EMC ISILON BEST PRACTICES FOR HADOOP DATA STORAGE
|
|
|
- Cynthia Day
- 10 years ago
- Views:
Transcription
1 EMC ISILON BEST PRACTICES FOR HADOOP DATA STORAGE ABSTRACT This paper describes the best practices for setting up and managing the HDFS service on an EMC Isilon cluster to optimize data storage for Hadoop analytics. This paper covers OneFS 7.2 or later. January 2015 EMC WHITE PAPER
2 Copyright 2015 EMC Corporation. All Rights Reserved. EMC believes the information in this publication is accurate as of its publication date. The information is subject to change without notice. The information in this publication is provided as is. EMC Corporation makes no representations or warranties of any kind with respect to the information in this publication, and specifically disclaims implied warranties of merchantability or fitness for a particular purpose. Use, copying, and distribution of any EMC software described in this publication requires an applicable software license. For the most up-to-date listing of EMC product names, see EMC Corporation Trademarks on EMC.com. All trademarks used herein are the property of their respective owners. Part Number H
3 TABLE OF CONTENTS INTRODUCTION 5 Overview of Isilon scale-out NAS for big data 5 How Hadoop works with Isilon scale-out NAS 6 Namenode redundancy 6 Rack awareness 7 The HDFS architecture of OneFS 7 Creating a multiprotocol data lake for analytics 8 HDFS SETUP 8 Supported distributions 9 Managing Concurrent Hadoop Jobs and Other Resources with YARN 9 Overview of how to integrate an Isilon cluster with Hadoop 9 Sizing an Isilon cluster for a Hadoop compute grid 11 Maximizing network throughput with 10 Gigabit Ethernet 11 Do not run the NameNode and DataNode services on clients 11 Overview of Isilon HDFS commands 11 The HDFS service and logs 12 User and group IDs 13 Creating directories and setting permissions 13 Setting the root path in the system access zone 14 Setting up a SmartConnect zone for namenodes 14 WORKING WITH HADOOP DISTRIBUTIONS AND PROJECTS 15 Cloudera 15 Pivotal HD 16 Spark 16 TUNING ONEFS FOR HDFS OPERATIONS 16 Block sizes 16 Tuning the number of HDFS threads 17 Obtaining statistics to tune OneFS for a Hadoop workflow 17 Monitoring performance with InsightIQ 19 Storing intermediate jobs on an Isilon cluster 19 Dealing with shuffle space bottlenecks 20 Federation with DAS and NAS 20 Backing Up Hadoop data on an Isilon cluster with DistCp 21 Storage pools for different data sets 21 Data protection best practices 21 3
4 Aligning workloads with data access patterns 22 Virtualizing Hadoop in large-scale infrastructures 22 SMARTCONNECT FOR HDFS 23 Handling namenode and datanode failure scenarios 24 Use multiple IP addresses per interface 25 Service subnets and DNS integration 26 SEGREGATING TENANTS AND DATA SETS WITH ACCESS ZONES 26 Using OneFS Access Zones 27 Setting a Unique HDFS Root Directory for Each Tenant 28 Combining Swift Object Storage with Hadoop Analytics 28 Monitoring HDFS in an Access Zone with Apache Ambari 29 Secure Impersonation 29 WebHDFS 29 Working with Different Versions of Hadoop Simultaneously 29 Associating Networking Resources with Access Zones 29 Sharing Data Among Tenants 32 ALIGN DATASETS WITH STORAGE POOLS 32 SmartPools for analytics data 32 Write caching with SmartCache 32 Guidelines for file pool management 33 Check the optimization settings of directories and files 33 Storing hot, warm, and cold data for Splunk 34 SECURING HDFS CONNECTIONS WITH KERBEROS 34 Set up Kerberos authentication with Active Directory 34 Set up Kerberos authentication with MIT Kerberos 5 35 Altering Hadoop configuration files for Kerberos 37 Test Kerberos authentication 38 Troubleshooting Kerberos authentication 38 CONCLUSION 39 4
5 INTRODUCTION The EMC Isilon scale-out network-attached storage (NAS) platform provides Hadoop clients with direct access to big data through a Hadoop File System (HDFS) interface. Powered by the distributed EMC Isilon OneFS operating system, an EMC Isilon cluster delivers a scalable pool of storage with a global namespace. OneFS serves as the HDFS file system for Hadoop compute clients. As Hadoop clients run MapReduce jobs, the clients access the data that is stored in an Isilon cluster by connecting to any node over HDFS. Every node in the cluster can act as a namenode and a datanode. Each node boosts performance and expands the cluster's capacity. For Hadoop analytics, the Isilon scale-out distributed architecture minimizes bottlenecks, rapidly serves large data sets, and optimizes performance for MapReduce jobs. An Isilon cluster fosters data analytics without ingesting data into an HDFS file system. With an EMC Isilon cluster, you can store data on an enterprise storage platform with your existing workflows and standard protocols, including SMB, HTTP, FTP, REST, OpenStack Object Storage (Swift), and NFS as well as HDFS. Regardless of whether you store the data with SMB or NFS, however, you can analyze it with a Hadoop compute grid through HDFS. There is no need to set up an HDFS file system and then load data into it with tedious HDFS copy commands or specialized Hadoop connectors. An Isilon cluster simplifies data management while cost-effectively maximizing the value of data. Although high-performance computing with Hadoop has traditionally stored data locally in compute clients HDFS file system, the following use cases make a compelling case for coupling MapReduce with Isilon scale-out NAS: Store data in a POSIX-compliant file system with SMB and NFS workflows and then access it through HDFS for MapReduce Scale storage independently of compute as your data sets grow Protect data more reliably and efficiently than replicating it Eliminate HDFS copy operations to ingest data and hadoop fs commands to manage data Implement distributed fault-tolerant namenode services Manage data with enterprise storage features such as deduplication and snapshots Storing data in an Isilon scale-out NAS cluster instead of a Hadoop cluster streamlines the entire analytics workflow. Isilon s HDFS interface eliminates extracting the data from a storage system and loading it into an HDFS file system. Isilon s multiprotocol data access with SMB and NFS eliminates exporting the data after you analyze it. The result is that you can not only increase the ease and flexibility with which you analyze data, but also reduce capital expenditures and operating expenses. This white paper describes the best practices for managing an Isilon cluster for Hadoop data analytics. OVERVIEW OF ISILON SCALE-OUT NAS FOR BIG DATA The EMC Isilon scale-out platform combines modular hardware with unified software to provide the storage foundation for data analysis. Isilon scale-out NAS is a fully distributed system that consists of nodes of modular hardware arranged in a cluster. The distributed Isilon OneFS operating system combines the memory, I/O, CPUs, and disks of the nodes into a cohesive storage unit to present a global namespace as a single file system. The nodes work together as peers in a shared-nothing hardware architecture with no single point of failure. Every node adds capacity, performance, and resiliency to the cluster, and each node acts as a Hadoop namenode and datanode. The namenode daemon is a distributed process that runs on all the nodes in the cluster. A compute client can connect to any node in the cluster to access namenode services. As nodes are added, the file system expands dynamically and redistributes data, eliminating the work of partitioning disks and creating volumes. The result is a highly efficient and resilient storage architecture that brings all the advantages of an enterprise scale-out NAS system to storing data for analysis. Unlike traditional storage, Hadoop's ratio of CPU, RAM, and disk space depends on the workload factors that make it difficult to size a Hadoop cluster before you have had a chance to measure your MapReduce workload. Data sets that continue to expand also makes sizing decisions upfront problematic. Isilon scale-out NAS lends itself perfectly to this scenario: Isilon scale-out NAS lets you increase CPUs, RAM, and disk space by adding nodes to dynamically match storage capacity and performance with the demands of a dynamic Hadoop workload. 5
6 An Isilon cluster optimizes data protection. OneFS more efficiently and reliably protects data than HDFS. The HDFS protocol, by default, replicates a block of data three times. In contrast, OneFS stripes the data across the cluster and protects the data with forward error correction codes, which consume less space with better protection than replication. An Isilon cluster also includes enterprise features to back up your data and to provide high availability. For example, in managing your datanode data, a best practice with a traditional Hadoop system is to back up your data to another system an operation that must be performed with brute force by using a tool like DistCP. OneFS includes clones, NDMP backups, synchronization, replication, snapshots, file system journal, virtual hot spare, antivirus, IntegrityScan, dynamic sector repair, and accelerated drive rebuilds. For complete information about the data availability features of OneFS, see the white paper titled Isilon: Data Availability and Protection. The enterprise features of OneFS ease data management. OneFS includes storage pools, deduplication, automated tiering, quotas, high-performing SSDs, capacity-optimized HDDs, and monitoring with InsightIQ. SmartPools, for example, provides tiered storage so that you can store current data in a high-performance storage pool while storing older data in a lower, more cost-effective pool in case you need to analyze it again later. For more information about the enterprise features of OneFS, see the white paper titled EMC Isilon Scale-Out NAS for In-Place Hadoop Data Analytics. For security, OneFS can authenticate HDFS connections with Kerberos. SmartLock can protect sensitive data from malicious, accidental, or premature alteration or deletion to help comply with SEC 17a-4 regulations. HOW HADOOP WORKS WITH ISILON SCALE-OUT NAS An Isilon cluster separates data from compute. As Hadoop clients run MapReduce jobs, the clients access the data stored on an Isilon cluster over HDFS. OneFS becomes the HDFS file system for MapReduce clients. OneFS implements the server-side operations of the HDFS protocol on every node, and each node functions as both a namenode and a datanode. An Isilon node, however, acts as neither a job tracker nor a task tracker. Similarly, with the introduction of YARN, an Isilon nodes does not act as the ResourceManager or the NodeManager. Those functions remain the purview of Hadoop clients. OneFS contains no concept of a secondary namenode: Since every Isilon node functions as a namenode, the function of the secondary namenode checkingpointing the internal namenode transaction log is unnecessary. The cluster load balances HDFS connections across all the nodes in the cluster. Because OneFS stripes Hadoop data across the cluster and protects it with parity blocks at the file level, any node can simultaneously serve datanode traffic as well as namenode requests for file blocks. A virtual racking feature mimics data locality. You can, for example, create a virtual rack of nodes to assign compute clients to the nodes that are closest to a client's network switch if doing so is necessary to work with your network topology or to optimize performance. Client computers can access any node in the cluster through dual 1 GigE or dual 10 GigE network connections. A SmartConnect license adds additional network resilience with IP address pools that support multiple DNS zones in a subnet as well as IP failover. In OneFS, an IP address pool appears as subnet:poolname. A best practice, which is discussed later in this paper, is to bind multiple IP addresses to each node interface in an EMC Isilon SmartConnect network pool. NAMENODE REDUNDANCY Every Isilon node acts as a namenode and a datanode. Because every node runs the OneFS HDFS service, every node can simultaneously serve namenode requests for file blocks and datanode traffic. A cluster thus inherently provides namenode redundancy as long as you follow the standard Isilon practice of setting your clients to connect to the cluster's SmartConnect zone's DNS entry. The result: There is no single point of failure. SmartConnect uses a round-robin algorithm to distribute namenode sessions. When a Hadoop client first tries to connect to a namenode, OneFS routes the traffic to a node, which will serve as the client's namenode. The client's subsequent namenode requests go to the same node. When a second Hadoop client connects to the cluster's SmartConnect DNS entry, OneFS balances the traffic with, by default, round-robin, routing the connection to a different node than that used by the previous client. In this way, OneFS evenly distributes namenode connections across the cluster to significantly improve the performance of read-write intensive traffic like that of TeraSort. If a node that a client is using as a namenode goes down, SmartConnect moves the IP address of the connection to another node, which then becomes the node that services namenode traffic for the Hadoop clients that had been connected to the failed node. 6
7 Although reassigning the namenode IP address to another node might temporarily disrupt the in-flight connections, the MapReduce job will continue. There may be tasks that need to be restarted, however. RACK AWARENESS OneFS can contain a virtual rack of nodes to assign a pool of Hadoop compute clients to a pool of datanodes that are closest to the clients main network switch. The virtual rack also ensures that OneFS does not route compute clients to unreachable datanodes in networks that lack full connectivity. A virtual rack mimics data locality. The rack associates the clients' IP addresses with a pool of datanodes such that when a client connects to the cluster, OneFS assigns the connection to one of the datanodes in the pool, which is usually referred to in the following format subnet:poolname. In this way, a virtual rack can, for example, route a client s connection through its optimal network switch, which improves performance by reducing read throughput latency while minimizing traffic through a top-of-rack switch. More specifically, the virtual rack simulates two datanodes in the rack and a third datanode in a different rack to optimize the arrangement of datanodes for your network switch topology. When a namenode returns three IP addresses to a Hadoop client's request to read data, the namenode selects the datanode. The OneFS HDFS daemon checks which client is connecting and then returns the IP addresses for the datanode and the secondary datanode from one rack and an IP address for the third datanode from another rack. A Hadoop client, such as a Pivotal Data Computing Appliance, can use a virtual rack to connect to a node even when a networking switch fails. If, for example, a client connects to two networking switches, a main switch and a top-of-rack switch, a virtual rack ensures that the client can connect to a datanode even if the top-of-rack switch fails. In such a case, the client's connection comes into the Isilon cluster through the main switch. A Hadoop client connects over HDFS to the datanodes with interfaces that are assigned to the pool. After you add a pool with SmartPools, you can change the allocation of IP address for clients that connect to the cluster. You could, for example, direct compute cluster 1 to S-series datanodes and compute cluster 2 to X-series datanodes with Isilon virtual racks. For more information, see the OneFS Command Reference or the OneFS Administration Guide. The result is that virtual racks can help you obtain the performance that you expect from a Hadoop compute cluster. To support efforts to tune a OneFS cluster for compute performance, the OneFS daemon provides the following features: Ingests Hadoop-format rack-locality configurations Allows you to control which OneFS nodes are exposed as Datanodes to racks of clients Hands out datanodes to clients according to policies that you can set Attempts to handle old configuration values or misconfiguration gracefully THE HDFS ARCHITECTURE OF ONEFS OneFS implements the server-side operations of the HDFS protocol on every node. The architecture employs a single thread pool with a daemon named isi_hdfs_d that allocates a thread to each HDFS connection to handle RPC calls to namenodes and readwrite requests to datanodes. A namenode resides on every node in the cluster. An HDFS client connects to a namenode to query or modify metadata in the OneFS file system. The metadata includes the logical location of data for the file stream that is, the address of the datanode on which a block resides. An HDFS client can modify the metadata through the namenode's RPC interface. OneFS protects HDFS metadata at the same protection level as HDFS file data. In fact, OneFS handles all the metadata; you do not need to worry about managing it or backing it up. With Isilon, the namenode daemon translates HDFS semantics and data layout into OneFS semantics and file layout. For example, the namenode translates a file's path, offset, and LEN into lists of block IDs and generation stamps. The namenode also translates a client's relative path request into a LIN and then returns to the client the address of a datanode and the location of a block. A datanode stores blocks of files. More specifically, the datanode maps blocks to block data. With HDFS, a block is an inode-offset pair that refers to a part of a file. With OneFS, you can set the size of an HDFS block to optimize performance. A Hadoop client can connect to a datanode to read or write a block, but the client may not write a block twice or delete a block. To transfer a block to a datanode, the HDFS client encapsulates the block in packets and sends them over a TCP/IP connection. The Isilon HDFS daemon 7
