Muscle Metabolism Introduction ATP is necessary for muscle contraction single muscle cell form and break the rigor bonds of cross-bridges small

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Muscle Metabolism Introduction ATP is necessary for muscle contraction single muscle cell form and break the rigor bonds of cross-bridges small"

Transcription

1 Muscle Metabolism Introduction 1. ATP is necessary for muscle contraction a. when a single muscle cell is contracting it can use up millions of ATP molecules per second to form and break the rigor bonds of cross-bridges (myosin head attached to thin filament) as the muscle cells contract b. even small muscles contain 1000 s of muscle cells c. ATP is also needed for maintenance of membrane potential for the generation of the muscle impulse and for the operation of Ca 2+ active transport pumps in the cistern membranes 2. Where does the ATP come from to support muscle contraction a. there are a number of sources of ATP that are engaged in a specific sequence as a muscle contracts b. Sources of ATP 1. ATP stored in muscle cells (5-10 seconds of sustained activity) 2. creatine phosphate stored in muscle cells (phosphate-storage molecule)(15-30 seconds of activity) 3. Cellular Respiration during exercise a. anaerobic (without oxygen) pathways that make ATP (glycolysis; fermentation) 1. if oxygen supply to the exercising muscle cells doesn t match the rate at which glycolysis makes pyruvate for the aerobic pathway, then some of the pyruvate is

2 converted to lactic acid. O 2 supply is only one of several factors that cause an increase in muscle and blood lactate levels during exercise. Some lactic acid can be produced in resting cells. 2. lactic acid is a byproduct of anaerobic cellular respiration b. aerobic pathways (with oxygen) respiration 1. makes ATP for activities lasting longer then a minute 3. the aerobic pathways of cellular respiration occur in the mitochondrion and make far more ATP then glycolysis 3. Muscle cells at rest a. store ATP that they make by cellular respiration (muscle cells have a lot of mitochondria) b. build up stores of creatine phosphate creatine + ATP creatine phosphate + ADP c. convert glucose that comes into the cell into glycogen (glycogenesis) 1. muscle cells contain a lot of glycogen 2. glycogen accounts for about 1.5% of a muscle cell s total mass 3. about 75% of the body s glycogen is stored in skeletal muscle (most of the rest is in the liver) 3. muscle cells depend on the breakdown of glycogen (glycogenolysis) during exercise to supply glucose to make ATP by cellular respiration Cellular Respiration of Glucose Overview Glucose + 6O 2 6CO 2 + 6H 2 O ATP 1. Glycolysis occurs in the cytoplasm a. anaerobic process that occurs in the cytoplasm b. glucose is broken down to 2 pyruvate c. results in a net gain of 2 ATP and forms 2 NADH (reduced coenzymes which carry e s to the ETC s in the mitochondria to make ATP) d. if there is enough O 2 in the cell, then all of the pyruvate goes into the mitochondria 2. Mitochondrial Stages a. all of the mitochondrial stages of cellular respiration require O 2 b. if O 2 is available, then pyruvate enters the mitochondrion and is broken down to CO 2 and H 2 O as about 30 ATP form 1. most of the ATP gained by cellular respiration (about 95%) is formed in the mitochondria 2. the CO 2 that forms is a gaseous waste product of cellular respiration. 3. CO 2 diffuses out of the cell, then into the blood. The blood takes it to the lung where it is exhaled. c. if O 2 is unavailable, then all of the mitochondrial stages of cellular respiration shut down d. CO 2 is generated in the mitochondria by the oxidation of pyruvate and the Kreb s Cycle e. most of the ATP (about 95%) that forms from the break down of glucose comes from the mitochondrial stages of cellular respiration 1. glycolysis produces 2 ATP per glucose (6%) 2. the mitochondria produce about 30 ATP per glucose (94%) f. Pathways in the Mitochondrion 1. oxidation of pyruvate (pyruvate to Acetyl CoA) 2. Kreb s Cycle 3. Electron Transport Chain and chemiosmosis g. if insufficient O 2 is available such as occurs during exercise, then some of the pyruvate does not enter the mitochondrion and gets converted to lactic acid within the sarcoplasm. 2

3 ATP Production by Exercising Skeletal Muscle One system blends into the next. There is considerable overlap between the 3 ATP-generating systems listed in the table below. Duration of Exercise System Description of System First 30 seconds Phosphagen System Stored ATP and CP Next seconds Glycogen-Lactic Acid system Blood glucose and glucose from glycogen are used to make ATP by lactic acid fermentation After about a minute or more of exercise until stop exercising Aerobic Respiration After about 60 seconds of exercise the cardiopulmonary system delivers oxygen to exercising skeletal muscle fast enough to sustain aerobic cellular respiration During exercise that lasts for more than 10 minutes, more than 90% of the ATP is produced aerobically. Short Bursts of Activity Lasting about 30 seconds (e.g., weight lifting, sprinting) 1. short bursts of activity like weight lifting and sprinting are powered by the stores of ATP and CP 2. ATP is provided by the phosphagen system which consists of stored ATP and ATP made by transferring a phosphate group from creatine phosphate to ADP to make ATP a. stored ATP and Creatine Phosphate (CP) are called the phosphagen system b. They are capable of supporting muscle contraction for about a minute of brisk walking or about 6 seconds of sprinting c. the phosphagen system is important for bursts of activity during sports like football and weightlifting d. once the cytoplasmic stores of ATP and CP are gone, then the cell switches to the glycogen-lactic acid system to make ATP for about 30 seconds and then finally to aerobic respiration which can provide ATP for hours of sustained activity. 3. ATP in muscle cells: first 6 seconds of running activity a. a resting muscle stores some ATP b. this reserve is used up quickly c. when you start to exercise vigorously, this reserve is used within 6 seconds 3

