AI! COMP 424 - Artificial Intelligence Lecture 1: Introduction to AI! Instructor: Joelle Pineau (jpineau@cs.mcgill.ca) Class web page: www.cs.mcgill.ca/~jpineau/comp424 Unless otherwise noted, all material

More information

Introduction to Neural Computation. Neural Computation

Introduction to Neural Computation. Neural Computation Introduction to Neural Computation Level 4/M Neural Computation Level 3 Website: http://www.cs.bham.ac.uk/~jxb/inc.html Lecturer: Dr. John A. Bullinaria John A. Bullinaria, 2015 Module Administration and

More information

Introduction to Artificial Intelligence

Introduction to Artificial Intelligence Introduction to Artificial Intelligence Kalev Kask ICS 271 Fall 2014 http://www.ics.uci.edu/~kkask/fall-2014 CS271/ Course requirements Assignments: There will be weekly homework assignments, a project,

More information

Appendices master s degree programme Human Machine Communication 2014-2015

Appendices master s degree programme Human Machine Communication 2014-2015 Appendices master s degree programme Human Machine Communication 2014-2015 Appendix I Teaching outcomes of the degree programme (art. 1.3) 1. The master demonstrates knowledge, understanding and the ability

More information

Draft dpt for MEng Electronics and Computer Science

Draft dpt for MEng Electronics and Computer Science Draft dpt for MEng Electronics and Computer Science Year 1 INFR08012 Informatics 1 - Computation and Logic INFR08013 Informatics 1 - Functional Programming INFR08014 Informatics 1 - Object- Oriented Programming

More information

IAI : Biological Intelligence and Neural Networks

IAI : Biological Intelligence and Neural Networks IAI : Biological Intelligence and Neural Networks John A. Bullinaria, 2005 1. How do Humans do Intelligent Things? 2. What are Neural Networks? 3. What are Artificial Neural Networks used for? 4. Introduction

More information

Final Assessment Report of the Review of the Cognitive Science Program (Option) July 2013

Final Assessment Report of the Review of the Cognitive Science Program (Option) July 2013 Final Assessment Report of the Review of the Cognitive Science Program (Option) July 2013 Review Process This is the second program review of the Cognitive Science Option. The Cognitive Science Program

More information

Machine Learning. 01 - Introduction

Machine Learning. 01 - Introduction Machine Learning 01 - Introduction Machine learning course One lecture (Wednesday, 9:30, 346) and one exercise (Monday, 17:15, 203). Oral exam, 20 minutes, 5 credit points. Some basic mathematical knowledge

More information

EXECUTIVE SUPPORT SYSTEMS (ESS) STRATEGIC INFORMATION SYSTEM DESIGNED FOR UNSTRUCTURED DECISION MAKING THROUGH ADVANCED GRAPHICS AND COMMUNICATIONS *

EXECUTIVE SUPPORT SYSTEMS (ESS) STRATEGIC INFORMATION SYSTEM DESIGNED FOR UNSTRUCTURED DECISION MAKING THROUGH ADVANCED GRAPHICS AND COMMUNICATIONS * EXECUTIVE SUPPORT SYSTEMS (ESS) STRATEGIC INFORMATION SYSTEM DESIGNED FOR UNSTRUCTURED DECISION MAKING THROUGH ADVANCED GRAPHICS AND COMMUNICATIONS * EXECUTIVE SUPPORT SYSTEMS DRILL DOWN: ability to move

More information

School of Computer Science

School of Computer Science School of Computer Science Computer Science - Honours Level - 2014/15 October 2014 General degree students wishing to enter 3000- level modules and non- graduating students wishing to enter 3000- level

More information

What is Learning? CS 391L: Machine Learning Introduction. Raymond J. Mooney. Classification. Problem Solving / Planning / Control

What is Learning? CS 391L: Machine Learning Introduction. Raymond J. Mooney. Classification. Problem Solving / Planning / Control What is Learning? CS 391L: Machine Learning Introduction Herbert Simon: Learning is any process by which a system improves performance from experience. What is the task? Classification Problem solving

More information

Introduction to Artificial Neural Networks

Introduction to Artificial Neural Networks POLYTECHNIC UNIVERSITY Department of Computer and Information Science Introduction to Artificial Neural Networks K. Ming Leung Abstract: A computing paradigm known as artificial neural network is introduced.