8 performs zero-copy system calls to read and write blocks to the file system. On OneFS, the datanode reads packets from and writes packets to disk. To manage writes, OneFS implements the same write semantics as the Apache implementation of HDFS: Files are append-only and may be written to by only one client at a time. Concurrent writes are permitted only to different files. As with the Apache implementation, OneFS permits one lock per file and provides a mechanism for releasing the locks or leases of expired clients. CREATING A MULTIPROTOCOL DATA LAKE FOR ANALYTICS An enterprise data store, frequently referred to as a data lake, represents a paradigm shift from the linear data flow model. A data lake becomes an enterprise-wide consolidated storage hub around which ingestion and consumption systems work, as the following diagram shows: By eliminating a number of paralell data flows, a data lake consolidates vast amounts of data into a single enterprise data store by natively ingesting data from a variety of sources. This approach to data storage eliminates costly storage silos. But more importantly, a data lake enables you to analyze the data and act on it in an interative manner as your organization and technology mature. A data lake fulfills the following functions: Accepts data from a variety of sources, including file shares, archives, web applications, devices, and cloud services. Provides access to the data for a range of uses, from conventional purposes to next-generation workflows with mobile device, analytics tools, and cloud applications. Safeguards the data with efficient data protection schemes and robust security measures. Scales to meet the demands of future consolidation, growth, and emerging workflows. Automates the management of data with tiering and other strategies that minimize storage costs. Maintains simplicity at the petabyte scale. Minimize risk by implementing a flexible, scalable, cost-effective solution. By combining native HDFS protocol support with SMB, Swift, NFS, and other protocols, a scale-out data lake powered by an Isilon cluster streamlines the collection of vast amounts of data, maximizes its value, and minimizes the risks and costs associated with storing and managing it. As such, a data lake is a fundamental best practice for storing data for MapReduce and other analytics applications. For more information on the key capabilities of a data lake, see The EMC Isilon Scale-Out Data Lake. HDFS SETUP The section describes the best practices that can help set up an Isilon cluster to work with Hadoop distributions, such as Apache Hadoop and Pivotal HD, to solve real-world problems in data analysis. This section does not, however, cover how to perform many of 8
9 the tasks, such as creating a SmartConnect zone, that it refers to; the instructions are in the EMC Isilon manuals for your version of OneFS. SUPPORTED DISTRIBUTIONS An EMC Isilon cluster is platform agnostic for compute, and there is no vendor lockin: You can run most of the common Hadoop distributions with an Isilon cluster, including Apache Hadoop, Hortonworks, Cloudera, and Pivotal HD. The latest version of OneFS supports the most common versions of the HDFS protocol, including 2.2, 2.3, and 2.4. After you activate an Isilon Hadoop license, the cluster tries to automatically detect a client's Hadoop distribution. Clients running different Hadoop distributions or versions can connect to the cluster simultaneously. For example, you can point both Cloudera and Pivotal HD at the same data on your Isilon cluster and run MapReduce jobs from both distributions at the same time. The OneFS HDFS implementation also works with Ambari, Kerberos authentication, and Kerberos impersonation. With Kerberos impersonation, OneFS lets another system such as Oozie, Hue, Impala, or Sentry act as a proxy-user or super-user to perform actions on behalf of another user. In addition, OneFS works with so-called metaschedulers that manage Hadoop jobs, such as Oracle Grid Engine and Omero from CSR4. An EMC Isilon cluster running OneFS 7.2 or later works with the following Hadoop distributions. Earlier versions of OneFS work with many of these distributions, too; check with an EMC Isilon representative. Later versions of OneFS are likely to add more versions of distributions; for the latest list of supported Hadoop distributions, see the Isilon Supportability and Compatibility Guide. Supported Hadoop Distributions and Projects Ambari and Cloudera CDH4.2 Apache Hadoop Cloudera CDH5.0 CDH5.1.3 Apache Hadoop Cloudera Manager 4 Apache Hadoop Cloudera Manager Apache Hadoop Greenplum HD 1.1 Apache Hadoop 2.0.x Greenplum HD 1.2 Apache Hadoop 2.2, 2.3, 2.4 Hortonworks (non-gui) Cloudera CDH3u2 Hortonworks HDP Cloudera CDH3u3 Pivotal HD Cloudera CDH3u4 Pivotal PHD Cloudera CDH3u5 HAWQ OneFS 7.2 or later works with these Hadoop distributions and projects Within the Apache Hadoop set of projects and related applications, OneFS works with the following: YARN Pig Apache Hive WebHDFS Sqoop2 Solr Sqoop Spark Flume Splunk Sentry Hue Oozie Whirr Apache HBase MANAGING CONCURRENT HADOOP JOBS AND OTHER RESOURCES WITH YARN Impala Zookeeper Yarn allocates resources for Hadoop applications. Because OneFS supports version 2 of HDFS, YARN works seamlessly with OneFS. A sub-project of Apache Hadoop, YARN separates resource management from computational processing to expand interactional patterns beyond MapReduce for data stored in HDFS. With the introduction of YARN's more general processing platform, the JobTracker became the ResourceManager and the TaskTracker, the NodeManager. A single ResourceManager works with the NodeManager process, which runs on all the compute nodes. The NodeManager executes tasks submitted by users in isolated containers. The ResourceManager schedules the tasks on the NodeManagers. For multitenancy, each tenant can run a NodeManager and a ResourceManager for each OneFS access zone; see the section on access zones. OVERVIEW OF HOW TO INTEGRATE AN ISILON CLUSTER WITH HADOOP The process of installing a Hadoop distribution and integrating it with an Isilon cluster varies by distribution, requirements, objectives, network topology, security policies, and many other factors. The following overview assumes that you have installed a supported distribution of Hadoop and verified that it works. Throughout this paper, the instructions and examples for configuring Hadoop abstract away from the Hadoop distributions you might have to adapt the instructions and commands to your distribution, including translating the code in a configuration file to its 9
10 corresponding field in a distribution s graphical user interface. For instructions on how to install and configure Hadoop on a compute client, see the documentation for your Hadoop distribution. For instructions on how to integrate Pivotal HD, Cloudera, or Hortonworks with an Isilon cluster and VMware, see the EMC Isilon Hadoop Starter Kit. The Hadoop Starter Kit combines the power of VMware vsphere Big Data Extensions 2.0 with Isilon scale-out NAS to rapidly implement a comprehensive analytics solution. The following overview assumes that you have obtained an HDFS license from an EMC Isilon representative and activated the license. For more information about the OneFS commands in the following examples, see the OneFS CLI Administration Guide. Most of the following steps are expanded on in later sections. On your Isilon cluster, connect as root to any node in the cluster with SSH and create a directory dedicated to Hadoop data for example: pwd /ifs mkdir hadoop Add a text file to the directory so that when you return to your Hadoop clients after you finish the integration, you can confirm that you can connect to the cluster by seeing the file: ls /ifs/hadoop ThisIsIsilon.txt Set the dedicated directory as the root path for HDFS connections in the default system access zone for example: isi zone zones modify System --hdfs-root-directory /ifs/hadoop Create local users and groups on your Isilon cluster for Hadoop. EMC Isilon provides a script, named isilon_create_users.sh, that creates all the users and groups for the Hadoop services and applications. After you run the script to create local users and groups, you can run another EMC Isilon script, named isilon_create_directories.sh, that makes directories for Hadoop and sets their ownership and permissions. For information about how to obtain and run the scripts, see the EMC Isilon Hadoop Starter Kit. (If you want to authenticate Hadoop users and groups with Microsoft Active Directory, do not set up the following local users and groups or run the script that does so; see the section on setting up Kerberos authentication with Active Directory.) EMC Isilon recommends that the UIDs and GIDs of the local groups match those of the Hadoop user and group accounts on your Hadoop clients; see the section on user and group IDs. The users and groups that you create depend on your needs, and you might have to add more users and groups than in the following example: isi auth groups create --provider=local --name=hadoop --gid=489 --zone=system isi auth users create mapred --zone=system --provider=local --uid=495 --primarygroup=hadoop --homedirectory=/ifs/hadoop/user/mapred --password=hadoop --enabled=true isi auth users create hdfs --zone=system --provider=local --uid=501 --primary-group=hadoop --homedirectory=/ifs/hadoop/user/hdfs --password=hadoop --enabled=true isi auth users create hadoop --zone=system --provider=local --uid=498 --primarygroup=hadoop --homedirectory=/ifs/hadoop/user/hadoop --password=hadoop --enabled=true You can verify that the groups and users were created by running the isi auth users view and isi auth groups view commands. Make sure the directory that you created earlier for your Hadoop data is owned by the hadoop user and the hadoop group so that the hadoop user from the Hadoop cluster can read data from and write data to the directory. cd /ifs chown R hadoop:hadoop hadoop Create a SmartConnect zone for the connections from your Hadoop clients. SmartConnect requires that you add a new name server (NS) record as a delegated domain to the authoritative DNS zone that contains the cluster. For instructions on how to set up a SmartConnect zone, see the OneFS guide. On your Hadoop master, add the name of the DNS entry of the SmartConnect zone that you created for Hadoop to core-site.xml so that your Hadoop clients connect to a namenode with the DNS name of the zone. (Make sure to back up your core-site.xml file before you modify it; using a version control system to track changes to configuration files can make troubleshooting easier.) For 10
11 example, if you named the DNS entry for the SmartConnect zone namenode.example.com, set the name as well as Port 8020 in the core-site.xml configuration file for your Hadoop distribution like this: <?xml version="1.0"?> <!-- core-site.xml --> <configuration> <name>fs.default.name</name> <value>hdfs://namenode.example.com:8020/</value> <final>true</final> </configuration> Finally, on your Hadoop client, restart the Hadoop services as the hadoop user so that the changes to core-site.xml take effect. su hadoop bin/stop-all.sh bin/start-all.sh Verify that your Hadoop client is now using the Isilon cluster as its data store: bin/hadoop fs ls / You should see the text file that you created earlier, confirming the integration. SIZING AN ISILON CLUSTER FOR A HADOOP COMPUTE GRID Finding an Isilon cluster s optimal point the point at which it scales in processing MapReduce jobs and reduces runtimes in relation to other systems for the same workload depends on the size of your compute grid, the number of jobs, the working datasets, and other factors. The number of HDFS threads and the number of racks also play a role in sizing. EMC Isilon recommends that you work with your Isilon representative to determine the number of nodes that will best serve your Hadoop workflow and your compute grid. In general, nodes in the X-Series, such as the X400, deliver cost-effective capacity and performance for most Hadoop deployments. Hard-disk drives (HDDs) work well for MapReduce jobs that consist of large, sequential read operations. For datasets that consist of many small files, solid-state drives (SSDs) can improve performance. With Hadoop, RAM matters. Hadoop jobs generally consist of many sequential reader threads. An Isilon cluster's large level-two cache, which is what most of a node's D-RAM is used for, supports MapReduce jobs with sequential reader threads. Each node that you add to the cluster increases the amount of the cluster s RAM and the size of the level-two cache, both of which can increase performance for Hadoop workflows. MAXIMIZING NETWORK THROUGHPUT WITH 10 GIGABIT ETHERNET A cluster includes two networks: an internal InfiniBand network to exchange data between nodes and an external network to handle client connections. Each node includes redundant InfiniBand ports that enable you to add a second internal network in case the first one fails. Clients reach the cluster with 1 GbE or 10 GbE. Every node includes Ethernet ports. The dual 10 Gigabit Ethernet connections on each Isilon node eliminate network bottlenecks. I/O-intensive operations like MapReduce jobs demand high-bandwidth, low-latency network cables, and switches. You should establish dual 10 GbE connections to each node to support the high levels of network utilization that take place during MapReduce jobs. You can also aggregate two 10 GbE links into a single logical 20 GbE link, which might benefit some workflows. DO NOT RUN THE NAMENODE AND DATANODE SERVICES ON CLIENTS Because an Isilon cluster acts as the NameNode, Secondary NameNode, and DataNodes for Hadoop, these services should run only on the Isilon cluster, not on your compute clients. On your compute clients, the only daemons that you need to start are the ResourceManager and NodeManager, which with most distributions of Hadoop can be done with the following script: $HADOOP_HOME/bin/start-yarn.sh OVERVIEW OF ISILON HDFS COMMANDS To manage the global settings of the HDFS service on an Isilon cluster, you use the isi hdfs settings command. Running the command with the view option shows the values of the global settings: isi hdfs settings view Default Block Size: 64M Default Checksum Type: none 11
12 Server Log Level: notice Server Threads: auto For a description of the command s options, run the following command or see the OneFS Command-Line Administration Guide: isi hdfs settings --help Description: Configure HDFS server global settings. Required Privileges: ISI_PRIV_HDFS Usage: isi hdfs settings <action> [--timeout <integer>] [{--help -h}] Actions: modify Modify HDFS global settings view View HDFS global settings Options: Display Options: --timeout <integer> Number of seconds for a command timeout. --help -h Display help for this command. See 'isi hdfs settings <subcommand> --help' for more information on a specific subcommand. You manage most of the local settings for the HDFS service in an access zone by using the isi zone zones command and its various options, such as view: isi zone zones view --zone=kerb-zone Name: kerb-zone Path: /ifs/analytics Cache Size: 9.54M Map Untrusted: Auth Providers: lsa-ldap-provider:krbldap, lsa-krb5-provider:east.example.com NetBIOS Name: All Auth Providers: No User Mapping Rules: - Home Directory Umask: 0077 Skeleton Directory: /usr/share/skel Audit Success: create, delete, rename, set_security, close Audit Failure: create, delete, rename, set_security, close HDFS Authentication: all HDFS Root Directory: /ifs/analytics WebHDFS Enabled: Yes HDFS Ambari Server: HDFS Ambari Namenode: Syslog Forwarding Enabled: No Syslog Audit Events: create, delete, rename, set_security Zone ID: 3 THE HDFS SERVICE AND LOGS Activating an EMC Isilon HDFS license turns on the HDFS service. After you obtain a license key by contacting your EMC Isilon representative, you activate it by running the isi license activate command followed by a license key. After you activate a license, you can verify that the HDFS service is running (the following output is abridged): isi services Available Services: apache2 Apache2 Web Server Enabled isi_cdate_d Compliance Clock Service Disabled isi_hdfs_d Hadoop FS Daemon Enabled If the service is not running, turn it on: isi services isi_hdfs_d enable A Hadoop client negotiates an HDFS session with a namenode. When the client initiates communication with the namenode, the HDFS service selects the Hadoop distribution by default. 12
13 The HDFS service sends its log messages to /var/log/isi_hdfs_d.log: cat /var/log/isi_hdfs_d.log T11:18:08-07:00 <1.7> cp-dev-2(id2) isi_hdfs_d: isi_hdfs_d starting T11:18:08-07:00 <1.5> cp-dev-2(id2) isi_hdfs_d: waiting for license activation T11:49:30-07:00 <1.5> cp-dev-2(id2) isi_hdfs_d: license activated, starting T11:49:30-07:00 <1.6> cp-dev-2(id2) isi_hdfs_d: Loaded libsasl "Cyrus SASL " v T11:49:30-07:00 <1.5> cp-dev-2(id2) isi_hdfs_d: Switching to process encoding of UTF T11:49:30-07:00 <1.5> cp-dev-2(id2) isi_hdfs_d: started successfully To change the log level to, for example, the warning level, run the following command: isi hdfs settings modify --server-log-level=crit USER AND GROUP IDS Isilon clusters and Hadoop servers each have their own mapping of user identifiers (UIDs) to user names and group identifiers (GIDs) to group names. When an Isilon cluster is used only for HDFS storage by the Hadoop servers, the UIDs and GIDs do not need to match because the HDFS wire protocol refers to users and groups only by their names, not their UIDs and GIDs. In contrast, the NFS protocol refers to users and groups by their UIDs and GIDs. Although NFS is rarely used in traditional Hadoop environments, the high-performance, enterprise-class, and POSIX-compatible NFS functionality of Isilon makes NFS a compelling protocol for certain workflows. If you expect to use both NFS and HDFS on your Isilon cluster (or simply want to be open to the possibility in the future), EMC Isilon recommends that you maintain consistent names and UIDs and GIDs for all users and groups on an Isilon cluster and your Hadoop servers. In a multitenant environment with multiple Hadoop clusters, the UIDs for users in different clusters should be distinct. For instance, the user sqoop in Hadoop cluster A will have ID 610, and this same ID will be used in the Isilon access zone for Hadoop cluster A as well as every server in Hadoop cluster A. The user sqoop in Hadoop cluster B will have ID 710, and this ID will be used in the Isilon access zone for Hadoop cluster B as well as every server in Hadoop cluster B. CREATING DIRECTORIES AND SETTING PERMISSIONS OneFS controls access to directories and files with POSIX mode bits and access control lists. When you set up your directories, files, accounts, and permissions for Hadoop, you must make sure that they have the correct permissions so that users and applications can access their directories and files. If you are not careful, problems can occur. For example, with versions of Hadoop before the introduction of YARN, if the jobtracker is inadvertently run as root, it changes the tmp directory (for example, /ifs/hadoop/tmp) to root ownership. When the jobtracker runs correctly as the mapred user, it can no longer write data to the tmp directory, and you end up with an error that looks something like this: ERROR security.usergroupinformation: PriviledgedActionException as:root cause:org.apache.hadoop.ipc.remoteexception: org.apache.hadoop.mapred.safemodeexception: JobTracker is in safe mode The mapred user requires temporary space on HDFS when map jobs run. With Apache Hadoop, Hortonworks, and Pivotal HD, the /tmp folder is automatically created the first time a job is run and the mapred user is given permissions. For Cloudera, however, you must set up the /tmp directory manually and then assign it permissions, usually 1777, but the permissions depend on your security profile and other factors. If you inadvertently run the jobtracker as root, you might have to reset the permissions on the tmp directory. Before deploying Hadoop, you should create the directories that you will need for Hadoop on the Isilon cluster. The directories that must be created and the permissions that must be assigned to them will vary by Hadoop distribution, environment, requirements, and security policies. Here is an example with loose permissions: mkdir p /ifs/data/hdfs (777) mkdir p /ifs/data/hdfs/user (1777) mkdir p /ifs/data/hdfs/user/history (1777) mkdir p /ifs/data/hdfs/user/gpadmin (1777) mkdir p /ifs/data/hdfs/tmp (1777) mkdir p /ifs/data/hdfs/yarn (1777) mkdir p /ifs/data/hdfs/apps (755) mkdir p /ifs/data/hdfs/apps/hbase/data (755) mkdir p /ifs/data/hdfs/hawq_data (777) 13