4 4. Creatine phosphate (CP) supplies an additional 25 seconds of activity a. once the stored reserves of ATP are used up (within the first 6 seconds of exercise), the cells rely on the formation of ATP from CP b. a resting muscle has six times more CP than stored ATP c. CP is formed when muscle cells are at rest d. when needed, CP releases its stored energy to convert ADP to ATP; the ATP that forms is then used to power muscle contraction CP + ADP creatine + ATP (this reaction is catalyzed by creatine kinase) Sustained Exercise that Lasts Longer than 30 seconds 1. Once the stored ATP and CP reserves are gone (can occur within 5-10 seconds depending on the strenuousness of the exercise), ATP is made for the next seconds by an anaerobic process called lactic acid fermentation that is part of the glycogen-lactic acid system a. as the phosphagen system is used up within the first 5-10 seconds of heavy exercise, the muscles shift to anaerobic fermentation (glycogen-lactic acid system) until the cardiopulmonary system can catch up with oxygen demand of exercising muscle. b. During next 30 to 40 seconds (after the depletion of ATP from the phosphagen system), the body uses glucose from the blood and the breakdown of muscle glycogen to make ATP by breaking it down during glycolysis to lactic acid. c. The pathway from glycogen to lactic acid is called the glycogen lactic acid system 2. the primary fuel for ATP synthesis by cellular respiration during exercise is glucose 3. most of the glucose for ATP synthesis in an active muscle comes from the breakdown of muscle glycogen 4. when an active muscle cell runs low on ATP and CP, enzymes of glycogenolysis are stimulated to convert glycogen to glucose 5. Anaerobic respiration and Lactic Acid Production during exercise a. anaerobic means without oxygen; glycolysis allows cells to generate ATP when mitochondrial activity is limited by the oxygen supply b. a muscle cell shifts to anaerobic respiration when it can t get enough oxygen into the cell to breakdown all of the pyruvate that forms at the end of glycolysis c. this occurs during strenuous exercise; break down glucose to pyruvate faster than the circulatory system can deliver oxygen to the cell d. some of the pyruvate is then fermented to form lactic acid (lactic acid fermentation) e. during strenuous activity lasting more than 30 or 40 seconds, anaerobic pathways supply most of the ATP for muscle contraction f. glycolysis (anaerobic pathway) supplies ATP at a rate that is 2.5 times faster than aerobic mitochondrial stages of cellular respiration g. activities such as soccer and tennis that involve short bursts of activity for a long period of time rely mostly on anaerobic pathways (lactic acid fermentation) to make ATP 6. Aerobic Cellular Respiration a. during low levels of prolonged activity (e.g., walking), the circulatory system provides enough O 2 for the complete respiration of glucose to CO 2 and H 2 O with the involvement of the mitochondrial stages b. well-conditioned athletes deliver more oxygen to muscle cells than those that are not conditioned 4

5 Muscle Fatigue 1. Muscle fatigue is the physiological inability to contract even though the muscle is receiving stimuli to do so. 2. Although many factors contribute to fatigue, it is not completely understood 3. The availability of ATP decreases during contraction, but is still available. a. Thus ATP is not a fatigue-causing factor in moderate exercise. b. a total lack of ATP results in cramping since the rigor bonds can t be broken (e.g., writer s cramp). The cramps are called contractures in which the muscle enters a state of continuous contraction for a while. 4. Several ionic imbalances contribute to fatigue a. during muscle activity, K + build up in the fluids of the T-tubules. This decreases the ability of muscle cells to release Ca 2+ from the cisterns, thus interferes with excitation-contraction coupling. b. An increase in the intracellular concentration of inorganic phosphate (P i from CP and ATP breakdown may interfere with calcium release from the SR and with myosin s power stroke. 5. Lactic acid (LA) accumulation during exercise has long been assumed to be a major cause of muscle fatigue, but that doesn t seem to be the case. a. LA does accumulate during exercise and release H + that lead to acidosis and acidosis will interfere with muscle contraction, but studies show that buffering systems within muscle cells bind up the H + to prevent ph changes. The ph of exercising muscle cells is normally regulated within normal limits. b. LA is associated with the ache that occurs as muscles are exercised. Lactic Acid Production 1. during strenuous exercise, muscle cells convert some of the pyruvate that forms during glycolysis to lactic acid 2. if lactic acid builds up it contributes to muscle ache (soreness, burn ) 3. better conditioned athletes have efficient systems to deliver a lot of oxygen to muscle cells during exercise and produce less lactic acid than a non-conditioned individual a. more capillary beds b. higher amounts of myoglobin in the cells c. stronger heart d. additional mitochondria 5. About 80% of the lactic acid produced enters the blood stream and most of that is taken up by liver cells. Liver cells then convert the lactic acid to glucose by reversing the steps of glycolysis Exercise-induced muscle soreness 1. occurs hours after exercise 2. due to microscopic damage to muscle cells (e.g., torn sarcolemma, damaged myofibrils) 3. indicated by blood levels of myoglobin and the enzyme creatine kinase 4. muscles repair the damage within a day or so Prolonged Muscle Activity (more than 10 minutes; distance running) 1. during prolonged muscle activity, the body gradually switches away from anaerobic pathways to aerobic pathways for making ATP a. aerobic pathways require O 2, which can come from either of 2 sources b. O 2 comes from the blood into muscle cells 5

6 c. some O 2 is found stored in muscle cells where it binds reversibly to myoglobin 2. aerobic pathways supply more than 90% of the ATP required for sustained intense activity lasting more than 10 minutes 3. aerobic pathways supply almost 100% of the ATP in marathon runners Oxygen Debt (Oxygen Deficit) 1. Amount of extra oxygen used by cells of the body immediately after exercise (beyond resting oxygen consumption) to restore the body back its normal resting state. 2. The oxygen debt accumulates during exercise and it is paid back after exercise is over as one breathes heavily for a few minutes. When one finishes exercising, one might expect that the heavy breathing that occurs during exercise would immediately stop since extra oxygen shouldn t be needed to maintain a resting metabolism, but that isn t the case because of the oxygen debt. 3. After prolonged exercise, a person continues to breathe heavily for several minutes to take in extra oxygen to pay back the oxygen debt. a. the extra O 2 allows liver (and muscle) cells to make more ATP than normal for a few minutes in order to convert lactic acid back to pyruvate. Two pyruvate molecules can then be combined into glucose. b. extra O 2 is used to oxygenate myoglobin in skeletal muscle cells; store oxygen in resting muscle cells c. extra O 2 is used to make the extra ATP in muscle cells to synthesize glycogen and creatine phosphate reserves that were used up during exercise. Restock glucose as glycogen. Most ATP used to regenerate CP. Muscle Fatigue 1. strength of contraction becomes progressively weaker until the muscle no longer responds 2. Fatigue occurs when the muscle cannot produce enough ATP to satisfy demand and/or when one is psychologically tired. 3. Contributing factors a. lack of enough O 2 to generate sufficient ATP b. glycogen depletion (decrease the rapid ATP-generating system) c. ionic imbalances K + accumulate in T-tubules as a result of repeated muscle impulses. This can interfere with the ability of muscle cells to release Ca 2+ from cisterns d. LA production that decreases ph of sarcoplasm. This can lead to a decrease in the activity of enzymes such that muscles don t contract effectively. Buffers within skeletal muscles appear to correct this reasonably well so that it is not a major cause of fatigue. e. unknown factors 6