More information

CSE 517A MACHINE LEARNING INTRODUCTION

CSE 517A MACHINE LEARNING INTRODUCTION CSE 517A MACHINE LEARNING INTRODUCTION Spring 2016 Marion Neumann Contents in these slides may be subject to copyright. Some materials are adopted from Killian Weinberger. Thanks, Killian! Machine Learning

More information

Applying Deep Learning to Car Data Logging (CDL) and Driver Assessor (DA) October 22-Oct-15

Applying Deep Learning to Car Data Logging (CDL) and Driver Assessor (DA) October 22-Oct-15 Applying Deep Learning to Car Data Logging (CDL) and Driver Assessor (DA) October 22-Oct-15 GENIVI is a registered trademark of the GENIVI Alliance in the USA and other countries Copyright GENIVI Alliance

More information

Introduction to Neural Networks

Introduction to Neural Networks Introduction to Neural Networks 2nd Year UG, MSc in Computer Science http://www.cs.bham.ac.uk/~jxb/inn.html Lecturer: Dr. John A. Bullinaria http://www.cs.bham.ac.uk/~jxb John A. Bullinaria, 2004 Module

More information

Introduction to Machine Learning

Introduction to Machine Learning Introduction to Machine Learning Javier Béjar cbea LSI - FIB Term 2012/2013 Javier Béjar cbea (LSI - FIB) Introduction to Machine Learning Term 2012/2013 1 / 13 Outline 1 Introduction 2 Origins 3 Goals

More information

Vorlesung Grundlagen der Künstlichen Intelligenz

Vorlesung Grundlagen der Künstlichen Intelligenz Vorlesung Grundlagen der Künstlichen Intelligenz Reinhard Lafrenz / Prof. A. Knoll Robotics and Embedded Systems Department of Informatics I6 Technische Universität München www6.in.tum.de lafrenz@in.tum.de

More information

The Intelligent Data Analysis System for Social Science

The Intelligent Data Analysis System for Social Science The Intelligent Data Analysis System for Social Science - Incorporating Object-oriented and Knowledge-based approaches Alex Liu, Ph.D. Director Research Methods Institute Los Angeles, CA, USA in http://www.researchmethods.org/ida.pdf

More information

John McCarthy Father of Artificial Intelligence

John McCarthy Father of Artificial Intelligence John McCarthy Father of Artificial Intelligence V Rajaraman V Rajaraman is at the Indian Institute of Science, Bangalore. Several generations of scientists and engineers in India have learnt computer science

More information

History and Introduction to Cognitive Psychology

History and Introduction to Cognitive Psychology History and Introduction to Cognitive Psychology Chapter 1 1 What is Cognitive Psychology? Cognition co- + gnoscere to come to know. Knowing requires mental activity which involves acquiring, storage,

More information

Artificial Intelligence I. Introduction: what s AI for? Homo Sapiens = Man the wise. Dr Mateja Jamnik. Computer Laboratory, Room FC18

Artificial Intelligence I. Introduction: what s AI for? Homo Sapiens = Man the wise. Dr Mateja Jamnik. Computer Laboratory, Room FC18 Artificial Intelligence I Dr Mateja Jamnik Computer Laboratory, Room FC18 Telephone extension 63587 Email: mj201@cl.cam.ac.uk http://www.cl.cam.ac.uk/users/mj201/ Notes I: General introduction to artificial

More information

Course 395: Machine Learning

Course 395: Machine Learning Course 395: Machine Learning Lecturers: Maja Pantic (maja@doc.ic.ac.uk) Stavros Petridis (sp104@doc.ic.ac.uk) Goal (Lectures): To present basic theoretical concepts and key algorithms that form the core

More information

Levels of Analysis and ACT-R

Levels of Analysis and ACT-R 1 Levels of Analysis and ACT-R LaLoCo, Fall 2013 Adrian Brasoveanu, Karl DeVries [based on slides by Sharon Goldwater & Frank Keller] 2 David Marr: levels of analysis Background Levels of Analysis John