14 mkdir p /ifs/data/hdfs/hive(1777) mkdir p /ifs/data/hdfs/hive/gphd/warehouse/ (1777) Assigning directories with an open permission level of 777 makes troubleshooting easier if a problem occurs as you set up your Hadoop system. After you confirm that the cluster works for HDFS operations and MapReduce jobs, however, you should restrict the permissions as tightly as possible. You must also create the user accounts that your Hadoop deployment requires. Again, the accounts that you need and their owner and group settings vary by distribution, requirements, security policies, and other factors. The profiles of the accounts on the Isilon cluster should match those of the accounts on your compute clients. Here are two examples of how to create the Hadoop accounts that you will need on OneFS: isi auth users create --name="gpadmin" -zone=system isi auth groups create --name=hadoop --gid=489 --zone=system For more information on the isi auth command, see the OneFS Command-Line Administration Guide. EMC Isilon recommends that the UIDs and GIDs for the Hadoop accounts are consistent across both the Isilon cluster and the clients in the compute grid. After you create your Hadoop users and groups, the owner and group information should initially look something like the following example: drwxrwxrwx 3 root wheel 22B Aug 1 10:43.. drwxrwxrwt 3 yarn hadoop 22B Aug 28 12:20 yarn drwxr-xr-x 2 hdfs hadoop 0B Aug 28 13:40 apps drwxr-xr-x 2 hbase hadoop 0B Aug 28 13:40 apps/hbase drwxrwxrwx 2 gpadmin hadoop 0B Aug 28 13:41 hawq_data drwxrwxrwt 2 hdfs hadoop 0B Aug 28 14:04 tmp drwxrwxrwx 8 root hadoop 136B Aug 28 14:05. drwxrwxrwt 4 mapred hadoop 50B Aug 28 14:23 user drwxrwxrwt 4 gpadmin hadoop 50B Aug 28 14:23 user/gpadmin drwxrwxrwt 3 hdfs hadoop 22B Aug 28 15:57 hive INCLUDE THE NAME OF THE CLUSTER AND ACCESS ZONE IN HADOOP PATHS You should include the name of the Isilon cluster and the access zone in the Hadoop path to manage bi-directional and many-to-one replication with SyncIQ. Even if you are not using SyncIQ now, EMC Isilon recommends that you include such information in your Hadoop paths (for one thing, you might add SyncIQ later). Here is a format for naming paths: /ifs/clustername/accesszonename/hadoop A name of a Hadoop path, then, might look something like this: /ifs/cluster001/az1/hadoop SETTING THE ROOT PATH IN THE SYSTEM ACCESS ZONE By default, a Hadoop client connects to the cluster's root directory: ifs. To change the root directory for Hadoop clients in the default system access zone, run the following command, replacing the path in the example with the path that you want. In general, it is a best practice to set the root path before you configure a Hadoop distribution like Pivotal HD to work with OneFS. isi zone zones modify System --hdfs-root-directory /ifs/hadoop After you set the root path, you should also make the directory available as an export or share for NFS and SMB clients; see the OneFS guide for instructions. OneFS can translate symbolic links for HDFS. The HDFS root can be /ifs/hadoop, for instance, but then a symlink can point from /ifs/hadoop/data to /ifs/data to isolate the Hadoop application directories (/tmp, /mapred, /yarn, /hbase) from your actual data while keeping it accessible over HDFS. SETTING UP A SMARTCONNECT ZONE FOR NAMENODES For namenode redundancy, you set up a SmartConnect zone in OneFS, create a DNS entry for the zone, and then set your Hadoop clients to connect to a namenode with the DNS name of the zone. The zone policy balances the namenode connections among all the nodes in the cluster. For information about how namenodes and datanodes handle traffic on OneFS and for an explanation of why you should set up a SmartConnect zone for namenodes, see Handling namenode and datanode failure scenarios. SmartConnect requires that you add a new name server (NS) record as a delegated domain to the authoritative DNS zone that contains the cluster. For instructions on how to set up a SmartConnect zone, see the OneFS guide. 14
15 After you get the DNS name of your SmartConnect zone, set the default file system in core-site.xml to the name of the zone's DNS entry. (Make sure to back up your core-site.xml file before you modify it.) If you named the DNS entry for the SmartConnect zone namenode.example.com, for instance, you set the name as well as Port 8020 in the core-site.xml configuration file for your Hadoop distribution like this: <?xml version="1.0"?> <!-- core-site.xml --> <configuration> <name>fs.default.name</name> <value>hdfs://namenode.example.com:8020/</value> <final>true</final> </configuration> The value of fs.default.name specifies the default file system that Hadoop clients connect to. HDFS clients must access an EMC Isilon cluster through Port After you modify core-site.xml, you must restart the Hadoop services on the client for the changes to take effect. For more information on fs.default.name, see the documentation for your Hadoop distribution. WORKING WITH HADOOP DISTRIBUTIONS AND PROJECTS This section lists solutions to common problems that can interfere with integrating an Isilon cluster with a compute grid running a Hadoop distribution such as Pivotal HD or Cloudera. For all the distributions, do not run the NameNode, DataNode, and Secondary NameNode services on your compute clients; OneFS provides those services. CLOUDERA Turning on checksums for Cloudera To run Cloudera with an Isilon cluster, you must be running OneFS or later. Because Cloudera includes a default setting in hdfs-site.xml to support the WRT checksum type on datanodes, you must run the following OneFS command to support Cloudera when you are using OneFS 7.2: isi hdfs settings modify --default-checksum-type=crc32 For HTTPS with CDH5, Make Sure the Certificate Chains Up to a Trusted Root For CDH5 to work properly over HTTPS, the certificate that an Isilon cluster returns must chain up to a trusted root. Otherwise, when you start the Hue file browser, you will see an internal server error that looks like the following example. To fix the problem, you can either replace Isilon's self-signed certificate with your own certificate, or you can add Isilon's self-signed certiticate to the trusted certificate store on the system running CDH5. [29/Aug/ :39: ] base ERROR Internal Server Error: /filebrowser/ Traceback (most recent call last): File "/opt/cloudera/parcels/cdh cdh5.0.3.p0.35/lib/hue/build/env/lib/python2.6/sitepackages/django py2.6.egg/django/core/handlers/base.py", line 111, in get_response response = callback(request, *callback_args, **callback_kwargs) File "/opt/cloudera/parcels/cdh cdh5.0.3.p0.35/lib/hue/apps/filebrowser/src/filebrowser/views.py", line 88, in index if not request.fs.isdir(path): File "/opt/cloudera/parcels/cdh cdh5.0.3.p0.35/lib/hue/desktop/libs/hadoop/src/hadoop/fs/webhdfs.py", line 214, in isdir sb = self._stats(path) File "/opt/cloudera/parcels/cdh cdh5.0.3.p0.35/lib/hue/desktop/libs/hadoop/src/hadoop/fs/webhdfs.py", line 199, in _stats raise ex WebHdfsException: [Errno 1] _ssl.c:490: error: :ssl routines:ssl3_get_server_certificate:certificate verify failed [29/Aug/ :39: ] middleware INFO Processing exception: [Errno 1] _ssl.c:490: error: :ssl routines:ssl3_get_server_certificate:certificate verify failed: Traceback (most recent call last): File "/opt/cloudera/parcels/cdh cdh5.0.3.p0.35/lib/hue/build/env/lib/python2.6/sitepackages/django py2.6.egg/django/core/handlers/base.py", line 111, in get_response response = callback(request, *callback_args, **callback_kwargs) 15
16 File "/opt/cloudera/parcels/cdh cdh5.0.3.p0.35/lib/hue/apps/filebrowser/src/filebrowser/views.py", line 88, in index if not request.fs.isdir(path): File "/opt/cloudera/parcels/cdh cdh5.0.3.p0.35/lib/hue/desktop/libs/hadoop/src/hadoop/fs/webhdfs.py", line 214, in isdir sb = self._stats(path) File "/opt/cloudera/parcels/cdh cdh5.0.3.p0.35/lib/hue/desktop/libs/hadoop/src/hadoop/fs/webhdfs.py", line 199, in _stats raise ex WebHdfsException: [Errno 1] _ssl.c:490: error: :ssl routines:ssl3_get_server_certificate:certificate verify failed [29/Aug/ :39: ] connectionpool INFO Starting new HTTPS connection (30): onefs.smartconnect.zonename.example.com PIVOTAL HD Pivotal provides documentation on how to set up Pivotal HD to work with an Isilon cluster. To obtain the documentation, contact Pivotal. When you run Pivotal HD with an Isilon cluster, you must remember to change the variables for namenodes in core-site.xml to point to the name of the SmartConnect zone for the Isilon cluster. You must also remember to edit /home/gpadmin/clusterconfigdir/yarn/yarn-site.xml to turn off Yarn log aggregation by setting its value to false so it looks like this: <name>yarn.log-aggregation-enable</name> <value>false</value> <description>whether to enable log aggregation </description> SPARK OneFS works with Apache Spark. The following Python code, which is adapted from the Apache Spark web site, demonstrates how to connect to a file stored on an Isilon cluster by using the OneFS HDFS interface. In the following example, the name of the OneFS SmartConnect zone associated with the access zone named az1 is isiloncluster1.lab.example.com. file = spark.textfile("hdfs://isiloncluster1.lab.example.com/cluster001/az1/hadoop/logfile") counts = file.flatmap(lambda line: line.split(" ")) \.map(lambda word: (word, 1)) \.reducebykey(lambda a, b: a + b) counts.saveastextfile("hdfs://isiloncluster1.lab.example.com/cluster001/az1/hadoop/result") TUNING ONEFS FOR HDFS OPERATIONS This section describes strategies and options for tuning an Isilon cluster to improve performance for Hadoop data sets, workflows, and workloads. BLOCK SIZES On an Isilon cluster, raising the HDFS block size from the default of 64 MB to 128 MB optimizes performance for most use cases. Boosting the block size lets Isilon nodes read and write HDFS data in larger blocks, which can decrease drive-seek operations and increase performance for MapReduce jobs. To set the server-side HDFS block size, connect with SSH to any node in the cluster and run the isi hdfs settings modify command with the default-block-size option and a value from 4 KB to 1 GB for example: isi hdfs settings modify --default-block-size=128mb You can also change the client-side block size on your Hadoop clients with the dfs.block.size parameter. On a client, you set the block size in the hdfs-site.xml configuration file with the following property: dfs.block.size Apache Hadoop 2.0 and CDH4 renamed the property to the following: dfs.blocksize The default of client block size is also 64 MB. The client-side block size and the server-side block size, however, can differ. 16
17 The client-side block size determines how an HDFS client writes a block of file data to the cluster. During a file-create operation, an HDFS client broadcasts its block size to the namenode, and subsequent writes to the file on a datanode take place with the same block size. For most workflows, setting the client's block size to 128 MB works well. As the optimal block size depends on your data, how you process your data, and other factors, you can tune performance by testing different client-side block sizes. The server-side block size determines how the OneFS HDFS daemon returns data to read requests. The HDFS clients must contain enough memory to accept the server-side block size. If your server-side block size, for example, is set to 512 MB and if a client's maximum map JVM size is set to 512 MB, the client will be unable to pull files from the cluster. The server-side block size also controls the number of map tasks and the file input size of each map task. Increasing the OneFS HDFS block size can improve efficiency for some workloads. For instance, if your MapReduce application is reading an atypically large amount of data for each map, it might be more efficient to set the OneFS block size higher than 128 MB, even if your data set resides in large files. TUNING THE NUMBER OF HDFS THREADS The OneFS HDFS service runs a daemon named isi_hdfs_d that handles traffic from namenodes and datanodes. With its default setting of auto, the multithreaded daemon spawns as many as 30 threads on a node. To support a large system of compute clients, however, you might need to increase the number of threads. Assuming that you are distributing namenode traffic across all the nodes in a cluster by using a SmartConnect zone, the total number of OneFS HDFS threads should equal at least half of the total number of map and reducer slots in your compute grid. Here is an example that illustrates how to calculate the number of threads to set. If your compute grid contains 80 compute nodes with 10 map slots and 5 reduce slots each, your Isilon cluster would need at least 600 threads: (80 * (10 + 5)) / 2 = 600 If your Isilon cluster contains 25 nodes, the minimum number of threads per node would equal 24: 600 / 25 = 24 Convention, however, dictates that you set the number of threads to a power of 2 (8, 16, 32, 64, 128, 256). So, for an example cluster of 25 nodes handling requests from 600 compute slots, you would set the value to 32 threads: isi hdfs settings modify --server-threads 32 OneFS limits the number of threads to 256. With a large compute grid, the optimal number of threads is likely to be 256: isi hdfs settings modify --server-threads 256 OBTAINING STATISTICS TO TUNE ONEFS FOR A HADOOP WORKFLOW With OneFS 6.0 or later, you can run the isi statistics command to obtain statistics for client connections, the file system, and protocols. To view HDFS protocol statistics, for example, you can run the isi statistics command as follows. For more information about the statistics commands and their options, see the OneFS Command-Line Administration Guide. isi statistics pstat --protocol=hdfs To obtain statistics for all the protocols, execute the following command, which can help you determine whether your MapReduce job is running: isi statistics system --nodes --timestamp --noconversion --interval=30 When the nodes are actively handling HDFS connections, the output looks something like this: Timestamp Node CPU SMB FTP HTTP ISCSI NFS HDFS Total NetIn NetOut DiskIn DiskOut s LNN %Used B/s B/s B/s B/s B/s B/s B/s B/s B/s B/s B/s All By analyzing the columns titled NetIn and NetOut, you can determine whether your HDFS connections are predominantly reading or writing data. Looking at the distribution of input and output across all the nodes shows whether Hadoop is using all the nodes for a MapReduce job. To obtain an HDFS protocol report that totals the statistics by operation, run the following command as one line. In the report that this command generates, the read and write operations take place on datanodes; all the other operations take place on namenodes. 17
18 You should be able to see the average file size Hadoop uses by looking at the values for InAvg (for read) and OutAvg (for write) values that show the average bytes transmitted per remote procedure call (RPC). If the files are large, the values of InAvg and OutAvg should be near the block size, which is 64 M by default. isi statistics protocol --protocols=hdfs --long -- output=timestamp,numops,in,inavg,out,outavg,timemin,timemax,timeavg,op --totalby=op --noconversion --interval=30 To obtain an HDFS protocol report that totals the statistics by node, run the following command as one line: isi statistics protocol --protocols=hdfs --long --output=timestamp,in,out,op --totalby=node -- noconversion --interval=30 You can use the report that the following command creates to check if some nodes are responding to requests slowly and then identify why by looking at such columns as node.cpu.user.avg and node.cpu.sys.avg. The resulting column that is titled node.disk.busy.avg can reveal whether CPUs are a bottleneck. In addition, you should also make sure that the values for node.cpu.sys.avg are much greater than node.cpu.user.avg; otherwise, the Isilon HDFS daemon (isi_hdfs_d) might be calculating checksums when in fact it should not be. isi_for_array 'isi statistics query -- stats=node.health,node.cpu.user.avg,node.cpu.sys.avg,node.cpu.idle.avg,node.memory.used,node.memory.free,node.disk.busy.avg --nofooter --interval=30' To see a report on the drives on all the nodes, run the following command. isi statistics drive --nodes=all --timestamp --noconversion --interval=30 The output looks something like the following. These statistics, which can reveal whether disk input/output operations are creating a bottleneck, can help you tune the cluster to improve performance for MapReduce jobs. Timestamp Drive Type OpsIn BytesIn OpsOut BytesOut TimeAvg TimeInQ Queued Busy s LNN:bay N/s B/s N/s B/s ms ms % :1 SAS :2 SAS :3 SAS :12 SAS :1 SAS :2 SAS :3 SAS :12 SAS :1 SAS :2 SAS :3 SAS :12 SAS :1 SAS :2 SAS :3 SAS :12 SAS To see a report that shows the active and the connected HDFS clients, run the following command as one line. This report can check whether clients are connecting to every node during a MapReduce job. isi statistics query --nodes=all --stats=node.clientstats.active.hdfs,node.clientstats.connected.hdfs --nofooter --noconversion --interval=30 The output looks like this: NodeID node.clientstats.active.hdfs node.clientstats.connected.hdfs If your MapReduce jobs seem to be bogging down, you can check whether blocking is an issue. Other users or applications might be locking files to write data to them while a MapReduce job tries to process the files. isi statistics heat --totalby=node,event --orderby=node,event --noconversion --interval=30 The output looks something like this: 18