Chapter 11. Muscle Energy and Metabolism

Chapter 11. Muscle Energy and Metabolism Chapter 11 Muscle Energy and Metabolism Muscle Metabolism All muscle contraction depends on ATP ATP is not stored in body / use it as we produce it! Ability to make new ATP supply depends on availability

More information

Harvesting Energy: Glycolysis and Cellular Respiration. Chapter 8

Harvesting Energy: Glycolysis and Cellular Respiration. Chapter 8 Harvesting Energy: Glycolysis and Cellular Respiration Chapter 8 Overview of Glucose Breakdown The overall equation for the complete breakdown of glucose is: C 6 H 12 O 6 + 6O 2 6CO 2 + 6H 2 O + ATP The

More information

Metabolism. Metabolism. Total of all chemical reactions that occur in the body. Bioenergetics. 1. Anabolic reactions Synthesis of molecules

Metabolism. Metabolism. Total of all chemical reactions that occur in the body. Bioenergetics. 1. Anabolic reactions Synthesis of molecules Metabolism Metabolism Total of all chemical reactions that occur in the body 1. Anabolic reactions Synthesis of molecules 2. Catabolic reactions Breakdown of molecules Bioenergetics Converting foodstuffs

More information

Muscle Metabolism Graphics are used with permission of: adam.com (http://www.adam.com/) Benjamin Cummings Publishing Co (http://www.awl.

Muscle Metabolism Graphics are used with permission of: adam.com (http://www.adam.com/) Benjamin Cummings Publishing Co (http://www.awl. Muscle Metabolism Graphics are used with permission of: adam.com (http://www.adam.com/) Benjamin Cummings Publishing Co (http://www.awl.com/bc) Page 1. Introduction Skeletal muscle must continuously make

More information

How is a Marathoner Different from a Sprinter? Long-distance runners have many slow fibers in their muscles

How is a Marathoner Different from a Sprinter? Long-distance runners have many slow fibers in their muscles How is a Marathoner Different from a Sprinter? Long-distance runners have many slow fibers in their muscles Slow fibers break down glucose aerobically (using oxygen) for ATP production These muscle cells

More information

Muscle Tissue. Muscle Physiology. Skeletal Muscle. Types of Muscle. Skeletal Muscle Organization. Myofibril Structure

Muscle Tissue. Muscle Physiology. Skeletal Muscle. Types of Muscle. Skeletal Muscle Organization. Myofibril Structure Muscle Tissue Muscle Physiology Chapter 12 Specially designed to contract Generates mechanical force Functions locomotion and external movements internal movement (circulation, digestion) heat generation

More information

Lecture Notes Respiration

Lecture Notes Respiration Lecture Notes Respiration We will consider two processes by which organisms harvest energy from food molecules: Aerobic Respiration more efficient, occurs in presence of O 2 Anaerobic Respiration less

More information

Unit 3 Lecture 11 METABOLISM

Unit 3 Lecture 11 METABOLISM Unit 3 Lecture METABOLISM Anabolism is defined as the chemical reactions that combine simple substances into more complex molecules (requires energy). Examples of anabolism include glycogenesis (conversion

More information

Metabolism - Part 1 Glycolysis & Respiration

Metabolism - Part 1 Glycolysis & Respiration Metabolism - Part 1 Glycolysis & Respiration Cells harvest chemical energy from foodstuffs in a series of exergonic reactions. The harvested energy can then be used to power energy demanding processes

More information

Glycolysis & Respiration

Glycolysis & Respiration Metabolism - Part 1 Glycolysis & Respiration Cells harvest chemical energy from foodstuffs in a series of exergonic reactions. The harvested energy can then be used to power energy demanding processes

More information

How Cells Harvest Chemical Energy

How Cells Harvest Chemical Energy How Cells Harvest Chemical Energy I. Introduction A. In eukaryotes, cellular respiration 1. harvests energy from food 2. yields large amounts of ATP 3. B. A similar process takes place in many prokaryotic

More information

The correct answer is d C. Answer c is incorrect. Reliance on the energy produced by others is a characteristic of heterotrophs.

The correct answer is d C. Answer c is incorrect. Reliance on the energy produced by others is a characteristic of heterotrophs. 1. An autotroph is an organism that a. extracts energy from organic sources b. converts energy from sunlight into chemical energy c. relies on the energy produced by other organisms as an energy source

More information

AP BIOLOGY CHAPTER 7 Cellular Respiration Outline

AP BIOLOGY CHAPTER 7 Cellular Respiration Outline AP BIOLOGY CHAPTER 7 Cellular Respiration Outline I. How cells get energy. A. Cellular Respiration 1. Cellular respiration includes the various metabolic pathways that break down carbohydrates and other

More information

How Does Training Affect Performance? PAL 30/40. Energy Systems

How Does Training Affect Performance? PAL 30/40. Energy Systems How Does Training Affect Performance? PAL 30/40 Energy Systems Energy is required by the body in order for it to complete any work. In the human body, energy is produced via the breakdown of food (carbohydrates,

More information

Cellular respiration

Cellular respiration Section 3 Cellular Respiration Objectives Summarize how glucose is broken down in the first stage of cellular respiration. Describe how is made in the second stage of cellular respiration. 4B Identify