More information

A TUTORIAL. BY: Negin Yousefpour PhD Student Civil Engineering Department TEXAS A&M UNIVERSITY

A TUTORIAL. BY: Negin Yousefpour PhD Student Civil Engineering Department TEXAS A&M UNIVERSITY ARTIFICIAL NEURAL NETWORKS: A TUTORIAL BY: Negin Yousefpour PhD Student Civil Engineering Department TEXAS A&M UNIVERSITY Contents Introduction Origin Of Neural Network Biological Neural Networks ANN Overview

More information

Learning outcomes. Knowledge and understanding. Competence and skills

Learning outcomes. Knowledge and understanding. Competence and skills Syllabus Master s Programme in Statistics and Data Mining 120 ECTS Credits Aim The rapid growth of databases provides scientists and business people with vast new resources. This programme meets the challenges

More information

COMP-424: Artificial intelligence. Lecture 2: Introduction to AI!

COMP-424: Artificial intelligence. Lecture 2: Introduction to AI! COMP 424 - Artificial Intelligence Lecture 2: Introduction to AI! Instructor: Joelle Pineau (jpineau@cs.mcgill.ca) Class web page: www.cs.mcgill.ca/~jpineau/comp424 Unless otherwise noted, all material

More information

John McCarthy Father of Artificial Intelligence

John McCarthy Father of Artificial Intelligence John McCarthy Father of Artificial Intelligence V Rajaraman Asia Pacific Mathematics Newsletter Introduction John McCarthy In this article we summarise the contributions of John McCarthy to Computer Science.

More information

Fall 2012 Q530. Programming for Cognitive Science

Fall 2012 Q530. Programming for Cognitive Science Fall 2012 Q530 Programming for Cognitive Science Aimed at little or no programming experience. Improve your confidence and skills at: Writing code. Reading code. Understand the abilities and limitations

More information

Measuring Universal Intelligence By: Tyler Staudinger

Measuring Universal Intelligence By: Tyler Staudinger [1] Measuring Universal Intelligence By: Tyler Staudinger Overview How Do we Define Intelligence? Current Tests of Machine Intelligence The Ideal Test for Intelligence Components of an Intelligence Test

More information

Bachelor Degree in Informatics Engineering Master courses

Bachelor Degree in Informatics Engineering Master courses Bachelor Degree in Informatics Engineering Master courses Donostia School of Informatics The University of the Basque Country, UPV/EHU For more information: Universidad del País Vasco / Euskal Herriko

More information

Machine Learning: Overview

Machine Learning: Overview Machine Learning: Overview Why Learning? Learning is a core of property of being intelligent. Hence Machine learning is a core subarea of Artificial Intelligence. There is a need for programs to behave

More information

NEURAL NETWORK FUNDAMENTALS WITH GRAPHS, ALGORITHMS, AND APPLICATIONS

NEURAL NETWORK FUNDAMENTALS WITH GRAPHS, ALGORITHMS, AND APPLICATIONS NEURAL NETWORK FUNDAMENTALS WITH GRAPHS, ALGORITHMS, AND APPLICATIONS N. K. Bose HRB-Systems Professor of Electrical Engineering The Pennsylvania State University, University Park P. Liang Associate Professor

More information

Artificial Intelligence and Robotics @ Politecnico di Milano. Presented by Matteo Matteucci

Artificial Intelligence and Robotics @ Politecnico di Milano. Presented by Matteo Matteucci 1 Artificial Intelligence and Robotics @ Politecnico di Milano Presented by Matteo Matteucci What is Artificial Intelligence «The field of theory & development of computer systems able to perform tasks

More information

Brains, Ontologies & Virtual Machines

Brains, Ontologies & Virtual Machines How Minds Work Brains, Ontologies & Virtual Machines Stan Franklin Computer Science Division & Institute for Intelligent Systems The University of Memphis 1 Question: How do minds work? What would an answer