19 Ops Node Event Class Path N/s blocked * * contended * * link * * lock * * lookup * * read * * rename * * setattr * * * * * blocked * * contended * * lock * * lookup * * read * * rename * * setattr * * * * * blocked * * contended * * lock * * lookup * * read * * rename * * setattr * * * * * blocked * * contended * * link * * lock * * lookup * * read * * rename * * setattr * * * * * blocked * * contended * * link * * lock * * lookup * * read * * rename * * setattr * * * * * MONITORING PERFORMANCE WITH INSIGHTIQ EMC Isilon InsightIQ monitors and analyzes the performance of an Isilon cluster to help you optimize storage resources and forecast capacity. To maximize performance over time, a best practice is to track performance and capacity with InsightIQ, which is an optionally licensed product. STORING INTERMEDIATE JOBS ON AN ISILON CLUSTER Storing intermediate map results on an Isilon cluster can solve two problems: performance and scalability. A Hadoop client typically stores its intermediate map results locally. The speed of the local storage, however, can slow down the performance of Hadoop tasks. The amount of local storage can also affect the client's ability to run some jobs. You could, of course, increase the space on the compute node by adding more drives, or you could compress the map results to reduce the amount of data that the client stores locally. Another option is to offload the intermediate map results to your Isilon cluster which is optimized to handle the large amounts of data that large jobs like TeraSort generate. You can offload the intermediate map results to an Isilon cluster by changing Hadoop s mapred.local.dir parameter for the tasktracker in mapred-site.xml. You might be able to boost performance by exporting a dedicated directory for intermediate map results and then creating subdirectories for each Hadoop client in it for example: /ifs/compute /ifs/compute/client1 /ifs/compute/client2 /ifs/compute/clientn 19
20 Because this strategy leads to more network transfers, you should also turn on compression for mapred output to reduce the data that is moved into and out of the Isilon cluster. To turn on compression, set Hadoop s mapred.compress.map.output parameter to true. To optimize performance for large jobs, you can also set the access pattern for the directories on OneFS to streaming and consider setting the level of data protection to N+1. Although the low protection level risks losing intermediate map results if a node fails, the risk is low if you can restart the intermediate job. DEALING WITH SHUFFLE SPACE BOTTLENECKS Map tasks write output to a circular memory buffer, which is 100 MB by default. When the output in the buffer exceeds 80 percent by default, the contents of the buffer begin overflowing into a shuffle space on the local disk. The task continues to write output into the buffer even as data spills out of it and into the shuffle space. If the buffer fill ups during the spill, the map task will be halted until the overflowing data finishes spilling onto disk. The problem is that with disk-starved tasktrackers, such as with a deployment that uses Sergengeti and VMware, the shuffle space on disk can become a bottleneck that undermines overall job performance. One solution might be to place the shuffle space on an Isilon cluster by altering mapred.local.dir to point to an NFS mount. If your jobs are bogging down because tasks are overflowing the memory buffer and spilling data into the shuffle space on disk more than once, you should test whether storing the data on an Isilon cluster improves overall job performance. FEDERATION WITH DAS AND NAS This section illustrates how to configure Apache Hadoop to point to two namespaces and then aggregate them under the Hadoop virtual file system, viewfs. The capability of HDFS version 2 to point to two namespaces is a major improvement over HDFS version 1, which could use only one namespace. Pointing to two namespaces lays the foundation for simpler migrations, tiering, and other storage profiles. The following setup assumes you have two DAS-based namenodes and a compute cluster with three datanodes running Apache Hadoop. The example also assumes that you have an Isilon cluster configured for Hadoop, including Hadoop user and group accounts. Keep in mind that most of the settings in the following snippets are examples; your properties, directories, names, and values will be different. On your clients, you will have to restart the services that are affected by these changes, especially dfs. First, add the following example code to hdfs-site.xml and copy it to all the clients: <name>dfs.replication</name> <value>1</value> <name>dfs.permissions</name> <value>false</value> <name>dfs.federation.nameservices</name> <value>ns1,ns2</value> <name>dfs.namenode.rpc-address.ns1</name> <value>apache2-1:9001</value> <name>dfs.namenode.rpc-address.ns2</name> <value>apache2-2:9001</value> Second, create the subdirectories on the DAS namenodes that will be used as mountpoints. On DAS namenode number 1, make a subdirectory for home and another for a temporary directory: hadoop fs -mkdir hdfs://apache2-1:9001/home hadoop fs -mkdir hdfs://apache2-1:9001/tmp On DAS namenode number 2, make a home directory: hadoop fs -mkdir hdfs://apache2-2:9001/home Third, modify core-site.xml as follows to add the name of the SmartConnect zone for your Isilon cluster: 20
21 <name>fs.defaultfs</name> <value>viewfs:///</value> <name>fs.viewfs.mounttable.default.link./nn1home</name> <value>hdfs://apache2-1:9001/home</value> <name>fs.viewfs.mounttable.default.link./nn2home</name> <value>hdfs://apache2-2:9001/home</value> <name>fs.viewfs.mounttable.default.link./tmp</name> <value>hdfs://apache2-1:9001/tmp</value> <name>fs.viewfs.mounttable.default.link./isilon</name> <value>hdfs://isilon.example.com:8020/</value> Finally, distribute the core-site.xml file to all your clients and then restart the services by running sbin/stop-all.sh and sbin/startall.sh BACKING UP HADOOP DATA ON AN ISILON CLUSTER WITH DISTCP With a robust data protection scheme that provides greater than 80 percent storage efficiency, EMC Isilon is an ideal backup target for data located on a Hadoop cluster. You can back up the data stored in a Hadoop cluster s direct-attached storage system by using DistCp, a standard Apache Hadoop tool that accompanies all Hadoop distributions. DistCp runs as a MapReduce job to copy entire Hadoop directories to an Isilon cluster in parallel. The tool includes an option to limit the bandwidth to control the impact on other tasks and an option to copy permissions. For more information on DistCp, see After you back up the Hadoop data on the Isilon cluster, you should consider making snapshots of your backup target directory with Isilon SnapshotIQ in case you need to restore older versions of files. The backup target files on an Isilon cluster are accessible from Hadoop applications in the same way as the source files. To save time, you can analyze your backup data through the OneFS HDFS interface without having to first restore the backup data to the original Hadoop environment. For example, if you typically run a MapReduce command like the following on your Hadoop cluster, you can modify the path in the command to analyze the same backed-up data set on your Isilon cluster: hadoop jar /usr/lib/gphd/hadoop-mapreduce/hadoop-mapreduce-examples.jar grep /mydata/mydataset1 output1 ABC Here is the command with the path modified to point to the backed-up data set on the Isilon cluster: hadoop jar /usr/lib/gphd/hadoop-mapreduce/hadoop-mapreduce-examples.jar grep hdfs://myisiloncluster01/backup/ /mydata/mydataset1 output1 ABC For the best practices for the backup of non-isilon Hadoop environments to an EMC Isilon cluster, see Backing up Hadoop to Isilon. STORAGE POOLS FOR DIFFERENT DATA SETS A difficulty arises if you are analyzing two different data sets, one with large files and another with small files. In such a case, you might be able to cost-effectively store and optimally analyze both types by using storage pools. Storage pools let you group different files by attributes and then store them in different pools of storage: Small files can be routed by a OneFS policy to SSDs, for instance, and large files can be routed to X-Series nodes. And then you can use OneFS SmartConnect zones to associate a set of compute clients with each data set to optimize the performance of the MapReduce jobs that analyze each set. For more information, see Align datasets with storage pools. You could, for example, direct one compute cluster to S-series datanodes and another compute cluster to X-series datanodes with Isilon virtual racks; see Rack awareness. DATA PROTECTION BEST PRACTICES OneFS takes a more efficient approach to data protection than HDFS. The HDFS protocol, by default, replicates a block of data three times to protect it and to make it highly available. Instead of replicating the data, OneFS stripes the data across the cluster over its internal InfiniBand network and protects the data with forward error correction codes. Forward error correction, or FEC, is a highly efficient method of reliably protecting data. FEC encodes a file's data in a distributed set of symbols, adding space-efficient redundancy. With only a part of the symbol set, OneFS can recover the original file data. Striping 21
22 data with FEC codes consumes much less storage space than replicating data three times, reducing the number of drives by a factor of 2.5. Striping also lets a Hadoop client connecting to any node take advantage of the entire cluster's performance to read or write data. If you set the replication level from an HDFS client, OneFS ignores it and instead uses the OneFS protection level that you set for the directory or the file pool that contains your Hadoop data. In general, a best practice for most environments entails using the default level of protection typically, N+2:1. For larger clusters, you can set the level slightly higher, for example, to +2. For most Hadoop workflows in which optimizing for an aggregation of workloads takes precedence over optimizing for a single job you should consider using +2:1 for clusters with fewer than 18 nodes. For clusters with more than 18 nodes, consider using +2. An analytics workflow of many small files, however, might benefit from using mirroring instead of forward error correction codes, because the overhead for FEC codes is similar to what is used for mirroring small files anyway. In addition, mirroring might help boost performance, but the gain in performance might be at the expense of capacity. In general, lower protection levels yield better throughput, but the amount varies by type of operation. Random write performance receives the biggest performance gain from using a lower protection level. Streaming writes, streaming reads, and random reads receive a smaller performance boost from lower protection levels. The protection level that you choose depends on a variety factors, including the number of nodes in the cluster. The right protection level for you might also depend on which version of OneFS you are running. Because so many variables interact to determine the optimal protection level for an environment, a best practice is to consult with an Isilon representative about selecting a protection level. Isilon professional services can analyze the cluster and suggest an optimal protection policy. ALIGNING WORKLOADS WITH DATA ACCESS PATTERNS Once you identify the dominant access pattern of your Hadoop workflow concurrent, streaming, or random you can optimize how OneFS lays out data to match it. By default, OneFS optimizes data layout for concurrent access. With Hadoop, however, the dominant data access pattern might be streaming that is, the pattern has lower concurrency, higher single-stream workloads. You can set OneFS to stripe data for streaming access patterns to increase sequential-read performance for MapReduce jobs. To better handle streaming access, OneFS stripes data across more drives and prefetches data well in advance of data requests. Streaming is most effective on directories or subpools serving large files or handling large compute jobs. If your workload is truly random, the random access pattern, which prefetches no data, might increase performance. Table 1 ONEFS ACCESS PATTERN Concurrent Streaming Random DESCRIPTION Prefetches data at a medium level Prefetches data far in advance of requests Prefetches no data OneFS Access Pattern Options With a SmartPools license, you can apply a different access pattern to each storage pool that you create. Selecting the access pattern enables you to set the optimal pattern for each dataset; for more information, see Align datasets with storage pools. VIRTUALIZING HADOOP IN LARGE-SCALE INFRASTRUCTURES After eight weeks of fine-tuning a virtual HDaaS infrastructure, Adobe succeeded in running a 65-terabyte Hadoop workload significantly larger than the largest known virtual Hadoop workloads. In addition, this was the largest workload ever tested by EMC in a virtual Hadoop environment on an EMC Isilon storage cluster. Fundamentally, these results proved that using Isilon as the HDFS layer worked on a large scale. In fact, the POC refutes claims by some in the industry that suggest shared storage will cause problems with Hadoop. To the contrary, Isilon had no adverse effects and even contributed superior results in a virtualized HDaaS environment compared to traditional Hadoop clusters. These advantages apply to many aspects of Hadoop, including performance, storage efficiency, data protection, and flexibility. Here are some of the best practices that came out of the POC: 22
23 Memory settings are key It's important to recognize that Hadoop is still a maturing product and does not automatically recognize optimal memory requirements. Memory settings are crucial to achieving sufficient performance to run Hadoop jobs against large data sets. EMC recommends methodically adjusting memory settings and repeatedly testing configurations until the optimal settings are achieved. Understand sizing and configuration Operating at Adobe's scale hundreds of terabytes to tens of petabytes demands close attention to sizing and configuration of virtualized infrastructure components. Since no two Hadoop jobs are alike, IT organizations must thoroughly understand the data sets and jobs their customers plan to run. Key sizing and configuration insights from this POC include: Devote ample time upfront to sizing storage layers based on workload and scalability requirements. Sizing for Hadoop intermediate space also deserves careful consideration. Consider setting large HDFS block sizes to 256 to 1024 megabytes to ensure sufficient performance. On Isilon, HDFS block size is configured as a protocol setting in the OneFS operating system; see the section on block sizes above. In the compute environment, deploy a large number of hosts using processors with as many cores as possible and align the VMs to those cores. In general, having more cores is more important than having faster processors and results in better performance and scalability. Configure all physical hosts in the VMware cluster identically. For example, mixing eight-core and ten-core systems will make CPU alignment difficult. For more information, see Virtualizing Hadoop In Large-Scale Infrastructures: How Adobe Systems achieved breakthrough results in Big Data analytics with Hadoop-as-a-Service at SMARTCONNECT FOR HDFS By default, the OneFS SmartConnect module balances connections among nodes by using a round-robin policy with static IP addresses and one IP address pool for each subnet. A SmartConnect Advanced license adds advanced balancing policies and lets you define IP address pools to support multiple DNS zones in a subnet. The licensed version supports dynamic IP failover to provide continuous access to namenodes when hardware or a network path fails. The rest of this section assumes that you have the licensed version of SmartConnect Advance in place. If a node or one of its interfaces fails, SmartConnect reassigns the dynamic IP addresses to the remaining interfaces in the pool. OneFS then routes connections to the newly assigned member interface without interrupting access. When the failed interface or the failed node comes back online, OneFS updates the list of online pool members and redistributes the dynamic IP addresses across the list. A best practice is to employ dynamic IP failover to prevent interrupting client connections to namenodes and datanodes; see Setting up a SmartConnect zone for namenodes. All the nodes in a cluster can be configured to appear as a single network host (that is, a single fully qualified domain name, or FQDN, can represent the entire cluster), or one node can appear as several discrete hosts (that is, a cluster can have more unique FQDNs than nodes). SmartConnect offers several connection-balancing strategies: Zoning: You can optimize storage performance by designating zones to support workloads or clients. For large clusters, you can use zoning to partition the cluster s networking resources and allocate bandwidth to each workload, which minimizes the likelihood that heavy traffic from one workload will affect network throughput for another. Zoning can help you segment a cluster for two disparate Hadoop workflows. Inclusion and exclusion: You can add node interfaces and interface types to SmartConnect pools. For example, in an inclusive approach, a pool includes all the 1 GbE interfaces in the cluster, regardless of node type. An exclusive strategy, by contrast, limits membership to only one interface type from one node type for example, only 10 GbE interfaces on S-Series nodes. As a result, clients connecting to a pool receive similar performance from any node in the pool. The licensed version of SmartConnect provides four policies for distributing traffic across the nodes in a network pool. Because you can set policies for each pool, static and dynamic SmartConnect address pools can coexist. The four policies are as follows: Round robin: This policy, which is the default, rotates connections among IP addresses in a list. Round robin is the best balancing option for most workflows. 23