More information

Energy and Muscle Contraction

Energy and Muscle Contraction Energy and Muscle Contraction A primer on the Energetics of Muscle Contraction and Oxygen Debt By Noel Ways Energy and Muscle Contraction Our study of muscle contraction ("Sliding Filament Theory") made

More information

Chapter 9 CELLULAR RESPIRATION

Chapter 9 CELLULAR RESPIRATION Chapter 9 CELLULAR RESPIRATION HARVESTING FREE ENERGY Photosynthesis takes free energy and puts it into carbohydrates/sugars Carbohydrates can be stored for later use; light can not and neither can ATP

More information

8/13/2009. Cellular Metabolism. Metabolism. Cellular Metabolism. Summary of Cellular Respiration. Aerobic Cellular respiration

8/13/2009. Cellular Metabolism. Metabolism. Cellular Metabolism. Summary of Cellular Respiration. Aerobic Cellular respiration Metabolism Cellular Metabolism Consists of all of the chemical reactions that take place in a cell Biol 105 Lecture 6 Read Chapter 3 (pages 63 69) Cellular Metabolism Aerobic cellular respiration requires

More information

Cellular Respiration: Obtaining Energy from Food

Cellular Respiration: Obtaining Energy from Food Chapter 6 Cellular Respiration: Obtaining Energy from Food PowerPoint Lectures for Campbell Essential Biology, Fifth Edition, and Campbell Essential Biology with Physiology, Fourth Edition Eric J. Simon,

More information

In This Chapter: The Chemistry of Energy Production

In This Chapter: The Chemistry of Energy Production In This Chapter: The Chemistry of Energy Production The Three Energy Systems Immediate Energy: The Phosphagen System Short-term Energy: The Glycolytic System Long-term Energy: The Oxidative System Putting

More information

Enzymes and Metabolic Pathways Un-lecture.part II. NOTE: number corresponds to slides posted on the website.

Enzymes and Metabolic Pathways Un-lecture.part II. NOTE: number corresponds to slides posted on the website. Enzymes and Metabolic Pathways Un-lecture.part II NOTE: number corresponds to slides posted on the website. 44. ETS and Oxidative phosphorylation: When we completed the Krebs cycle, all of the bonds between

More information

Chapter 7 Cellular Respiration

Chapter 7 Cellular Respiration Phases of aerobic cellular respiration 1. Glycolysis 2. Transition or Acetyl-CoA reaction 3. Krebs cycle 4. Electron transport system Chapter 7 Cellular Respiration These phases are nothing more than metabolic

More information

Teppe Treppe: A staircase increase in tension production after repeated simulation, even though the muscle is allowed to relax between twitches.

Teppe Treppe: A staircase increase in tension production after repeated simulation, even though the muscle is allowed to relax between twitches. Part II, Muscle: Mechanisms of Contraction and Neural Control, Chapter 12 Outline of class notes Objectives: After studying part II of this chapter you should be able to: 1. Discuss how contractile force

More information

Ch. 6 Cellular Respiration Period

Ch. 6 Cellular Respiration Period Ch. 6 Cellular Respiration Name Period California State Standards covered by this chapter: Cell Biology 1. The fundamental life processes of plants and animals depend on a variety of chemical reactions

More information

Bioenergetics. Chapter 3, Part 2. Anaerobic ATP Production. Anaerobic ATP Production. Anaerobic ATP Production. The Two Phases of Glycolysis

Bioenergetics. Chapter 3, Part 2. Anaerobic ATP Production. Anaerobic ATP Production. Anaerobic ATP Production. The Two Phases of Glycolysis Anaerobic ATP Production Chapter 3, Part 2 1. ATP-PC system Immediate source of ATP PC + ADP Creatine kinase ATP + C Bioenergetics 100% % Capacity of Energy System Energy Transfer Systems and Exercise

More information

Buddhist Chi Hong Chi Lam Memorial College A.L. Bio. Notes (by Denise Wong) Energetics... Page 18. Respiration

Buddhist Chi Hong Chi Lam Memorial College A.L. Bio. Notes (by Denise Wong) Energetics... Page 18. Respiration Energetics... Page 18 Respiration Syllabus : The importance of respiration in converting chemical energy in food to chemical energy in ATP. The sites of respiration the sites of the various biochemical

More information

Chapter 7. Harvesting Energy: Glycolysis and Cellular Respiration

Chapter 7. Harvesting Energy: Glycolysis and Cellular Respiration Chapter 7 Harvesting Energy: Glycolysis and Cellular Respiration Including some materials from lectures by Gregory Ahearn University of North Florida Ammended by John Crocker Copyright 2009 Pearson Education,

More information

1/21/2009. ATP PC system Immediate source of ATP

1/21/2009. ATP PC system Immediate source of ATP Scott K. Powers Edward T. Howley Theory and Application to Fitness and Performance SEVENTH EDITION Chapter Presentation prepared by: Brian B. Parr, Ph.D. University of South Carolina Aiken Copyright 2009

More information

Cellular Respiration Review

Cellular Respiration Review MULTIPLE CHOICE: Circle ALL that are TRUE. There may be MORE THAN one correct answer. is the first step in cellular respiration that begins releasing energy stored in glucose. A. Alcoholic fermentation

More information

Using the Energy from Photosynthesis. Harvesting Energy: Glycolysis and Cellular Respiration. Energy Produced through the Breakdown of Glucose

Using the Energy from Photosynthesis. Harvesting Energy: Glycolysis and Cellular Respiration. Energy Produced through the Breakdown of Glucose Harvesting Energy: and Cellular Chapter 8 Using the Energy from Photosynthesis 6CO 2 + 6H 2 O + light C 6 H 12 O 6 + 6O 2 + heat Some ATP is produced in photosynthesis, but most energy is stored in sugars.

More information

What affects an enzyme s activity? General environmental factors, such as temperature and ph. Chemicals that specifically influence the enzyme.