More information

International Journal of Electronics and Computer Science Engineering 1449

International Journal of Electronics and Computer Science Engineering 1449 International Journal of Electronics and Computer Science Engineering 1449 Available Online at www.ijecse.org ISSN- 2277-1956 Neural Networks in Data Mining Priyanka Gaur Department of Information and

More information

More on Expert Systems

More on Expert Systems More on Expert Systems Knowledge Engineering The process of building an expert system: 1. The knowledge engineer establishes a dialog with the human expert to elicit knowledge. 2. The knowledge engineer

More information

THE HUMAN BRAIN. observations and foundations

THE HUMAN BRAIN. observations and foundations THE HUMAN BRAIN observations and foundations brains versus computers a typical brain contains something like 100 billion miniscule cells called neurons estimates go from about 50 billion to as many as

More information

Regular Languages and Finite Automata

Regular Languages and Finite Automata Regular Languages and Finite Automata 1 Introduction Hing Leung Department of Computer Science New Mexico State University Sep 16, 2010 In 1943, McCulloch and Pitts [4] published a pioneering work on a

More information

BTBU Master of Control Theory and Control Engineering

BTBU Master of Control Theory and Control Engineering BTBU Master of Control Theory Control Discipline class: Primary discipline:control Science Sub-discipline: Control Theory Control Sub-discipline code:081101 一 Program Overview The program aims to educate

More information

CHAPTER 15: IS ARTIFICIAL INTELLIGENCE REAL?

CHAPTER 15: IS ARTIFICIAL INTELLIGENCE REAL? CHAPTER 15: IS ARTIFICIAL INTELLIGENCE REAL? Multiple Choice: 1. During Word World II, used Colossus, an electronic digital computer to crack German military codes. A. Alan Kay B. Grace Murray Hopper C.

More information

Neural Networks and Back Propagation Algorithm

Neural Networks and Back Propagation Algorithm Neural Networks and Back Propagation Algorithm Mirza Cilimkovic Institute of Technology Blanchardstown Blanchardstown Road North Dublin 15 Ireland mirzac@gmail.com Abstract Neural Networks (NN) are important

More information

COMPUTER ENGINEERING GRADUTE PROGRAM FOR MASTER S DEGREE (With Thesis)

COMPUTER ENGINEERING GRADUTE PROGRAM FOR MASTER S DEGREE (With Thesis) COMPUTER ENGINEERING GRADUTE PROGRAM FOR MASTER S DEGREE (With Thesis) PREPARATORY PROGRAM* COME 27 Advanced Object Oriented Programming 5 COME 21 Data Structures and Algorithms COME 22 COME 1 COME 1 COME

More information

GLOVE-BASED GESTURE RECOGNITION SYSTEM

GLOVE-BASED GESTURE RECOGNITION SYSTEM CLAWAR 2012 Proceedings of the Fifteenth International Conference on Climbing and Walking Robots and the Support Technologies for Mobile Machines, Baltimore, MD, USA, 23 26 July 2012 747 GLOVE-BASED GESTURE

More information

CSE841 Artificial Intelligence

CSE841 Artificial Intelligence CSE841 Artificial Intelligence Dept. of Computer Science and Eng., Michigan State University Fall, 2014 Course web: http://www.cse.msu.edu/~cse841/ Description: Graduate survey course in Artificial Intelligence.

More information

Preface: Cognitive Informatics, Cognitive Computing, and Their Denotational Mathematical Foundations (II)

Preface: Cognitive Informatics, Cognitive Computing, and Their Denotational Mathematical Foundations (II) Fundamenta Informaticae 90 (2009) i vii DOI 10.3233/FI-2009-0001 IOS Press i Preface: Cognitive Informatics, Cognitive Computing, and Their Denotational Mathematical Foundations (II) Yingxu Wang Visiting

More information

Computer Science Electives and Clusters

Computer Science Electives and Clusters Course Number CSCI- Computer Science Electives and Clusters Computer Science electives belong to one or more groupings called clusters. Undergraduate students with the proper prerequisites are permitted

More information

Neural Networks. Neural network is a network or circuit of neurons. Neurons can be. Biological neurons Artificial neurons