24 CPU usage: This policy examines average CPU usage in each node and then attempts to distribute the connections to balance the workload evenly across all the nodes. Network throughput: This policy evaluates the overall average network throughput per node and assigns new connections to the nodes with the lowest relative throughput in the pool. Connection count: This policy uses the number of open TCP connections on each node in the pool to determine which node a client will connect to. For an HDFS workload, round robin is likely to work best. If you find that round robin does not suit your workflow, you can experiment with the other options to improve performance. HANDLING NAMENODE AND DATANODE FAILURE SCENARIOS To gracefully handle namenode and datanode failures, you should set up a dynamic pool of IP addresses with a SmartConnect zone name for namenodes and a dynamic pool of IP addresses without a SmartConnect zone name for datanodes. First, a gloss on how OneFS handles requests: 1. The job tracker on a compute client resolves the default name of the file system to an IP address by using DNS: <!-- core-site.xml --> <configuration> <name>fs.default.name</name> <value>hdfs://example.com:8020/</value> <final>true</final> </configuration> 2. The job tracker makes a namenode request to the IP address that the DNS server returned and initiates either a read or a write sequence. For a read sequence, the job tracker requests the block locations of the data. OneFS returns a list of three IP addresses from the list defined in the SmartConnect pool for HDFS. OneFS sends back three IP addresses to mimic a traditional Hadoop file system, in which every block is replicated three times. For writes, the job tracker requests a location to write its chunk of data. OneFS returns a list of three IP addresses that the job tracker can provide to tasks for writing data. 3. For both read and write requests, the job tracker provides the list of three IP addresses to a task tracker on the compute node. 4. The task tracker initiates a TCP connection with the first IP address in the list for that block, using the HDFS data-node protocol. 5. The task performs either a read or a write over the data-node protocol to the first IP address in the list. 6. Once done, the task reports back to the job tracker. Assign Dynamic IP Addresses with a SmartConnect Zone Name to NameNodes When a job tracker or a task tracker detects a failure to communicate with an Isilon cluster, the tracker retries the connection by using the same IP address for namenode requests. If the IP address is dynamic, the retry succeeds because OneFS automatically moves the IP address to another node one that is available and processing requests. Assign Dynamic IP Addresses without a SmarConnect Zone Name to Datanodes For datanodes, dynamic IP addresses work best for several reasons. First, setting up datanodes with dynamic IP addresses hides node failures from Hadoop compute clients, which is particularly important for HAWQ. Second, dynamic IP addresses prevent a MapReduce task from failing in case an Isilon node goes offline; you do not need to restart the task. Third, dynamic IP addresses keep clients from using datanode IP addresses for long periods, which could occur with a static pool of IP addresses because of slow read or write operations. Fourth, you can provision the datanodes with the same IP address pools that the namenodes use. The main drawback of assigning dynamic IP addresses to datanodes is the possibility that traffic to datanodes could become unbalanced. For example, nodes with two IP addresses could receive twice as much traffic as nodes with one IP address. This potential drawback, however, can be mitigated by following the best practices for assigning dynamic IP addresses: Generally, you can achieve optimal balancing and failover when the number of IP addresses allocated to the pool for datanodes equals N * (N 1), where N equals the number of node interfaces in the pool. See the section below on using multiple IP address per interface. 24
25 Failure scenarios The failure scenarios discussed in this section elucidate how OneFS processes HDFS requests and routes them among nodes. When a job tracker submits a namenode request, the OneFS HDFS daemon returns a sliding list of three IP addresses; the sliding list balances connections across the cluster by responding to the first request with, for example, the IP addresses of nodes one, two, and three; the second request then responds with the IP addresses on nodes two, three, and four, and so forth. Because the task tracker usually ends up connecting to the first IP address in the list, this approach effectively balances connections across all the nodes with round robin. In a failure scenario such as a node going offline during a read or write operation, the task running on the task tracker retries its connection after a short timeout to the next IP address in the list. If all three of the IP addresses do not respond, the task fails and job tracker is notified. At that point, a second series of retries obtains a new list of block locations. The job tracker, however, places the IP addresses that failed in a blacklist so that they are not retried. (For more information on the blacklist and how to clear it, see the section on dealing with a blacklisted tasktracker in Hadoop Operations, published by O'Reilly.) In the case of a partially completed write operation, the entire block of data, usually either a 64 MB block or a 128 MB block, is discarded, and the write request is reissued to a working datanode. In the case of a partially completed read operation, a resume mechanism redirects the read operation to another datanode without the whole read operation having to start anew. If you are using dynamic IP addresses for the datanodes and a node goes offline, the IP address of the datanode moves to another node, and any task or session running on the datanode fails. The NodeManager, however, reissues the session to the next IP address in the list. The situation is similar with namenodes. The ResourceManager and tasks send remote procedure calls (RPCs) to a namenode to obtain metadata, such as the location of a block or a confirmation of a write operation. Because such sessions tend to be short, the likelihood that a dynamic IP address would cause issues is small. In contrast, using static IP addresses with namenodes can more likely lead to job and task failures than dynamic IP addresses. As a result, dynamic IP addresses are recommended for namenode transactions and datanode sessions. Solution Here is how to set up dynamic IP addresses for namenodes and datanodes. First, create a SmartConnect zone for namenodes with IP addresses to cover all the interfaces of all the nodes in the cluster (see the section on optimizing the number of IP addresses below). Set load-balancing to round robin. (Do not configure the namenode SmartConnect zone with the isi hdfs racks modify --ippools command; that command is for the datanode IP address pool.) Point your HDFS configuration at this zone name in coresite.xml, not at an IP address for example: <!-- core-site.xml --> <configuration> <name>fs.default.name</name> <value>hdfs://namenode.example.com:8020/</value> <final>true</final> </configuration> Now when the job tracker or the task trackers resolve hdfs://namenode.example.com, they receive a dynamic IP address from SmartConnect and connect to the cluster with a dynamic IP address. When the ResourceManager detects a failure to communicate with a namenode, it retries its namenode requests with the same IP address, and if that address is dynamic, the retry will succeed. Second, create an IP address pool for datanode traffic with IP addresses to cover at least all the interfaces of all the nodes in the cluster. You do not need to give the IP address pool for datanodes a SmartConnect zone name because OneFS does not use SmartConnect for datanode traffic. Instead, configure this pool with following command. For more information on the command, see the OneFS Command-Line Administration Guide. isi hdfs racks modify --add-ip-pool= USE MULTIPLE IP ADDRESSES PER INTERFACE This approach consists of binding multiple IP addresses to each node interface in a pool. The ideal number of IP addresses per interface depends on the size of the pool. The following recommendations apply to dynamic pools only. Because static pools include no failover capabilities, a static pool requires only one IP address per interface. 25
26 Generally, you can achieve optimal balancing and failover when the number of IP addresses allocated to the pool equals N * (N 1), where N equals the number of node interfaces in the pool. If, for example, a pool contains five node interfaces, the optimal IP address allocation for the pool is 5 * (5 1) = 20 IP addresses. The equation allocates four IP addresses to each of the five-node interfaces in the pool. For a pool with four node interfaces in which the N * (N 1) model is followed and results in three unique IP addresses being allocated to each node, a failure on one node interface results in each of that interface s three IP addresses failing over to a different node in the pool, ensuring that each of the three active interfaces remaining in the pool receives one IP address from the failed node interface. If client connections to that node were evenly balanced across its three IP addresses, OneFS distributes the workloads to the remaining pool members evenly. Assigning each workload a unique IP address allows OneFS to move a workload to another interface, minimizing the additional workload that a remaining node in the pool must absorb and ensuring that the workload is evenly distributed across the surviving nodes in the pool. If you cannot use multiple IP addresses per interface because, for example, you hold a limited number of IP addresses or because you must ensure that an interface failure within the pool does not affect performance for other workloads using the same pool you should consider using a hot standby interface per pool. SERVICE SUBNETS AND DNS INTEGRATION When you create a SmartConnect pool, you should set up a service subnet for DNS forwarding. A service subnet is the name of the external network subnet whose SmartConnect service responds to DNS requests for the IP address pool. For each pool, only one service subnet can answer DNS requests. As a best practice, you should designate a service subnet for each SmartConnect Advanced pool. You should also create a delegation for the subnet s service IP address on the DNS servers that provide name resolution services to the clients. If you leave the service subnet option blank, OneFS ignores incoming DNS queries for the pool s zone name and restricts access to only the IP addresses that you enter manually. In addition, you cannot apply the SmartConnect load-balancing policies to a pool without setting a service subnet. SEGREGATING TENANTS AND DATA SETS WITH ACCESS ZONES OneFS access zones lay the foundation for secure multitenancy. An access zone performs two primary functions: 1. An access zone establishes a virtual security context that segregates tenants. 2. An access zone creates a virtual storage region that isolates data sets. As a virtual security context, an access zone connects to directory services, authenticates users, and controls access to a segment of the file system. As a virtual storage region, an access zone isolates system connections, directories, and files as well as the application of some enterprise management features like event auditing. The following sample listing shows how an access zone encapsulates directory services, authentication, auditing, an HDFS root directory, and other features in a security context that contains a virtual storage area: test-cluster-1# isi zone zones list -v Name: z1 Path: /ifs/z1 Cache Size: 9.54M Map Untrusted: Auth Providers: lsa-ldap-provider:krbldap, lsa-krb5-provider:south.example.com NetBIOS Name: All Auth Providers: Yes User Mapping Rules: - Home Directory Umask: 0077 Skeleton Directory: /usr/share/skel 26
27 Audit Success: create, delete, rename, set_security, close Audit Failure: create, delete, rename, set_security, close HDFS Authentication: all HDFS Root Directory: /ifs/z1 WebHDFS Enabled: Yes HDFS Ambari Server: HDFS Ambari Namenode: Syslog Forwarding Enabled: No Syslog Audit Events: create, delete, rename, set_security Zone ID: 2 The name of this access zone. The directory services with which OneFS authenticates users and groups in the access zone. The audit settings that are turned on for the access zone. The unique HDFS root directory for the access zone. Each access zone can have a different HDFS root directory that serves only the zone s tenants. Although you could isolate stored resources and tenants by using only file permissions and access tokens, access zones are much easier to manage in an enterprise multitenant environment. Permissions and group memberships remain a viable method of controlling access to data within an access zone. Permissions and group memberships also remain a useful method for controlling access when there is no requirement for multitenancy. When a Hadoop user connects to an Isilon cluster, OneFS checks the directory services to which the user s access zone is connected for an account for the user. If OneFS finds an account that matches the user s login name, OneFS authenticates the user. During authentication, OneFS creates an access token for the user. The token contains the user s full identity, including group memberships, and OneFS uses the token later to check access to directories and files. When OneFS authenticates users with different directory services, OneFS maps a user s account from one directory service to the user s accounts in other directory services within an access zone a process known as user mapping. A Windows user account managed in Active Directory, for example, is mapped by default to a corresponding UNIX account with the same name in NIS or LDAP. With a single token, a user can, if permitted, access files that were stored by a Windows computer over SMB and files that were stored by a UNIX computer over NFS or HDFS. For Hadoop, you should create a user mapping rule to map the hdfs user to the OneFS root account so that the hdfs user can change the ownership of files. isiloncluster1-1# isi zone zones modify --user-mapping-rules="hdfs=>root" --zone z1 The following command restarts the OneFS HDFS service to flush cached user mapping rules. Restarting the HDFS service temporarily interrupts the HDFS connections from Hadoop compute clusters. isiloncluster1-1# isi services isi_hdfs_d disable ; isi services isi_hdfs_d enable The service 'isi_hdfs_d' has been disabled. The service 'isi_hdfs_d' has been enabled. USING ONEFS ACCESS ZONES One purpose of an access zone is to define a list of identity management systems that apply only in the context of a zone that contains SMB shares, NFS exports, or an HDFS root directory. As such, a key use case for an access zone is consolidating two or more file servers into a OneFS cluster and then analyzing the data with Hadoop. Another key use case is consolidating multiple Hadoop data sets into a single storage system but continuing to expose each data set with a unique root directory and then limiting access to only those who need it. You can set up a cluster to work with multiple identity management systems, NFS namespaces, SMB namespaces, Swift object storage namespaces, and HDFS namespaces and then segment them into access zones. In other words, an access zone can simultaneously contain an HDFS namespace and a namespace for Swift, NFS, and SMB files. Within the access zone, you can authenticate users and groups by simultaneously using Active Directory, NIS, and LDAP. 27
28 By placing authentication, access control, directory structures, and enterprise management features in the context of an access zone, OneFS lets you target the following high-level use cases with relative ease: Isolate directories and files in virtual storage regions without the overhead of managing individual volumes Consolidate SMB file servers and shares into a single storage cluster and then segment the shares by tenant or directory Consolidate NFS storage silos into a single cluster and then segment exports by tenant, directory, or data set Consolidate Multiple HDFS workflows on a single cluster Store different user databases on a single storage system while segmenting each database Migrate a scale-up storage system to an Isilon cluster to ease management, reduce operational expenses, and improve storage efficiency Set upper limits on resource usage by managing quotas, collections of disks, network interfaces, and other factors Avoid collisions of user identifiers when different users have the same UID Provision and manage a different Hadoop root directory for different tenants For more information on how OneFS authenticates connections, creates access tokens, and authorizes access to resources with access control lists, see OneFS Multiprotocol Security Untangled. For more information on multitenancy, see EMC Isilon Multitenancy for Hadoop Big Data Analytics. SETTING A UNIQUE HDFS ROOT DIRECTORY FOR EACH TENANT Perhaps most importantly for Hadoop, each access zone can contain a unique HDFS root directory for the tenant in that zone. For HDFS, the ability to enforce unique HDFS root directories in each access zone allows you to point multiple Hadoop compute clusters at the same HDFS storage system. Access zones can enforce a one-to-one mapping that is transparent to the clusters of compute clients. It is easy to create an access zone, as the following example shows. This command sets the HDFS root directory for the default access zone, which is named System. isiloncluster1-1# isi zone zones modify System --hdfs-root-directory /ifs/isiloncluster1/zone1/hadoop By using this command, you can set a different HDFS root directory for each access zone that you create. HANDLING MIXED WORKFLOWS IN AN ACCESS ZONE Every access zone works with the following protocols: NFS, SMB, Swift, and HDFS. With multiprotocol support, an access zone can handle a mix of workflows and analytics applications, including not only Hadoop projects but also other analytics applications like the statistical computing language R. The Swift protocol for object storage empowers you to automate the collection of petabytes of data and store them in an Isilon data lake for later analysis. COMBINING SWIFT OBJECT STORAGE WITH HADOOP ANALYTICS OneFS integrates OpenStack Object Storage with the EMC Isilon scale-out storage platform. The OpenStack Object Storage project, code named Swift, stores content and metadata as objects by using an application programming interface. The API furnishes a set of Representational State Transfer (REST) web services over HTTP. OneFS exposes the Swift API by implementing the OpenStack Object Storage proxy server on every storage node in an Isilon cluster. The proxy server handles API requests. The Swift API presents the distributed OneFS file system as a set of accounts, containers, and objects. Although OneFS flattens the multi-tiered architecture of OpenStack Object Storage into a single scale-out storage cluster, the containers and objects that you store with the Swift API can be simultaneously accessed as directories and files by using the other protocols that OneFS supports NFS, SMB, HTTP, FTP, and HDFS. As such, Swift empowers you to automate the collection of petabytes of data and store them in an Isilon data lake for later analysis with Hadoop, Spark, and other analytics applications. You can, for example, store application data as objects through the Swift API, analyze the data with Hadoop through the OneFS HDFS interface, and then export the results of MapReduce jobs to Microsoft Windows workstations with SMB. For more information, see OpenStack Swift Object Storage on EMC Isilon Scale-Out NAS. 28