What affects an enzyme s activity? General environmental factors, such as temperature and ph. Chemicals that specifically influence the enzyme. CH s 8-9 Respiration & Metabolism Metabolism A catalyst is a chemical agent that speeds up a reaction without being consumed by the reaction. An enzyme is a catalytic protein. Hydrolysis of sucrose by

More information

How Cells Release Chemical Energy Cellular Respiration

How Cells Release Chemical Energy Cellular Respiration How Cells Release Chemical Energy Cellular Respiration Overview of Carbohydrate Breakdown Pathways Photoautotrophs make ATP during photosynthesis and use it to synthesize glucose and other carbohydrates

More information

Energy and Life. Energy= the ability to do work. Autotrophs= use sunlight, CO 2, and water to make their own food (sugars) PHOTOSYNTHESIS

Energy and Life. Energy= the ability to do work. Autotrophs= use sunlight, CO 2, and water to make their own food (sugars) PHOTOSYNTHESIS Energy and Life Energy= the ability to do work Autotrophs= use sunlight, CO 2, and water to make their own food (sugars) PHOTOSYNTHESIS Heterotrophs= can t make their own food, they have to eat autotrophs

More information

9-1 Notes. Chemical Pathways

9-1 Notes. Chemical Pathways 9-1 Notes Chemical Pathways Chemical Energy & Food Food provides living things with the chemical building blocks to grow and reproduce. One gram of the sugar glucose releases 3811 calories of heat energy.

More information

Chapter 3: Bioenergetics

Chapter 3: Bioenergetics Chapter 3: Bioenergetics Introduction Metabolism: total of all chemical reactions that occur in the body Anabolic reactions Synthesis of molecules Catabolic reactions Breakdown of molecules Bioenergetics

More information

Muscles How muscles contract - The Sliding Filament Theory

Muscles How muscles contract - The Sliding Filament Theory Muscles How muscles contract - The Sliding Filament Theory A muscle contains many muscle fibers A muscle fiber is a series of fused cells Each fiber contains a bundle of 4-20 myofibrils Myofibrils are

More information

Lecture 11. Krebs Cycle Reactions. Overview of Stage II of Catabolism. Beginning of Stage III: The Krebs Cycle. Acetyl-CoA

Lecture 11. Krebs Cycle Reactions. Overview of Stage II of Catabolism. Beginning of Stage III: The Krebs Cycle. Acetyl-CoA Overview of Stage II of Catabolism Lecture 11 Chapter 24: Metabolism and Energy Krebs Cycle, Cellular Respiration and Muscle Power! In Stage II- specific metabolic pathways, for amino acids, simple sugars,

More information

Work and Energy in Muscles

Work and Energy in Muscles Work and Energy in Muscles Why can't I sprint forever? I'll start this section with that silly question. What lies behind the undisputable observation that we must reduce speed if we want to run longer

More information

Cellular Respiration An Overview

Cellular Respiration An Overview Why? Cellular Respiration An Overview What are the phases of cellular respiration? All cells need energy all the time, and their primary source of energy is ATP. The methods cells use to make ATP vary

More information

Major concepts: Notes: Capturing Cell Energy

Major concepts: Notes: Capturing Cell Energy 1. The fundamental life processes of plants and animals depend on a variety of chemical reactions that occur in specialized areas of the organism s cells. As a basis for understanding this concept: 1.

More information

The process by which cells break down organic molecules (food) to make ATP is called cellular respiration

The process by which cells break down organic molecules (food) to make ATP is called cellular respiration Energy flows into an ecosystem as sunlight and leaves as heat Photosynthesis makes O 2 and organic molecules (like sugars and proteins), which are used in cellular respiration Cells use chemical energy

More information

Photosynthesis takes place in three stages:

Photosynthesis takes place in three stages: Photosynthesis takes place in three stages: Light-dependent reactions Light-independent reactions The Calvin cycle 1. Capturing energy from sunlight 2. Using energy to make ATP and NADPH 3. Using ATP and

More information

Cellular Respiration. Cellular Respiration. The Mighty Mitochondria. Cellular Respiration. Cellular Respiration

Cellular Respiration. Cellular Respiration. The Mighty Mitochondria. Cellular Respiration. Cellular Respiration Have you ever wondered why you need oxygen? The Process that releases energy by breaking down food molecules in the presence of oxygen That energy goes to make ATP. What does it all mean? C 6 H 12 O 6

More information

2. Cellular respiration uses oxygen to convert the chemical energy stored in organic molecules into -?-

2. Cellular respiration uses oxygen to convert the chemical energy stored in organic molecules into -?- HB Cell Respiration Questions (1/2 point each question or blank to fill in 37 points) 1. Organisms, such as plants that make their own food are called -?- 2. Cellular respiration uses oxygen to convert

More information

Cellular Respiration and Fermentation. Lab 6 Biol 1107L Spring 2015

Cellular Respiration and Fermentation. Lab 6 Biol 1107L Spring 2015 Cellular Respiration and Fermentation Lab 6 Biol 1107L Spring 2015 Overview: Life Is Work Living cells require energy from outside sources Some animals obtain energy by eating plants, and some animals

More information

Energy, Photosynthesis & Cellular Respiration

Energy, Photosynthesis & Cellular Respiration Energy, Photosynthesis & Cellular Respiration Name: Period: Date: I. ATP: Energy In A Molecule All is broken down by the body into small molecules through digestion o By the time food reaches your, it

More information

Cellular respiration. Cellular respiration. Respiration and fermentation. Respiration as a redox rxn. Redox reactions.