Neural Networks. Neural network is a network or circuit of neurons. Neurons can be. Biological neurons Artificial neurons Neural Networks Neural network is a network or circuit of neurons Neurons can be Biological neurons Artificial neurons Biological neurons Building block of the brain Human brain contains over 10 billion

More information

New Predictive Analysis Solutions for Health Care

New Predictive Analysis Solutions for Health Care New Predictive Analysis Solutions for Health Care More accurate forecasts of risk and cost for health care providers, payers, ACOs and Medical Home programs Leveraging HIT and Innovation to Support New

More information

An Introductory CS Course for Cognitive Science Students

An Introductory CS Course for Cognitive Science Students An Introductory CS Course for Cognitive Science Students James B. Marshall Computer Science Program Pomona College Claremont, California 91711 marshall@cs.pomona.edu Abstract This paper describes an introductory

More information

Master of Science in Artificial Intelligence

Master of Science in Artificial Intelligence Master of Science in Artificial Intelligence Options: Engineering and Computer Science (ECS) Speech and Language Technology (SLT) Big Data Analytics (BDA) Faculty of Engineering Science Faculty of Science

More information

Neurotransmission: Muscle Messages

Neurotransmission: Muscle Messages 2 Neurotransmission: Muscle Messages GOAL The goal of this unit is to reinforce the process of neuromuscular transmission with hands-on materials. Set-up: -Reaction Time poster -Nerve-muscle poster -Synapse

More information

School of Computer Science

School of Computer Science Computer Science Honours Level 2013/14 August 2013 School of Computer Science Computer Science (CS) Modules CS3051 Software Engineering SCOTCAT Credits: 15 SCQF Level 9 Semester: 1 This module gives a

More information

Computers and the Creative Process

Computers and the Creative Process Computers and the Creative Process Kostas Terzidis In this paper the role of the computer in the creative process is discussed. The main focus is the investigation of whether computers can be regarded

More information

Analecta Vol. 8, No. 2 ISSN 2064-7964

Analecta Vol. 8, No. 2 ISSN 2064-7964 EXPERIMENTAL APPLICATIONS OF ARTIFICIAL NEURAL NETWORKS IN ENGINEERING PROCESSING SYSTEM S. Dadvandipour Institute of Information Engineering, University of Miskolc, Egyetemváros, 3515, Miskolc, Hungary,

More information

Cognitive Science. Summer 2013

Cognitive Science. Summer 2013 Cognitive Science Summer 2013 Course Description We will consider the nature of cognition from an interdisciplinary perspective, often utilizing a computational model. We will explore insights from philosophy,

More information

Intelligent Modeling of Sugar-cane Maturation

Intelligent Modeling of Sugar-cane Maturation Intelligent Modeling of Sugar-cane Maturation State University of Pernambuco Recife (Brazil) Fernando Buarque de Lima Neto, PhD Salomão Madeiro Flávio Rosendo da Silva Oliveira Frederico Bruno Alexandre

More information

Theoretical Perspective

Theoretical Perspective Preface Motivation Manufacturer of digital products become a driver of the world s economy. This claim is confirmed by the data of the European and the American stock markets. Digital products are distributed

More information

Rain prediction from meteoradar images

Rain prediction from meteoradar images 2015 http://excel.fit.vutbr.cz Rain prediction from meteoradar images Michael Vlček t + 1 t + 2... t - 2 t - 1 t t - 3... input layer hidden layers output layer Abstract This paper presents a software

More information

Computation Beyond Turing Machines

Computation Beyond Turing Machines Computation Beyond Turing Machines Peter Wegner, Brown University Dina Goldin, U. of Connecticut 1. Turing s legacy Alan Turing was a brilliant mathematician who showed that computers could not completely

More information

Page 1 of 5. (Modules, Subjects) SENG DSYS PSYS KMS ADB INS IAT

Page 1 of 5. (Modules, Subjects) SENG DSYS PSYS KMS ADB INS IAT Page 1 of 5 A. Advanced Mathematics for CS A1. Line and surface integrals 2 2 A2. Scalar and vector potentials 2 2 A3. Orthogonal curvilinear coordinates 2 2 A4. Partial differential equations 2 2 4 A5.