29 MONITORING HDFS IN AN ACCESS ZONE WITH APACHE AMBARI Apache Ambari advances the management and monitoring of Hadoop clusters. The OneFS Ambari agent collects information about HDFS connections and Hadoop services in each access zone and sends the information to an external Ambari server. By connecting to an Ambari server with a web browser, you can monitor the status of the HDFS connections and manage such services as YARN and Oozie. The OneFS Ambari agent works with Ambari server versions and SECURE IMPERSONATION With secure impersonation, a proxy user can impersonate another user to run a Hadoop job in an access zone. For example, you can create an Apache Oozie proxy user that securely impersonates a user called HadoopAdmin so that the Oozie user can run jobs on behalf of the HadoopAdmin user. The proxy user and its members must be from the same access zone. The proxy user can access files and subdirectories located in the HDFS root directory of the access zone. EMC Isilon recommends that you limit the members that the proxy user can impersonate to users who have access only to the data that the proxy user needs. For instructions on how to set up secure impersonation, see the sections on the isi hdfs proxyusers command in the Isilon OneFS CLI Administration Guide. WEBHDFS OneFS supports access to Hadoop data in an access zone through WebHDFS client applications over HTTP and HTTPS. WebHDFS, which is enabled by default, works with simple authentication or Kerberos authentication. If the HDFS authentication method for an access zone is set to All, OneFS uses simple authentication by default. To prevent unauthorized client access through simple authentication, you should, as a best practice, turn off WebHDFS in each access zone where you do not want to use it. For more information, see the Isilon OneFS CLI Administration Guide. WORKING WITH DIFFERENT VERSIONS OF HADOOP SIMULTANEOUSLY OneFS interoperates with most major Hadoop distributions including Cloudera, Pivotal HD, Apache Hadoop, and Hortonworks against the same data set at the same time. OneFS supports HDFS 1.0 and 2.0 simultaneously without migrating data or modifying metadata. Clients running different Hadoop distributions or versions can connect to an access zone simultaneously. For example, you can point both Cloudera and Pivotal HD at the same data in an access zone and run MapReduce jobs from both distributions at the same time. ASSOCIATING NETWORKING RESOURCES WITH ACCESS ZONES OneFS contains a virtual racking feature that can associate network interfaces with an access zone. The rack associates the clients IP addresses with a pool of DataNodes so that when a client connects to the cluster, OneFS assigns the connection to one of the DataNodes in the pool. Such a network topology can look something like this: Figure 1. Sample network topology illustrating OneFS s virtual racking feature. A Hadoop client connects over HDFS to the DataNodes with interfaces that are assigned to the pool. After you add a pool with EMC Isilon SmartPools, you can change the IP address allocation for clients that connect to the cluster. Here is a series of example commands that illustrate how you can associate networking resources with access zones: isiloncluster1-1# isi networks list pools v subnet0:pool0 In Subnet: subnet0 29
30 Allocation: Static Ranges: Pool Membership: 4 1:10gige-1 (up) 2:10gige-1 (up) 3:10gige-1 (up) 4:10gige-1 (up) Aggregation Mode: Link Aggregation Control Protocol (LACP) Access Zone: z5 SmartConnect: Suspended Nodes : None Auto Unsuspend... 0 Zone : subnet0-pool0. isiloncluster1.lab.example.com Time to Live : 0 Service Subnet : subnet0 Connection Policy: Round Robin Failover Policy : Round Robin Rebalance Policy : Automatic Failback The command to show a verbose listing of the network pools. The range of IP addresses assigned to this network pool. The access zone to which this pool of network resources is assigned. The name of the SmartConnect zone that is associated with this network pool. To create a new access zone and associate a pool of IP address with it, you can run the following series of commands: isiloncluster1-1# mkdir -p /ifs/isiloncluster1/zone1 isiloncluster1-1# isi zone zones create --name zone1 --path /ifs/isiloncluster1/zone1 isiloncluster1-1# isi networks create pool --name subnet0:pool1 --ranges= ifaces 1-4:10gige-1 --access-zone zone1 --zone subnet0-pool1.isiloncluster1.lab.example.com --sc-subnet subnet0 --dynamic Creating pool 'subnet0:pool1': OK Saving: OK The command to create a new access zone. In this example, the access zone is named zone1. This command creates a new network pool named subnet0:pool1 and associates it with the access zone named zone1. This argument associates the network pool with a SmartConnect zone. Then you can use the Isilon racks command to assign a new IP address pool to DataNode connections: isiloncluster1-1# isi hdfs racks modify /rack0 --add-ip-pools subnet0:pool1 isiloncluster1-1# isi hdfs racks list Name Client IP Ranges IP Pools /rack subnet0:pool0 subnet0:pool Total: 1 30
31 You can use the same approach to distribute pools of IP addresses and the network interfaces of Isilon nodes across access zones. Here, for example, is a listing that illustrates the distribution of sets of IP addresses across four access zones, including the default system access zone: sv-hdfs-1isi networks list pools -v subnet0:pool0 - Default ext-1 pool In Subnet: subnet0 Allocation: Static Ranges: Pool Membership: 3 1:ext-1 (up) 2:ext-1 (up) 3:ext-1 (up) Aggregation Mode: Link Aggregation Control Protocol (LACP) Access Zone: System (1) SmartConnect: Suspended Nodes : None Auto Unsuspend... 0 Zone : N/A Time to Live : 0 Service Subnet : N/A Connection Policy: Round Robin Failover Policy : Round Robin Rebalance Policy : Automatic Failback subnet0:pool-z1 In Subnet: subnet0 Allocation: Static Ranges: Pool Membership: 3 1:ext-1 (up) 2:ext-1 (up) 3:ext-1 (up) Aggregation Mode: Link Aggregation Control Protocol (LACP) Access Zone: z1 (2) SmartConnect: Suspended Nodes : None Auto Unsuspend... 0 Zone : N/A Time to Live : 0 Service Subnet : N/A Connection Policy: Round Robin Failover Policy : Round Robin Rebalance Policy : Automatic Failback subnet0:pool-z2 In Subnet: subnet0 Allocation: Static Ranges: Pool Membership: 3 1:ext-1 (up) 2:ext-1 (up) 3:ext-1 (up) Aggregation Mode: Link Aggregation Control Protocol (LACP) Access Zone: z2 (3) SmartConnect: Suspended Nodes : None Auto Unsuspend... 0 Zone : N/A Time to Live : 0 Service Subnet : N/A Connection Policy: Round Robin Failover Policy : Round Robin Rebalance Policy : Automatic Failback This pool of network resources is named subnet0:pool0. It is the default pool. The pool is associated with the default access zone. This pool of network resources is named subnet0:pool-z1. The pool is associated with the access zone named z1. This pool of network resources is named subnet0:pool-z2. This pool is associated with the access zone named z2. 31
32 SHARING DATA AMONG TENANTS By default, the data in one access zone cannot be accessed by users in another access zone. In certain cases, however, you may need to make the same data set available to more than one Hadoop compute cluster. Fully qualified HDFS paths can render a data set available across two or more access zones. With fully qualified HDFS paths, the datasets do not cross access zones. Instead, the Hadoop jobs can access the data sets from a common shared HDFS namespace. For instance, you would start with two independent Hadoop compute clusters, each with its own access zone on an Isilon cluster. Then you can add a third access zone on the Isilon cluster with its own IP addresses and HDFS root. The zone can contain a dataset that is shared with the other Hadoop compute clusters. ALIGN DATASETS WITH STORAGE POOLS With a SmartPools license, you can create node pools, file policies, and tiers of storage. Node pools segment nodes into groups so that you can align a dataset with its performance requirements. File polices can isolate and store files by type, path, size, and other attributes. Tiers optimize the storage of data by need, such as a frequently used high-speed tier or a rarely accessed archive. Because you can combine EMC Isilon nodes from the S-Series, the X-Series, and the NL-Series into a cluster, you can set up pools of nodes to accelerate access to important working sets while placing inactive data in more cost-effective storage. For example, you can group S-Series nodes with 900 GB SAS drives and 400 GB SSDs per node in one pool, while you put NL-Series nodes with 3 TB SATA drives in another. As each type of node has a different capacity-to-performance ratio, you should assign different datasets to node pools that meet the dataset s capacity or performance requirements. In this way, the node pools can isolate the datasets to increase performance for important data and decrease storage costs for less important data. After you set up node pools, you can establish file pools and govern them with policies. The policies move files, directories, and file pools among node pools or tiers. Routing files with a certain file extension into a node pool containing S-Series nodes can deliver faster read and write performance. Another policy can evaluate the last-modified date to archive old files. SmartPools also manages data overflow with a spillover policy. When a pool becomes full, OneFS redirects write operations to another pool. It is a best practice to apply a spillover policy to a pool that handles a critical workflow. SMARTPOOLS FOR ANALYTICS DATA You can build node pools and policies to streamline an analytics workflow. For example, with SmartPools you can create two pools and one policy. One pool contains higher-performance SAS drives, while the other contains lower-cost SATA drives. Both pools are set at a high protection level. You need to create only one policy to manage the data a policy that keeps current data on the faster drives. To place an active working set on faster drives, the policy can use file attributes to route files to a pool of S-Series nodes with SSDs to increase throughput rates and decrease latency levels. At the same time, the policy can move older files, as identified by the last-modified or last-accessed date, to a data storage target of NL-Series disks to reserve the capacity in the S-Series node pool for newer data. When a policy moves a file or directory from one disk pool to another, the file s location in the file system tree remains the same, and you do not need to reconfigure clients to access the file in the new location. A file pool policy can apply to directories or files, and it can filter files by file name, path, type, and size, as well as other file attributes. You can also separate snapshot storage from data storage to route snapshots to a cost-effective target. WRITE CACHING WITH SMARTCACHE Write caching improves performance for most workflows. To optimize I/O operations, write caching coalesces data into a write-back cache and writes the data to disk at the best time. EMC Isilon calls write caching SmartCache. OneFS caches write operations sent over HDFS in the same way that OneFS caches write operations for other protocols. In general, EMC Isilon recommends that you leave write caching turned on. OneFS interprets writes as either synchronous or asynchronous, depending on a client's specifications. The impact and risk of write caching depend on the protocols with which your clients write data to the cluster and on whether the writes are interpreted as synchronous or asynchronous. If you disable write caching, OneFS ignores your clients' specifications and writes data synchronously. For more information, see the OneFS Administration Guide. 32
33 GUIDELINES FOR FILE POOL MANAGEMENT EMC Isilon recommends the following guidelines to improve overall performance: Plan file pool policies carefully, especially the sequence in which they are applied. Without proper planning and analysis, policies can conflict with or override one another. Note that directories with large amounts of stale data for instance, data that has not been accessed for more than 60 days can be migrated with a file pool policy to archive storage on an NL-Series pool. OneFS supplies a template for this policy. If directories take a long time to load in a file manager like Windows Explorer because there are a large number of objects directories, files, or both enable metadata acceleration for the data to improve load time. For more information on SmartPools file pool policies, see the white paper titled Next Generation Storage Tiering with EMC Isilon SmartPools on the EMC website and the OneFS Administration Guide. CHECK THE OPTIMIZATION SETTINGS OF DIRECTORIES AND FILES You can check the attributes of directories and files to see your current settings by running the following command and replacing <data> in the example with the name of a directory or file. The command s output, which shows the properties of a directory named data, is abridged to remove some immaterial information. isi get -D data POLICY W LEVEL PERFORMANCE COAL ENCODING FILE IADDRS default 4x/2 concurrency on N/A./ <1,1, :512>, <1,4, :512>, <1,23, :512>, <2,0, :512>, <3,2, :512> ct: rt: 0 ************************************************* * IFS inode: [ 1,1, :512, 1,4, :512, 1,23, :512, 2,0, :512, 3,2, :512 ] ************************************************* * Inode Version: 6 * Dir Version: 2 * Inode Revision: 7 * Inode Mirror Count: 5 * Physical Blocks: 0 * LIN: 1:0003:0000 * Last Modified: * Last Inode Change: * Create Time: * Rename Time: 0 * Write Caching: Enabled * Parent Lin 2 * Parent Hash: * Manually Manage: * Access False * Protection False * Protection Policy: Diskpool default * Current Protection: 4x * Future Protection: 0x * Disk pools: policy any pool group ID -> data target s200_13tb_400gb-ssd_48gb:6(6), metadata target s200_13tb_400gb-ssd_48gb:6(6) * SSD Strategy: metadata * SSD Status: complete * Layout drive count: 0 * Access pattern: 0 * File Data (118 bytes): * Metatree Depth: 1 * Dynamic Attributes (37 bytes): ATTRIBUTE OFFSET SIZE New file attribute 0 23 Disk pool policy ID 23 5 Last snapshot paint time 28 9 ************************************************* * NEW FILE ATTRIBUTES * Access attributes: active * Write Cache: on * Access Pattern: concurrency * At_r: 0 * Protection attributes: active 33
34 * Protection Policy: Diskpool default * Disk pools: policy any pool group ID * SSD Strategy: metadata ************************************************* Here is what some of these lines mean: This is a OneFS command to display the file system properties of a directory or file. For more information, see the OneFS Command Reference. The directory s data access pattern is set to concurrency. Write caching (SmartCache) is turned on. The SSD strategy is set to metadata, which is the default. Files that are added to the directory are governed by these settings, most of which can be changed by applying a file pool policy to the directory. STORING HOT, WARM, AND COLD DATA FOR SPLUNK You can optimize an Isilon cluster for Splunk by using pools of different Isilon nodes. Hot and warm databases, or buckets, of Splunk data can reside on a pool of S-Series nodes with SSDs to provide high performance. For cost-effective archiving, a cold bucket can reside on a pool of NL-Series nodes. By combining S-Series (or X-Series) nodes and NL-Series nodes into a single cluster, you can store all your Splunk index buckets up to 30 petabytes in a single file system with a global namespace. An added benefit is that an Isilon cluster simplifies the backup of a hot bucket with snapshots. How is storing data for Splunk related to Hadoop best practices? With an Isilon cluster, you can store both your Splunk buckets as well as your Hadoop data sets on the same cluster a practice that consolidates your storage infrastructure, eliminates storage silos, and reduces data-management costs. An EMC Isilon cluster becomes, in effect, a data lake that you can access from all your analytics applications, including NFS access for Splunk; see the section on data lakes in this paper. For more information on storing data on Isilon for Splunk, see the EMC Reference Architecture for Splunk. SECURING HDFS CONNECTIONS WITH KERBEROS Although a best practice is to secure your Isilon cluster with Kerberos, setting up Kerberos authentication can rile the most seasoned system administrator. It's particularly difficult with a Hadoop compute grid. A best practice is to add Kerberos authentication only after you have set up your Isilon cluster and your Hadoop clients and verified that the entire system works seamlessly. Permissions issues should be resolved before you set up Kerberos. Having to troubleshoot either a Hadoop system or permissions issues after you add the complexity of Kerberos is not a situation you want to find yourself in. Keep in mind that after you add Kerberos security, connections to the cluster that are not authenticated with Kerberos, including those of tools and scripts, will be denied access. Hadoop Operations, published by O'Reilly Media, contains excellent sections on identities, permissions, authentication, and Kerberos. It is recommended that you read them closely before you tighten permissions or set up Kerberos authentication. You can set up Kerberos authentication by using either Microsoft Active Directory or an MIT Kerberos 5 key distribution center. SET UP KERBEROS AUTHENTICATION WITH ACTIVE DIRECTORY This section explains how to set up an Isilon cluster running OneFS 7.2 to authenticate and authorize HDFS connections with Kerberos 5 and Microsoft Active Directory. It is assumed that you know how to configure Linux and Unix systems to work with Kerberos and Active Directory and that you know how to manage an Isilon cluster with the OneFS command-line interface. First, make sure you have created user accounts in Active Directory for HDFS, the job tracker, and the task tracker with a service principal name. (You will also have to set up accounts for the other services such as Hive, Pig, Impala, Apache Tez, HBase, and hdfs but the accounts that you create will depend on your implementation, as discussed elsewhere in this paper.) Once you set up Kerberos, you cannot use a local user on a compute client to access HDFS data on an Isilon cluster; you must use an account in Active Directory (or LDAP). The following example uses a service principal name: [email protected] First, you must create keytab files for every computer or hostname in your Hadoop client cluster by using Microsoft s ktpass utility. You can then use the _HOST keyword in your yarn-site.xml file when you specify the ResourceManager and NodeManager principals. Here is an example of the syntax of the ktpass command to create a keytab file: 34