Cellular respiration. Cellular respiration. Respiration and fermentation. Respiration as a redox rxn. Redox reactions. Cellular respiration So why do we breathe? The big picture Heterotrophs cannot make their own food to supply their energy needs Instead they break down food to use the chemical energy stored in organic

More information

Cellular Respiration

Cellular Respiration Cellular Respiration Cellular Respiration Text, Diagrams, Assessments, and Link to Standards Focus Questions 1) What is cellular respiration? 2) How is cellular respiration connected to breathing? 3) If

More information

Copyright 2010 Pearson Education, Inc. Chapter Twenty Three 1

Copyright 2010 Pearson Education, Inc. Chapter Twenty Three 1 23.2 Glucose Metabolism: An Overview When glucose enters a cell from the bloodstream, it is immediately converted to glucose 6- phosphate. Once this phosphate is formed, glucose is trapped within the cell

More information

1. Explain the difference between fermentation and cellular respiration.

1. Explain the difference between fermentation and cellular respiration. : Harvesting Chemical Energy Name Period Overview: Before getting involved with the details of cellular respiration and photosynthesis, take a second to look at the big picture. Photosynthesis and cellular

More information

Chapter 5 Fundamentals of Human Energy Transfer

Chapter 5 Fundamentals of Human Energy Transfer Chapter 5 Fundamentals of Human Energy Transfer Slide Show developed by: Richard C. Krejci, Ph.D. Professor of Public Health Columbia College 6.18.11 Objectives 1. Describe the first law of thermodynamics

More information

008 Chapter 8. Student:

008 Chapter 8. Student: 008 Chapter 8 Student: 1. Some bacteria are strict aerobes and others are strict anaerobes. Some bacteria, however, are facultative anaerobes and can live with or without oxygen. If given the choice of

More information

Metabolism. Functions of food. Metabolism is all the chemical reactions of the body. source of energy essential nutrients

Metabolism. Functions of food. Metabolism is all the chemical reactions of the body. source of energy essential nutrients Metabolism Functions of food source of energy essential nutrients Metabolism is all the chemical reactions of the body some reactions produce the energy stored in ATP that other reactions consume all molecules

More information

Chapter 7 Active Reading Guide Cellular Respiration and Fermentation

Chapter 7 Active Reading Guide Cellular Respiration and Fermentation Name: AP Biology Mr. Croft Chapter 7 Active Reading Guide Cellular Respiration and Fermentation Overview: Before getting involved with the details of cellular respiration and photosynthesis, take a second

More information

Cellular Respiration Page 9

Cellular Respiration Page 9 Cellular Respiration Page 9 I. The Importance of Food A. Food provides living things with the chemical building blocks they need to grow and reproduce. B. Food serves as a source of for the cells of the

More information

Human Biology Higher Homework: Topic Human Cells. Sub-topic3: Cell Metabolism

Human Biology Higher Homework: Topic Human Cells. Sub-topic3: Cell Metabolism Human Biology Higher Homework: Topic Human Cells Sub-topic3: Cell Metabolism 1. During which of the following chemical conversions is A T P produced? A B C D Amino acids protein Glucose pyruvic acid Haemoglobin

More information

UNIT 3: AREA OF STUDY 2

UNIT 3: AREA OF STUDY 2 UNIT 3: AREA OF STUDY 2 PHYSIOLOGICAL RESPONSES TO PHYSICAL ACTIVITY TOPIC 1: FOODS, FUELS AND ENERGY SYSTEMS Energy from muscular contraction comes from Adenosine Triphosphate. An acceptable abbreviation

More information

- Oxygen is needed for cellular respiration [OVERHEAD, fig. 6.2, p. 90 / 4th: 6.1] - lungs provide oxygen to blood, blood brings oxygen to the cells.

- Oxygen is needed for cellular respiration [OVERHEAD, fig. 6.2, p. 90 / 4th: 6.1] - lungs provide oxygen to blood, blood brings oxygen to the cells. Cellular respiration - how cells make energy - Oxygen is needed for cellular respiration [OVERHEAD, fig. 6.2, p. 90 / 4th: 6.1] - ATP - this is provided by the lungs - lungs provide oxygen to blood, blood

More information

Life requires energy. A cell uses energy to builcand maintain is structure, transport

Life requires energy. A cell uses energy to builcand maintain is structure, transport 1 Life requires energy. A cell uses energy to builcand maintain is structure, transport materials, manufacture products, move, grow,and reproduce. This energy ultimately comes from the sun. The figure

More information

Anaerobic and Aerobic Training Adaptations. Chapters 5 & 6

Anaerobic and Aerobic Training Adaptations. Chapters 5 & 6 Anaerobic and Aerobic Training Adaptations Chapters 5 & 6 Adaptations to Training Chronic exercise provides stimulus for the systems of the body to change Systems will adapt according to level, intensity,

More information

Cellular Respiration: Harvesting Chemical Energy

Cellular Respiration: Harvesting Chemical Energy Slide 1 Chapter 9 Cellular Respiration: Harvesting Chemical Energy PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley

More information

Cellular Respiration and Fermentation

Cellular Respiration and Fermentation LECTURE PRESENTATIONS For CAMPBELL BIOLOGY, NINTH EDITION Jane B. Reece, Lisa A. Urry, Michael L. Cain, Steven A. Wasserman, Peter V. Minorsky, Robert B. Jackson Chapter 9 Cellular Respiration and Fermentation

More information

Biology 20 Cellular Respiration Review NG Know the process of Cellular Respiration (use this picture if it helps):

Biology 20 Cellular Respiration Review NG Know the process of Cellular Respiration (use this picture if it helps): Biology 20 Cellular Respiration Review NG Know the process of Cellular Respiration (use this picture if it helps): 1) How many ATP molecules are produced for each glucose molecule used in fermentation?

More information

Cellular Respiration. The backwards and slightly more complicated version of photosynthesis

Cellular Respiration. The backwards and slightly more complicated version of photosynthesis Cellular Respiration The backwards and slightly more complicated version of photosynthesis Learning Outcomes I will. - Explain how glycolysis and the Kreb s cycle work and describe where these processes

More information

Know about the different energy systems used during sports performance

Know about the different energy systems used during sports performance Learning aim B Know about the different energy systems used during sports performance Assessment criteria 2B.P5 2B.M5 2B.D2 Describe the function of the three energy systems in the production and release

More information

SBI4U: Respiration and Photosynthesis Test. [25 marks]

SBI4U: Respiration and Photosynthesis Test. [25 marks] Part 1: Multiple Choice SBI4U: Respiration and Photosynthesis Test Mr. Dykstra Name: [25 marks] 1. Which of the following molecules links glucose oxidation, fatty acid catabolism, and the catabolism of

More information

: The Body s Energy Shuttles. *The body s energy shuttles NADH, FADH 2

: The Body s Energy Shuttles. *The body s energy shuttles NADH, FADH 2 Chapter 8 Metabolism Chapter Outline I. Energy: Fuel for Work. *Energy is necessary to do any kind of work. The body converts chemical energy from food sources carbohydrates, proteins, and fats into a