More information

Curriculum of Electronics Engineering Program

Curriculum of Electronics Engineering Program Curriculum of Electronics Engineering Program FIRST ACADEMIC SEMESTER EB 0101 Workshop on Methods of University Studies 2 -- -- -- 4 EB 0102 Workshop on Oral and Written Communications 2 -- -- -- 4 EB

More information

New trend in Russian informatics curricula: integration of math and informatics

New trend in Russian informatics curricula: integration of math and informatics New trend in Russian informatics curricula: integration of math and informatics Svetlana Gaisina Academy of post-degree pedagogical education, Saint Petersburg, g.selania@gmail.com Sergei Pozdniakov Saint

More information

Artificial Intelligence for ICT Innovation

Artificial Intelligence for ICT Innovation 2016 ICT 산업전망컨퍼런스 Artificial Intelligence for ICT Innovation October 5, 2015 Sung-Bae Cho Dept. of Computer Science, Yonsei University http://sclab.yonsei.ac.kr Subjective AI Hype Cycle Expert System Neural

More information

Research in the cognitive sciences is founded on the assumption

Research in the cognitive sciences is founded on the assumption Aporia vol. 24 no. 1 2014 Conceptual Parallels Between Philosophy of Science and Cognitive Science: Artificial Intelligence, Human Intuition, and Rationality Research in the cognitive sciences is founded

More information

Study Plan for the Master Degree In Industrial Engineering / Management. (Thesis Track)

Study Plan for the Master Degree In Industrial Engineering / Management. (Thesis Track) Study Plan for the Master Degree In Industrial Engineering / Management (Thesis Track) Plan no. 2005 T A. GENERAL RULES AND CONDITIONS: 1. This plan conforms to the valid regulations of programs of graduate

More information

Feed-Forward mapping networks KAIST 바이오및뇌공학과 정재승

Feed-Forward mapping networks KAIST 바이오및뇌공학과 정재승 Feed-Forward mapping networks KAIST 바이오및뇌공학과 정재승 How much energy do we need for brain functions? Information processing: Trade-off between energy consumption and wiring cost Trade-off between energy consumption

More information

K-12 Mathematics Framework

K-12 Mathematics Framework DRAFT IN PROCESS San Diego City Schools Institute for Learning MATHEMATICS DEPARTMENT K-12 Mathematics Framework Introduction Mathematics Content Mathematics Processes Note: The content in this document

More information

Introduction to Neural Networks for Senior Design

Introduction to Neural Networks for Senior Design Introduction to Neural Networks for Senior Design Intro-1 Neural Networks: The Big Picture Artificial Intelligence Neural Networks Expert Systems Machine Learning not ruleoriented ruleoriented Intro-2

More information

ARTIFICIAL INTELLIGENCE: DEFINITION, TRENDS, TECHNIQUES, AND CASES

ARTIFICIAL INTELLIGENCE: DEFINITION, TRENDS, TECHNIQUES, AND CASES ARTIFICIAL INTELLIGENCE: DEFINITION, TRENDS, TECHNIQUES, AND CASES Joost N. Kok, Egbert J. W. Boers, Walter A. Kosters, and Peter van der Putten Leiden Institute of Advanced Computer Science, Leiden University,

More information

Master of Artificial Intelligence

Master of Artificial Intelligence Faculty of Engineering Faculty of Science Master of Artificial Intelligence Options: Engineering and Computer Science (ECS) Speech and Language Technology (SLT) Cognitive Science (CS) K.U.Leuven Masters.

More information

3. The neuron has many branch-like extensions called that receive input from other neurons. a. glia b. dendrites c. axons d.