35 ktpass princ mapuser +rndpass -out Documents/user.keytab /ptype KRB5_NT_PRINCIPAL For information on ktpass, see After you generate the keytab files, use secure FTP or another secure method to distribute them to the Hadoop compute clients that need them. The Kerberos keytab file contains an encrypted, local copy of the host s key and, if compromised, might allow unrestricted access to the host computer. It is therefore crucial to protect it with file-access permissions. To avoid account name conflicts after you set up Kerberos, you might have to delete the local accounts on your Isilon cluster that you created for the Hadoop services user accounts such as hdfs, mapred, and hadoop as well as the local group named hadoop. Second, you must configure the krb5.conf file on your Hadoop compute clients to use Active Directory. Include the default domain and the server settings for the KDC. For more information about setting up Hadoop clients to use Kerberos authentication, see Hadoop Operations and Kerberos: The Definitive Guide, both published by O Reilly Media. Third, make sure that your Isilon cluster and your compute clients use either Active Directory or the same NTP server as their time source. With Hadoop and Kerberos, a time skew among system components can wreak havoc. Fourth, connect as root with SSH to any Isilon node and run the following commands, replacing EAST.EXAMPLE.COM with the realm of your Active Directory domain. The first command, which requires you to enter the password for an Active Directory administrator account, joins your Isilon cluster to an Active Directory domain; if you are already joined to a domain, you do not need to run this command. (For more information about the commands, see the OneFS guide for the command-line interface.) isi auth ads create EAST.EXAMPLE.COM administrator isi auth ads modify --provider-name=east.example.com --assume-default-domain=true The final steps are to modify your Hadoop configuration files on your Hadoop compute clients and then restart the Hadoop services so that the changes take effect; see Altering Hadoop configuration files for Kerberos. SET UP KERBEROS AUTHENTICATION WITH MIT KERBEROS 5 This section explains how to set up an Isilon cluster running OneFS 7.2 to authenticate HDFS connections with a stand-alone MIT Kerberos 5 key distribution center. The following instructions assume that you have already set up a Kerberos system with a resolvable hostname for the KDC and a resolvable hostname for the KDC admin server. This section also assumes that you know how to manage an Isilon cluster with the OneFS command-line interface and that you know how to configure client computers to work with Kerberos. The instructions assume that you have already created a SmartConnect zone for your Isilon cluster. Setting up a stand-alone KDC to process HDFS authentication requests instead of sending them straight to Active Directory might improve performance for heavy workloads. After you set up the KDC, you can establish a trust between the KDC and Active Directory so that you can centrally manage all the users, groups, and principals in Active Directory. For more information about the Isilon commands in this section, see the Isilon OneFS CLI Administration Guide. First, make sure that the time that the clocks of the Kerberos key distribution center and the Isilon cluster are synchronized. Second, connect with SSH as root to any node in your Isilon cluster and run the following command to create a Kerberos authentication provider, join a Kerberos realm, and set the hostnames of the KDC and the KDC admin server. Replace the example values with the information from your network. isi auth krb5 create --admin-server=bird.east.example.com --kdc=bird.east.example.com -- realm=east.example.com --user=root/admin --password=mypw Optionally, create an LDAP provider to act as the directory service. Replace the example values with the values from your network. isi auth ldap create --name=krbldap --server-uris=ldap://bird.east.example.com --base-dn=ou=bird Krb,dc=east,dc=example,dc=com --provider-domain=east.example.com --authentication=no Third, verify the status of the authentication providers that you created: isi auth status ID Active Server Status lsa-local-provider:system - active lsa-local-provider:test-zone - active lsa-file-provider:system - active lsa-ldap-provider:krbldap - online lsa-krb5-provider:east.example.com - online 35
36 Total: 5 Fourth, create a directory that you will use as the HDFS root directory for the access zone in the next step; the name of the directory that you create can be different from the example: mkdir /ifs/analytics Fifth, create an access zone that uses an LDAP server as the directory service and the Kerberos KDC as the authentication service for HDFS connections in the zone. In this example, the access zone is named kerb-zone, but you can use another name. Replace the example values with the values from your network. isi zone zones create --path=/ifs/analytics --name=kerb-zone --auth-providers=lsa-ldapprovider:east.example.com,lsa-krb5-provider:east.example.com --hdfs-authentication=kerberos_only View the access zone to verify its configuration: isi zone zones view --zone=kerb-zone Name: kerb-zone Path: /ifs/analytics Cache Size: 9.54M Map Untrusted: Auth Providers: lsa-ldap-provider:krbldap, lsa-krb5-provider:east.example.com NetBIOS Name: All Auth Providers: No User Mapping Rules: - Home Directory Umask: 0077 Skeleton Directory: /usr/share/skel Audit Success: create, delete, rename, set_security, close Audit Failure: create, delete, rename, set_security, close HDFS Authentication: all HDFS Root Directory: /ifs/analytics WebHDFS Enabled: Yes HDFS Ambari Server: HDFS Ambari Namenode: Syslog Forwarding Enabled: No Syslog Audit Events: create, delete, rename, set_security Zone ID: 3 Create a network pool and associate it with the access zone. Replace the example values with the values from your network. isi networks create pool --name=subnet0:kerb-pool --ifaces=1:ext-1+2:ext-1+3:ext-1+4:ext-1+5:ext-1 --ranges= access-zone=kerb-zone Create a SmartConnect zone for the network pool with an IP address for service and then a name for the SmartConnect zone, which will be named kerb-zone-sc in the second command. Replace the example values with the values from your network. isi networks modify subnet --name=subnet0:kerb-pool --sc-service-addr= Modifying subnet 'subnet0': Saving: OK isi networks modify pool --name=subnet0:kerb-pool --zone=kerb-zone-sc --sc-subnet=subnet0 Modifying pool 'subnet0:kerb-pool': Saving: OK Finally, verify the service principal name (SPN) for HDFS: isi auth krb5 spn list --provider-name=east.example.com SPN Kvno HTTP/[email protected] 9 HTTP/[email protected] 9 hdfs/[email protected] 19 hdfs/[email protected] 13 host/[email protected] 9 host/[email protected] 9 nfs/[email protected] 9 nfs/[email protected] Total: 8 36
37 ALTERING HADOOP CONFIGURATION FILES FOR KERBEROS To turn on Kerberos authentication with either Active Directory or a stand-alone KDC, you must modify three Hadoop configuration files on your Hadoop compute clients: yarn-site.xml, hdfs-site.xml, and core-site.xml. After you make the changes, you must restart the Hadoop daemons on the compute clients for the changes to take effect. Modify yarn-site.xml Add the principal for the job tracker and the location of its keytab file to yarn-site.xml. Here is an example: <?xml version="1.0"?> <!-- yarn-site.xml --> <configuration> <name>yarn.resourcemanager.keytab</name> <value>/etc/yarn.keytab</value> <name>yarn.resourcemanager.principal</name> <value>yarn/[email protected]</value> <name>yarn.nodemanager.keytab </name> <value>/etc/yarn.keytab</value> <name>yarn.nodemanager.principal</name> <value>yarn/[email protected]</value> </configuration> Important: To run Hadoop jobs or distcp, you must make sure that the principals that the Hadoop daemons are using that is, the value of the NodeManager s and ResourceManager s Kerberos principal in yarn-site.xml map to users on your Isilon cluster and can be resolved on the cluster by using either OneFS local users or users from LDAP or Active Directory. Modify hdfs-site.xml for Kerberos Now, return to your Hadoop compute clients and add the following properties to hdfs-site.xml, replacing hostname with the hostname of the cluster and replacing the example realm with your realm (do not use the _host variable in hdfs-site.xml): <?xml version="1.0"?> <!-- hdfs-site.xml --> <configuration> <name>dfs.block.access.token.enable</name> <value>true</value> <!-- NameNode security config --> <name>dfs.namenode.kerberos.principal</name> <value>hdfs/[email protected]</value> <!-- DataNode security config --> <name>dfs.datanode.data.dir.perm</name> <value>700</value> <name>dfs.datanode.kerberos.principal</name> <value>hdfs/[email protected]</value> </configuration> Modify core-site.xml for authentication and authorization Next, turn on Kerberos authentication by adding the following security properties to core-site.xml: 37
38 <?xml version="1.0"?> <!-- core-site.xml --> <configuration> <name>fs.defaultfs</name> <value>hdfs://namenode.example.com:8020</value> <name>mapreduce.framework.name</name> <value>yarn</value> <name>hadoop.security.authentication</name> <value>kerberos</value> <!-- A value of "simple" would disable security. --> <name>hadoop.security.authorization</name> <value>true</value> </configuration> Remember to restart your Hadoop daemons on the compute clients so that the changes to the Hadoop configuration files take effect. TEST KERBEROS AUTHENTICATION Finally, on a compute client, validate the connection to your Isilon cluster: # su hdfs $ kinit [email protected] $./hadoop cdh4.0.1/bin/hadoop fs -ls / And then run a sample MapReduce job to check the system. The following example uses a job from Cloudera 4 but you can substitute one of your own: # passwd hdfs [hdfs needs a password] # su hdfs $./hadoop cdh4.0.1/sbin/start-yarn.sh $./hadoop cdh4.0.1/bin/hadoop jar hadoop cdh4.0.1/share/hadoop/mapreduce/hadoopmapreduce-examples cdh4.0.1.jar pi TROUBLESHOOTING KERBEROS AUTHENTICATION Authentication problems can be difficult to diagnose. First, check all the configuration parameters, including the location and validity of the keytab file. Second, check your user and group accounts for permissions. Make sure there are no duplicates of the accounts across systems, such as a local hdfs account on OneFS and an hdfs account in Active Directory. Third, make sure none of the problems in the following table are sabotaging authentication. PROBLEM The system's clock is out of sync. There are DNS lookup problems. SOLUTION The Kerberos standard requires that system clocks be no more than 5 minutes apart. Make sure that the system clocks on the Active Directory domain controller, the Isilon nodes, and the Hadoop clients are synchronized with a formal time source like NTP. Make sure the DNS and reverse DNS entries for all nodes are correct. 38
39 The service principal name of a Hadoop service, such as the NodeManager, is mapped to more than one object in the Active Directory. Although this problem is rare, it is difficult to diagnose because the error messages are vague. The problem can occur after the ktpass utility was used repeatedly to generate a Kerberos keytab file for a service. To check for this problem, log on to your Active Directory domain controller and open the Event Viewer. Look for an event of type=error, source=kdc, and event ID=11. The text of the event will be similar to this message: There are multiple accounts with name HDFS/myserver.mydomain.com of type DS_SERVICE_PRINCIPAL_NAME. To fix the problem, find the computer or user objects that were used to map the service principal name in Active Directory and then use the ADSI Edit tool to manually remove the (for example) HDFS/myserver.mydomain.com string from the serviceprincipalname object property. For more information, see the Microsoft documentation for Active Directory and ADSI Edit. You can also use the Microsoft Ldp utility to search for an object by name, such as hdfs. Situations to check to help troubleshoot Kerberos Authentication CONCLUSION An EMC Isilon cluster optimizes the storage of big data for data analysis. Combining Hadoop clients with Isilon scale-out NAS and the OneFS implementation of HDFS delivers the following solutions: Store your analytics data with existing workflows and protocols like NFS, HTTP, and SMB instead of spending time importing and exporting data with HDFS. Protect data efficiently, reliably, and cost-effectively with forward error correction instead of triple replication. Manage data with such enterprise features as snapshots, deduplication, clones, and replication. Receive namenode redundancy with a distributed namenode daemon that eliminates a single point of failure. Support HDFS 1.0 and 2.0 simultaneously without migrating data or modifying metadata. Run multiple Hadoop distributions including Cloudera, Pivotal HD, Apache Hadoop, and Hortonworks against the same data set at the same time. Implement security for HDFS clients with Kerberos and address compliance requirements with write-once, read-many (WORM) protection for Hadoop data. Scale storage independently of compute to handle expanding data sets. By scaling multidimensionally to handle the exponential growth of big data, an EMC Isilon cluster pairs with Hadoop to provide the best of both worlds: Data analytics and enterprise scale-out storage. The combination helps you adapt to fluid storage requirements, nondisruptively add capacity and performance in cost-effective increments, reduce storage overhead, and exploit your data through in-place analytics. 39
How To Use Isilon Scale Out Nfs With Hadoop
EMC ISILON BEST PRACTICES FOR HADOOP DATA STORAGE ABSTRACT This white paper describes the best practices for setting up and managing the HDFS service on an EMC Isilon cluster to optimize data storage for
EMC ISILON SCALE-OUT NAS FOR IN-PLACE HADOOP DATA ANALYTICS
White Paper EMC ISILON SCALE-OUT NAS FOR IN-PLACE HADOOP DATA ANALYTICS Abstract This white paper shows that storing data in EMC Isilon scale-out network-attached storage optimizes data management for
ENABLING GLOBAL HADOOP WITH EMC ELASTIC CLOUD STORAGE
ENABLING GLOBAL HADOOP WITH EMC ELASTIC CLOUD STORAGE Hadoop Storage-as-a-Service ABSTRACT This White Paper illustrates how EMC Elastic Cloud Storage (ECS ) can be used to streamline the Hadoop data analytics
Implementation of Hadoop Distributed File System Protocol on OneFS Tanuj Khurana EMC Isilon Storage Division
Implementation of Hadoop Distributed File System Protocol on OneFS Tanuj Khurana EMC Isilon Storage Division Outline HDFS Overview OneFS Overview HDFS protocol on OneFS HDFS protocol server implementation
Isilon OneFS. Version 7.2.1. OneFS Migration Tools Guide
Isilon OneFS Version 7.2.1 OneFS Migration Tools Guide Copyright 2015 EMC Corporation. All rights reserved. Published in USA. Published July, 2015 EMC believes the information in this publication is accurate
EMC ISILON OneFS OPERATING SYSTEM Powering scale-out storage for the new world of Big Data in the enterprise
EMC ISILON OneFS OPERATING SYSTEM Powering scale-out storage for the new world of Big Data in the enterprise ESSENTIALS Easy-to-use, single volume, single file system architecture Highly scalable with
Isilon OneFS. Version 7.2. OneFS Migration Tools Guide
Isilon OneFS Version 7.2 OneFS Migration Tools Guide Copyright 2014 EMC Corporation. All rights reserved. Published in USA. Published November, 2014 EMC believes the information in this publication is
HADOOP SOLUTION USING EMC ISILON AND CLOUDERA ENTERPRISE Efficient, Flexible In-Place Hadoop Analytics
HADOOP SOLUTION USING EMC ISILON AND CLOUDERA ENTERPRISE Efficient, Flexible In-Place Hadoop Analytics ESSENTIALS EMC ISILON Use the industry's first and only scale-out NAS solution with native Hadoop
Deploying Hadoop with Manager
Deploying Hadoop with Manager SUSE Big Data Made Easier Peter Linnell / Sales Engineer [email protected] Alejandro Bonilla / Sales Engineer [email protected] 2 Hadoop Core Components 3 Typical Hadoop Distribution
Cloudera Enterprise Reference Architecture for Google Cloud Platform Deployments
Cloudera Enterprise Reference Architecture for Google Cloud Platform Deployments Important Notice 2010-2015 Cloudera, Inc. All rights reserved. Cloudera, the Cloudera logo, Cloudera Impala, Impala, and
Integrated Grid Solutions. and Greenplum
EMC Perspective Integrated Grid Solutions from SAS, EMC Isilon and Greenplum Introduction Intensifying competitive pressure and vast growth in the capabilities of analytic computing platforms are driving
Implementing the Hadoop Distributed File System Protocol on OneFS Jeff Hughes EMC Isilon
Implementing the Hadoop Distributed File System Protocol on OneFS Jeff Hughes EMC Isilon Outline Hadoop Overview OneFS Overview MapReduce + OneFS Details of isi_hdfs_d Wrap up & Questions 2 Hadoop Overview
How To Manage A Single Volume Of Data On A Single Disk (Isilon)
1 ISILON SCALE-OUT NAS OVERVIEW AND FUTURE DIRECTIONS PHIL BULLINGER, SVP, EMC ISILON 2 ROADMAP INFORMATION DISCLAIMER EMC makes no representation and undertakes no obligations with regard to product planning
CDH AND BUSINESS CONTINUITY:
WHITE PAPER CDH AND BUSINESS CONTINUITY: An overview of the availability, data protection and disaster recovery features in Hadoop Abstract Using the sophisticated built-in capabilities of CDH for tunable
EMC ISILON AND ELEMENTAL SERVER
Configuration Guide EMC ISILON AND ELEMENTAL SERVER Configuration Guide for EMC Isilon Scale-Out NAS and Elemental Server v1.9 EMC Solutions Group Abstract EMC Isilon and Elemental provide best-in-class,
EMC IRODS RESOURCE DRIVERS
EMC IRODS RESOURCE DRIVERS PATRICK COMBES: PRINCIPAL SOLUTION ARCHITECT, LIFE SCIENCES 1 QUICK AGENDA Intro to Isilon (~2 hours) Isilon resource driver Intro to ECS (~1.5 hours) ECS Resource driver Possibilities
EMC ISILON ONEFS OPERATING SYSTEM
EMC ISILON ONEFS OPERATING SYSTEM Powering scale-out storage for the Big Data and Object workloads of today and tomorrow ESSENTIALS Easy-to-use, single volume, single file system architecture Highly scalable
Cloudera Enterprise Reference Architecture for Google Cloud Platform Deployments
Cloudera Enterprise Reference Architecture for Google Cloud Platform Deployments Important Notice 2010-2016 Cloudera, Inc. All rights reserved. Cloudera, the Cloudera logo, Cloudera Impala, Impala, and
EMC ISILON SCALE-OUT STORAGE PRODUCT FAMILY
SCALE-OUT STORAGE PRODUCT FAMILY Storage made simple ESSENTIALS Simple storage designed for ease of use Massive scalability with easy, grow-as-you-go flexibility World s fastest-performing NAS Unmatched
Protecting Big Data Data Protection Solutions for the Business Data Lake
White Paper Protecting Big Data Data Protection Solutions for the Business Data Lake Abstract Big Data use cases are maturing and customers are using Big Data to improve top and bottom line revenues. With
Isilon IQ Network Configuration Guide
Isilon IQ Network Configuration Guide An Isilon Systems Best Practice Paper August 2008 ISILON SYSTEMS Table of Contents Cluster Networking Introduction...3 Assumptions...3 Cluster Networking Features...3
EMC SOLUTION FOR SPLUNK
EMC SOLUTION FOR SPLUNK Splunk validation using all-flash EMC XtremIO and EMC Isilon scale-out NAS ABSTRACT This white paper provides details on the validation of functionality and performance of Splunk
IDENTITIES, ACCESS TOKENS, AND THE ISILON ONEFS USER MAPPING SERVICE
White Paper IDENTITIES, ACCESS TOKENS, AND THE ISILON ONEFS USER MAPPING SERVICE Abstract The OneFS user mapping service combines a user s identities from different directory services into a single access
THE EMC ISILON STORY. Big Data In The Enterprise. Copyright 2012 EMC Corporation. All rights reserved.