More information

ATP and Cellular Respiration NOTES

ATP and Cellular Respiration NOTES ATP AND ENERGY: ATP and Cellular Respiration NOTES Living things need continuous input of ENERGY to sustain life ENERGY is defined as the capacity of a system to perform work or an action. Living organisms

More information

The Structure and Hydrolysis of ATP

The Structure and Hydrolysis of ATP The Structure and Hydrolysis of ATP ATP drives endergonic reactions by phosphorylation, transferring a phosphate group to some other molecule, such as a reactant The recipient molecule is now called a

More information

Energy Production In A Cell (Chapter 25 Metabolism)

Energy Production In A Cell (Chapter 25 Metabolism) Energy Production In A Cell (Chapter 25 Metabolism) Large food molecules contain a lot of potential energy in the form of chemical bonds but it requires a lot of work to liberate the energy. Cells need

More information

CELLULAR RESPIRATION 29 MAY 2013

CELLULAR RESPIRATION 29 MAY 2013 CELLULAR RESPIRATION 29 MAY 2013 Lesson Description In this lesson, we: Define cellular respiration Define aerobic respiration o The role of glycolysis in aerobic respiration o The role of the Kreb s cycle

More information

Enzymes and Metabolic Pathways Un-lecture!

Enzymes and Metabolic Pathways Un-lecture! Enzymes and Metabolic Pathways Un-lecture! Numbers correspond to the slides, which are in your lecture notes and also posted on-line on the announcements page. 1. Characteristics of enzymes.we went over

More information

1. Enzymes. Biochemical Reactions. Chapter 5: Microbial Metabolism. 1. Enzymes. 2. ATP Production. 3. Autotrophic Processes

1. Enzymes. Biochemical Reactions. Chapter 5: Microbial Metabolism. 1. Enzymes. 2. ATP Production. 3. Autotrophic Processes Chapter 5: Microbial Metabolism 1. Enzymes 2. ATP Production 3. Autotrophic Processes 1. Enzymes Biochemical Reactions All living cells depend on biochemical reactions to maintain homeostasis. All of the

More information

Chapter 9 Review Worksheet Cellular Respiration

Chapter 9 Review Worksheet Cellular Respiration 1 of 5 11/9/2011 8:11 PM Name: Hour: Chapter 9 Review Worksheet Cellular Respiration Energy in General 1. Differentiate an autotroph from a hetertroph as it relates to obtaining energy and the processes

More information

Chapter 9 Cellular Respiration

Chapter 9 Cellular Respiration Chapter 9 Cellular Respiration Electrons carried in NADH Mitochondrion Glucose Glycolysis Pyruvic acid Krebs Cycle Electrons carried in NADH and FADH 2 Electron Transport Chain Cytoplasm Mitochondrion

More information

This Molecule is known as Adenosine Triphosphate: Adenosine Molecule + 3 Phosphates

This Molecule is known as Adenosine Triphosphate: Adenosine Molecule + 3 Phosphates Energy Systems Quick overview 1 st Minute: http://www.youtube.com/watch?v=ekvvye0nftm http://www.youtube.com/watch?v=hgyd7aui6fk Anaerobic Energy Systems: http://www.youtube.com/watch?v=ucmnqqwlrc0 Aerobic

More information

Energy flow and chemical recycling in ecosystems. Energy flow and chemical recycling in ecosystems

Energy flow and chemical recycling in ecosystems. Energy flow and chemical recycling in ecosystems 1 Cellular Respiration Bio 103 Lecture Dr. Largen 2 Topics Introduction to cellular respiration Basic mechanisms of energy release and storage Stages of cellular respiration and fermentation Interconnections

More information

CHAPTER 4. Section 1 Do we get energy from food?

CHAPTER 4. Section 1 Do we get energy from food? Section 1 Do we get energy from food? CHAPTER 4 Food contains energy but it has to be broken down in order to be used. That means that energy comes from food but not directly. All cells, including plant

More information

2. What structure absorbs this energy in the plants cell? In other words, where is photosynthesis occurring in the plant?

2. What structure absorbs this energy in the plants cell? In other words, where is photosynthesis occurring in the plant? Section: 3.4 Name: Opening Activity: What is the equation for photosynthesis? Latin Root Word: Review of Old Information: Review of Old Information: 1. All energy begins as what type of energy and from

More information

Cell Energy (Photosynthesis and Respiration) Notes

Cell Energy (Photosynthesis and Respiration) Notes Cell Energy (Photosynthesis and Respiration) Notes I. Energy ability to do work; forms of energy: heat, light, chemical, electrical, mechanical, kinetic, potential A. Energy for living things comes from

More information

GCE A Level. Biology. Energy and respiration. сᴏᴏʟιᴏ

GCE A Level. Biology. Energy and respiration. сᴏᴏʟιᴏ GCE A Level Biology Energy and respiration сᴏᴏʟιᴏ 2013-2014 Q 1(a) Describe how ATP is synthesized by oxidative phosphorylation. [June 2012 # 1] Reduced NAD and reduced FAD are passed to the electron transport

More information

Chapter 3. Energy Production. ATP, the Cell s Energy Currency

Chapter 3. Energy Production. ATP, the Cell s Energy Currency Chapter 3 Energy Production The reason that we eat, besides the fact that food can be so delicious, is for energy and building blocks. Although energy cannot be created or destroyed, its form can change.