3. The neuron has many branch-like extensions called that receive input from other neurons. a. glia b. dendrites c. axons d. Chapter Test 1. A cell that receives information and transmits it to other cells via an electrochemical process is called a(n) a. neuron b. hormone c. glia d. endorphin Answer: A difficulty: 1 factual

More information

Artificial Intelligence An Introduction 1

Artificial Intelligence An Introduction 1 Artificial Intelligence An Introduction 1 Instructor: Dr. B. John Oommen Chancellor s Professor Fellow: IEEE; Fellow: IAPR School of Computer Science, Carleton University, Canada. 1 The primary source

More information

CAD and Creativity. Contents

CAD and Creativity. Contents CAD and Creativity K C Hui Department of Automation and Computer- Aided Engineering Contents Various aspects of CAD CAD training in the university and the industry Conveying fundamental concepts in CAD

More information

Graduate Student Orientation

Graduate Student Orientation Graduate Student Orientation Vasant Honavar Bioinformatics and Computational Biology Graduate Program Center for Computational Intelligence, Learning, & Discovery Iowa State University honavar@cs.iastate.edu

More information

Programming Neural Networks in Java

Programming Neural Networks in Java Programming Neural Networks in Java Programming Neural Networks in Java will show the intermediate to advanced Java programmer how to create neural networks. This book attempts to teach neural network

More information

PhD in Computer Science at North Carolina A&T State University

PhD in Computer Science at North Carolina A&T State University PhD in Computer Science at North Carolina A&T State University December 5, 2013 Contents Admission...1 Program Requirements...2 Course Work...2 Advisory Committee...2 Residency and Other Requirements...2

More information

SURVEY REPORT DATA SCIENCE SOCIETY 2014

SURVEY REPORT DATA SCIENCE SOCIETY 2014 SURVEY REPORT DATA SCIENCE SOCIETY 2014 TABLE OF CONTENTS Contents About the Initiative 1 Report Summary 2 Participants Info 3 Participants Expertise 6 Suggested Discussion Topics 7 Selected Responses

More information

Bachelor Programs. Bachelor of Social Work. Bachelor of Arts, (Major: Psychology) Bachelor of Arts, (Major: Linguistics)

Bachelor Programs. Bachelor of Social Work. Bachelor of Arts, (Major: Psychology) Bachelor of Arts, (Major: Linguistics) Humanities & Social Bachelor Programs College Program Name Program Language Stream Study period (Credit Hours) Bachelor of Social Work Bachelor of Arts, (Major: Sociology) Bachelor of Arts, (Major: Arabic

More information

COGNITIVE SCIENCE 222

COGNITIVE SCIENCE 222 Minds, Brains, & Intelligent Behavior: An Introduction to Cognitive Science Bronfman 106, Tuesdays and Thursdays, 9:55 to 11:10 AM Williams College, Spring 2007 INSTRUCTOR CONTACT INFORMATION Andrea Danyluk

More information

Artificial neural networks

Artificial neural networks Artificial neural networks Now Neurons Neuron models Perceptron learning Multi-layer perceptrons Backpropagation 2 It all starts with a neuron 3 Some facts about human brain ~ 86 billion neurons ~ 10 15

More information

AC Program/Major or Minor/Concentration Revision Form

AC Program/Major or Minor/Concentration Revision Form 1.0 Degree Title Specify the two degrees for concurrent degree programs 1.1 Major (Legacy= Subject) (30-char. max.) Cognitive Science B.A. and Sc. AC-04-48 Program/Major or Minor/Concentration Revision

More information

Interdisciplinary Master s study program in Computer Science and Mathematics

Interdisciplinary Master s study program in Computer Science and Mathematics Interdisciplinary Master s study program in Computer Science and Mathematics Study program cycle: Second cycle study program. Anticipated academic title: Master Engineer in Computer Science and Mathematics.

More information

A Client-Server Interactive Tool for Integrated Artificial Intelligence Curriculum

A Client-Server Interactive Tool for Integrated Artificial Intelligence Curriculum A Client-Server Interactive Tool for Integrated Artificial Intelligence Curriculum Diane J. Cook and Lawrence B. Holder Department of Computer Science and Engineering Box 19015 University of Texas at Arlington

More information

Professional Organization Checklist for the Computer Science Curriculum Updates. Association of Computing Machinery Computing Curricula 2008

Professional Organization Checklist for the Computer Science Curriculum Updates. Association of Computing Machinery Computing Curricula 2008 Professional Organization Checklist for the Computer Science Curriculum Updates Association of Computing Machinery Computing Curricula 2008 The curriculum guidelines can be found in Appendix C of the report

More information