More information

Training our energy systems

Training our energy systems Training our energy systems By: Kelly Mackenzie, MSC, BPE, AFLCA trainer Regardless of what mode of exercise we are using, we can train all three of our energy systems. There are physiological adaptations

More information

Cellular Respiration: Supplying Energy to Metabolic Reactions

Cellular Respiration: Supplying Energy to Metabolic Reactions Cellular Respiration: Supplying Energy to Metabolic Reactions ATP powers most of the processes in a cell including: * Muscle movement * Active Transport ATP also provides the necessary activation energy

More information

CELL/ PHOTOSYNTHESIS/ CELLULAR RESPIRATION Test 2011 ANSWER 250 POINTS ANY WAY IN WHICH YOU WANT

CELL/ PHOTOSYNTHESIS/ CELLULAR RESPIRATION Test 2011 ANSWER 250 POINTS ANY WAY IN WHICH YOU WANT CELL/ PHOTOSYNTHESIS/ CELLULAR RESPIRATION Test 2011 ANSWER 250 POINTS ANY WAY IN WHICH YOU WANT Completion: complete each statement. (1 point each) 1. All cells arise from. 2. The basic unit of structure

More information

Metabolism Practice Test KEY

Metabolism Practice Test KEY Biology 12 Metabolism Practice Test KEY Name: Section 1: What is an enzyme? 1. Which of the following statements is true about enzymes? a) 3D shape can vary and still be active b) they may catalyze only

More information

CELLULAR RESPIRATION. Teacher Packet

CELLULAR RESPIRATION. Teacher Packet AP * BIOLOGY CELLULAR RESPIRATION Teacher Packet AP* is a trademark of the College Entrance Examination Board. The College Entrance Examination Board was not involved in the production of this material.

More information

Introduction Chapter 6. 6.1 Photosynthesis and cellular respiration provide energy for life. 6.3 Cellular respiration banks energy in ATP molecules

Introduction Chapter 6. 6.1 Photosynthesis and cellular respiration provide energy for life. 6.3 Cellular respiration banks energy in ATP molecules Introduction Chapter 6 In eukaryotes, cellular respiration harvests energy from food, yields large amounts of, and Uses to drive cellular work. A similar process takes place in many prokaryotic organisms.

More information

Integration of Metabolism

Integration of Metabolism I. Central Themes of Metabolism 1. ATP is the universal energy carrier. Integration of Metabolism Bryant Miles 2. ATP is generated by the oxidation of metabolic fuels Glucose Fatty Acids Amino Acids 3.

More information

Lab 8 Cellular Respiration (April 2014)

Lab 8 Cellular Respiration (April 2014) Lab 8 Cellular Respiration (April 2014) Section 1 Review of Energy Molecules [2] Welcome to this week s lab on cellular respiration. This lab continues the exploration of how organisms obtain and use energy.

More information

ATP accounting so far ELECTRON TRANSPORT CHAIN & CHEMIOSMOSIS. The Essence of ETC: The Electron Transport Chain O 2

ATP accounting so far ELECTRON TRANSPORT CHAIN & CHEMIOSMOSIS. The Essence of ETC: The Electron Transport Chain O 2 accounting so far The final stage of cellular respiration: ELECTRON TRANSPORT CHAIN & CHEMIOSMOSIS Glycolysis 2 Kreb s cycle 2 Life takes a lot of energy to run, need to extract more energy than 4! There

More information

RESPIRATION AND FERMENTATION: AEROBIC AND ANAEROBIC OXIDATION OF ORGANIC MOLECULES. Bio 171 Week 6

RESPIRATION AND FERMENTATION: AEROBIC AND ANAEROBIC OXIDATION OF ORGANIC MOLECULES. Bio 171 Week 6 RESPIRATION AND FERMENTATION: AEROBIC AND ANAEROBIC OXIDATION OF ORGANIC MOLECULES Bio 171 Week 6 Procedure Label test tubes well, including group name 1) Add solutions listed to small test tubes 2) For

More information

Oxidation of Pyruvate and the Citric Acid Cycle

Oxidation of Pyruvate and the Citric Acid Cycle OpenStax-CNX module: m44433 1 Oxidation of Pyruvate and the Citric Acid Cycle OpenStax College This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 3.0 By the

More information

Interval Training. Interval Training

Interval Training. Interval Training Interval Training Interval Training More work can be performed at higher exercise intensities with same or less fatigue than in continuous training Fitness Weight Loss Competition Baechle and Earle, Essentials

More information

AP Bio Photosynthesis & Respiration

AP Bio Photosynthesis & Respiration AP Bio Photosynthesis & Respiration Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. 1. What is the term used for the metabolic pathway in which

More information

Does Lactic Acid Cause Muscular Fatigue?

Does Lactic Acid Cause Muscular Fatigue? Does Lactic Acid Cause Muscular Fatigue? Ernest W. Maglischo, Ph.D. 1970 Lazy Meadow Lane Prescott, AZ 86303 USA ewmaglischo@cox.net Abstract. Until recently, lactic acid accumulation and the acidosis

More information

S.J. Valberg and J.M. MacLeay 181 SKELETAL MUSCLE FUNCTION AND METABOLISM

S.J. Valberg and J.M. MacLeay 181 SKELETAL MUSCLE FUNCTION AND METABOLISM S.J. Valberg and J.M. MacLeay 181 SKELETAL MUSCLE FUNCTION AND METABOLISM S.J. VALBERG and J.M. MACLEAY Department of Clinical and Population Sciences,College of Veterinary Medicine, University of Minnesota,

More information

Todays Outline. Metabolism. Why do cells need energy? How do cells acquire energy? Metabolism. Concepts & Processes. The cells capacity to:

Todays Outline. Metabolism. Why do cells need energy? How do cells acquire energy? Metabolism. Concepts & Processes. The cells capacity to: and Work Metabolic Pathways Enzymes Features Factors Affecting Enzyme Activity Membrane Transport Diffusion Osmosis Passive Transport Active Transport Bulk Transport Todays Outline -Releasing Pathways

More information

4. Complete oxidative breakdown of glucose results in ATP molecules. A) 2 B) 4 C) 32 D) 36 E) 39

4. Complete oxidative breakdown of glucose results in ATP molecules. A) 2 B) 4 C) 32 D) 36 E) 39 Chapter 8 Quiz Multiple Choice Questions 1. Some bacteria are strict aerobes and others are strict anaerobes. Some bacteria, however, are facultative anaerobes and can live with or without oxygen. If given

More information

Cellular Respiration

Cellular Respiration ellular Respiration ellular Respiration A catabolic, exergonic, oxygen (O 2 ) requiring process that uses energy extracted from macromolecules (glucose) to produce energy (ATP) and water (H 2 O). 6 H 12

More information