THE EMC ISILON STORY Big Data In The Enterprise 2012 1 Big Data In The Enterprise Isilon Overview Isilon Technology Summary 2 What is Big Data? 3 The Big Data Challenge File Shares 90 and Archives 80 Bioinformatics
BEST PRACTICES FOR INTEGRATING TELESTREAM VANTAGE WITH EMC ISILON ONEFS
Best Practices Guide BEST PRACTICES FOR INTEGRATING TELESTREAM VANTAGE WITH EMC ISILON ONEFS Abstract This best practices guide contains details for integrating Telestream Vantage workflow design and automation
CONFIGURATION GUIDELINES: EMC STORAGE FOR PHYSICAL SECURITY
White Paper CONFIGURATION GUIDELINES: EMC STORAGE FOR PHYSICAL SECURITY DVTel Latitude NVMS performance using EMC Isilon storage arrays Correct sizing for storage in a DVTel Latitude physical security
EMC ISILON SMARTCONNECT
EMC ISILON SMARTCONNECT Optimize Scale-out Storage Performance and Availability ABSTRACT This white paper covers the built-in client connection balancing functionality found in the EMC Isilon scale-out
EMC s Enterprise Hadoop Solution. By Julie Lockner, Senior Analyst, and Terri McClure, Senior Analyst
White Paper EMC s Enterprise Hadoop Solution Isilon Scale-out NAS and Greenplum HD By Julie Lockner, Senior Analyst, and Terri McClure, Senior Analyst February 2012 This ESG White Paper was commissioned
VIDEO SURVEILLANCE WITH SURVEILLUS VMS AND EMC ISILON STORAGE ARRAYS
VIDEO SURVEILLANCE WITH SURVEILLUS VMS AND EMC ISILON STORAGE ARRAYS Successfully configure all solution components Use VMS at the required bandwidth for NAS storage Meet the bandwidth demands of a 2,200
EMC SYNCPLICITY FILE SYNC AND SHARE SOLUTION
EMC SYNCPLICITY FILE SYNC AND SHARE SOLUTION Automated file synchronization Flexible, cloud-based administration Secure, on-premises storage EMC Solutions January 2015 Copyright 2014 EMC Corporation. All
Introduction to Hadoop HDFS and Ecosystems. Slides credits: Cloudera Academic Partners Program & Prof. De Liu, MSBA 6330 Harvesting Big Data
Introduction to Hadoop HDFS and Ecosystems ANSHUL MITTAL Slides credits: Cloudera Academic Partners Program & Prof. De Liu, MSBA 6330 Harvesting Big Data Topics The goal of this presentation is to give
EMC ISILON STORAGE BEST PRACTICES FOR ELECTRONIC DESIGN AUTOMATION
White Paper EMC ISILON STORAGE BEST PRACTICES FOR ELECTRONIC DESIGN AUTOMATION Abstract This paper describes best practices for setting up and managing an EMC Isilon cluster to store data for electronic
EMC Isilon Scale-Out Data Lake Foundation Essential Capabilities for Building Big Data Infrastructure
Lab Validation Brief EMC Isilon Scale-Out Data Lake Foundation Essential Capabilities for Building Big Data Infrastructure By Ashish Nadkarni, IDC Storage Team Sponsored by EMC Isilon March 2016 Lab Validation
EMC ISILON SCALE-OUT STORAGE PRODUCT FAMILY
SCALE-OUT STORAGE PRODUCT FAMILY Unstructured data storage made simple ESSENTIALS Simple storage management designed for ease of use Massive scalability of capacity and performance Unmatched efficiency
Hadoop Ecosystem B Y R A H I M A.
Hadoop Ecosystem B Y R A H I M A. History of Hadoop Hadoop was created by Doug Cutting, the creator of Apache Lucene, the widely used text search library. Hadoop has its origins in Apache Nutch, an open
Accelerating and Simplifying Apache
Accelerating and Simplifying Apache Hadoop with Panasas ActiveStor White paper NOvember 2012 1.888.PANASAS www.panasas.com Executive Overview The technology requirements for big data vary significantly
Adobe Deploys Hadoop as a Service on VMware vsphere
Adobe Deploys Hadoop as a Service A TECHNICAL CASE STUDY APRIL 2015 Table of Contents A Technical Case Study.... 3 Background... 3 Why Virtualize Hadoop on vsphere?.... 3 The Adobe Marketing Cloud and
EMC ISILON X-SERIES. Specifications. EMC Isilon X200. EMC Isilon X210. EMC Isilon X410 ARCHITECTURE
EMC ISILON X-SERIES EMC Isilon X200 EMC Isilon X210 The EMC Isilon X-Series, powered by the OneFS operating system, uses a highly versatile yet simple scale-out storage architecture to speed access to
How to Hadoop Without the Worry: Protecting Big Data at Scale
How to Hadoop Without the Worry: Protecting Big Data at Scale SESSION ID: CDS-W06 Davi Ottenheimer Senior Director of Trust EMC Corporation @daviottenheimer Big Data Trust. Redefined Transparency Relevance
FILE ARCHIVAL USING SYMANTEC ENTERPRISE VAULT WITH EMC ISILON
Best Practices Guide FILE ARCHIVAL USING SYMANTEC ENTERPRISE VAULT WITH EMC ISILON Abstract This white paper outlines best practices for deploying EMC Isilon OneFS scale-out storage with Symantec Enterprise
AUTOMATED DATA RETENTION WITH EMC ISILON SMARTLOCK
White Paper AUTOMATED DATA RETENTION WITH EMC ISILON SMARTLOCK Abstract EMC Isilon SmartLock protects critical data against accidental, malicious or premature deletion or alteration. Whether you need to
Overview. Big Data in Apache Hadoop. - HDFS - MapReduce in Hadoop - YARN. https://hadoop.apache.org. Big Data Management and Analytics
Overview Big Data in Apache Hadoop - HDFS - MapReduce in Hadoop - YARN https://hadoop.apache.org 138 Apache Hadoop - Historical Background - 2003: Google publishes its cluster architecture & DFS (GFS)
EMC Isilon Hadoop Starter Kit for Pivotal HD
EMC Isilon Hadoop Starter Kit for Pivotal HD Release 3.0 EMC November 04, 2014 Contents 1 EMC Isilon Hadoop Starter Kit for Pivotal HD with VMware Big Data Extensions 1 1.1 Introduction...............................................
Hadoop: Embracing future hardware
Hadoop: Embracing future hardware Suresh Srinivas @suresh_m_s Page 1 About Me Architect & Founder at Hortonworks Long time Apache Hadoop committer and PMC member Designed and developed many key Hadoop
EMC Isilon Scale-Out Data Lake Foundation Essential Capabilities for Building Big Data Infrastructure
Lab Validation Brief EMC Isilon Scale-Out Data Lake Foundation Essential Capabilities for Building Big Data Infrastructure By Ashish Nadkarni, IDC Storage Team Sponsored by EMC Isilon November 201 Lab
EMC SOLUTION FOR AGILE AND ROBUST ANALYTICS ON HADOOP DATA LAKE WITH PIVOTAL HDB
EMC SOLUTION FOR AGILE AND ROBUST ANALYTICS ON HADOOP DATA LAKE WITH PIVOTAL HDB ABSTRACT As companies increasingly adopt data lakes as a platform for storing data from a variety of sources, the need for
Configuring Celerra for Security Information Management with Network Intelligence s envision
Configuring Celerra for Security Information Management with Best Practices Planning Abstract appliance is used to monitor log information from any device on the network to determine how that device is
Veeam Cloud Connect. Version 8.0. Administrator Guide
Veeam Cloud Connect Version 8.0 Administrator Guide April, 2015 2015 Veeam Software. All rights reserved. All trademarks are the property of their respective owners. No part of this publication may be
IBM TSM DISASTER RECOVERY BEST PRACTICES WITH EMC DATA DOMAIN DEDUPLICATION STORAGE
White Paper IBM TSM DISASTER RECOVERY BEST PRACTICES WITH EMC DATA DOMAIN DEDUPLICATION STORAGE Abstract This white paper focuses on recovery of an IBM Tivoli Storage Manager (TSM) server and explores
EMC ISILON NL-SERIES. Specifications. EMC Isilon NL400. EMC Isilon NL410 ARCHITECTURE
EMC ISILON NL-SERIES The challenge of cost-effectively storing and managing data is an ever-growing concern. You have to weigh the cost of storing certain aging data sets against the need for quick access.
Hadoop. Apache Hadoop is an open-source software framework for storage and large scale processing of data-sets on clusters of commodity hardware.
Hadoop Source Alessandro Rezzani, Big Data - Architettura, tecnologie e metodi per l utilizzo di grandi basi di dati, Apogeo Education, ottobre 2013 wikipedia Hadoop Apache Hadoop is an open-source software
DATA LAKE FOUNDATION 2.0 JEUDI 19 NOVEMBRE 2015. Denis FRAVAL-OLIVIER : ISD Presales Manager
DATA LAKE FOUNDATION 2.0 JEUDI 19 NOVEMBRE 2015 Denis FRAVAL-OLIVIER : ISD Presales Manager EMC Isilon Unifying Workloads in one place Module 4: Horizontal and Vertical Markets ISILON FOR ALL TYPES OF
EMC CENTERA VIRTUAL ARCHIVE
White Paper EMC CENTERA VIRTUAL ARCHIVE Planning and Configuration Guide Abstract This white paper provides best practices for using EMC Centera Virtual Archive in a customer environment. The guide starts
Syncplicity On-Premise Storage Connector
Syncplicity On-Premise Storage Connector Implementation Guide Abstract This document explains how to install and configure the Syncplicity On-Premise Storage Connector. In addition, it also describes how
Big Data Storage Options for Hadoop Sam Fineberg, HP Storage
Sam Fineberg, HP Storage SNIA Legal Notice The material contained in this tutorial is copyrighted by the SNIA unless otherwise noted. Member companies and individual members may use this material in presentations
Deploying Virtualized Hadoop Systems with VMware vsphere Big Data Extensions A DEPLOYMENT GUIDE
Deploying Virtualized Hadoop Systems with VMware vsphere Big Data Extensions A DEPLOYMENT GUIDE Table of Contents Introduction.... 4 Overview of Hadoop, vsphere, and Project Serengeti.... 4 An Overview
Enabling High performance Big Data platform with RDMA
Enabling High performance Big Data platform with RDMA Tong Liu HPC Advisory Council Oct 7 th, 2014 Shortcomings of Hadoop Administration tooling Performance Reliability SQL support Backup and recovery
Prepared By : Manoj Kumar Joshi & Vikas Sawhney
Prepared By : Manoj Kumar Joshi & Vikas Sawhney General Agenda Introduction to Hadoop Architecture Acknowledgement Thanks to all the authors who left their selfexplanatory images on the internet. Thanks
Cloudera Backup and Disaster Recovery
Cloudera Backup and Disaster Recovery Important Note: Cloudera Manager 4 and CDH 4 have reached End of Maintenance (EOM) on August 9, 2015. Cloudera will not support or provide patches for any of the Cloudera
Distributed File System. MCSN N. Tonellotto Complements of Distributed Enabling Platforms
Distributed File System 1 How do we get data to the workers? NAS Compute Nodes SAN 2 Distributed File System Don t move data to workers move workers to the data! Store data on the local disks of nodes
Reference Architecture and Best Practices for Virtualizing Hadoop Workloads Justin Murray VMware
Reference Architecture and Best Practices for Virtualizing Hadoop Workloads Justin Murray ware 2 Agenda The Hadoop Journey Why Virtualize Hadoop? Elasticity and Scalability Performance Tests Storage Reference
Sujee Maniyam, ElephantScale
Hadoop PRESENTATION 2 : New TITLE and GOES Noteworthy HERE Sujee Maniyam, ElephantScale SNIA Legal Notice The material contained in this tutorial is copyrighted by the SNIA unless otherwise noted. Member
NEXT-GENERATION STORAGE EFFICIENCY WITH EMC ISILON SMARTDEDUPE
White Paper NEXT-GENERATION STORAGE EFFICIENCY WITH EMC ISILON SMARTDEDUPE Abstract Most file systems are a thin layer of organization on top of a block device and cannot efficiently address data on a
HDFS Users Guide. Table of contents
Table of contents 1 Purpose...2 2 Overview...2 3 Prerequisites...3 4 Web Interface...3 5 Shell Commands... 3 5.1 DFSAdmin Command...4 6 Secondary NameNode...4 7 Checkpoint Node...5 8 Backup Node...6 9
Lecture 5: GFS & HDFS! Claudia Hauff (Web Information Systems)! [email protected]
Big Data Processing, 2014/15 Lecture 5: GFS & HDFS!! Claudia Hauff (Web Information Systems)! [email protected] 1 Course content Introduction Data streams 1 & 2 The MapReduce paradigm Looking behind
Big Data Management and Security
Big Data Management and Security Audit Concerns and Business Risks Tami Frankenfield Sr. Director, Analytics and Enterprise Data Mercury Insurance What is Big Data? Velocity + Volume + Variety = Value
HADOOP ON EMC ISILON SCALE-OUT NAS
White Paper HADOOP ON EMC ISILON SCALE-OUT NAS Abstract This white paper details the way EMC Isilon Scale-out NAS can be used to support a Hadoop data analytics workflow for an enterprise. It describes
CDH 5 Quick Start Guide
CDH 5 Quick Start Guide Important Notice (c) 2010-2015 Cloudera, Inc. All rights reserved. Cloudera, the Cloudera logo, Cloudera Impala, and any other product or service names or slogans contained in this
H2O on Hadoop. September 30, 2014. www.0xdata.com
H2O on Hadoop September 30, 2014 www.0xdata.com H2O on Hadoop Introduction H2O is the open source math & machine learning engine for big data that brings distribution and parallelism to powerful algorithms
Running a Workflow on a PowerCenter Grid
Running a Workflow on a PowerCenter Grid 2010-2014 Informatica Corporation. No part of this document may be reproduced or transmitted in any form, by any means (electronic, photocopying, recording or otherwise)
HADOOP MOCK TEST HADOOP MOCK TEST II
http://www.tutorialspoint.com HADOOP MOCK TEST Copyright tutorialspoint.com This section presents you various set of Mock Tests related to Hadoop Framework. You can download these sample mock tests at
Isilon: Scalable solutions using clustered storage
Isilon: Scalable solutions using clustered storage TERENA Storage WG Conference September, 2008 Rob Anderson Systems Engineering Manager, UK & Ireland [email protected] Isilon at HEAnet HEAnet were looking
EMC DATA DOMAIN OPERATING SYSTEM
ESSENTIALS HIGH-SPEED, SCALABLE DEDUPLICATION Up to 58.7 TB/hr performance Reduces protection storage requirements by 10 to 30x CPU-centric scalability DATA INVULNERABILITY ARCHITECTURE Inline write/read
HADOOP MOCK TEST HADOOP MOCK TEST I
http://www.tutorialspoint.com HADOOP MOCK TEST Copyright tutorialspoint.com This section presents you various set of Mock Tests related to Hadoop Framework. You can download these sample mock tests at
EMC Federation Big Data Solutions. Copyright 2015 EMC Corporation. All rights reserved.
EMC Federation Big Data Solutions 1 Introduction to data analytics Federation offering 2 Traditional Analytics! Traditional type of data analysis, sometimes called Business Intelligence! Type of analytics
WHITE PAPER. www.fusionstorm.com. Get Ready for Big Data:
WHitE PaPER: Easing the Way to the cloud: 1 WHITE PAPER Get Ready for Big Data: How Scale-Out NaS Delivers the Scalability, Performance, Resilience and manageability that Big Data Environments Demand 2
Diagram 1: Islands of storage across a digital broadcast workflow
XOR MEDIA CLOUD AQUA Big Data and Traditional Storage The era of big data imposes new challenges on the storage technology industry. As companies accumulate massive amounts of data from video, sound, database,
Physical Security EMC Storage with ISS SecurOS
Physical Security EMC Storage with ISS SecurOS Version 1.0 Sizing Guide H14192 Copyright 2015 EMC Corporation. All rights reserved. Published in USA. Published June, 2015 EMC believes the information in
FILE SYSTEM AUDITING WITH EMC ISILON AND EMC COMMON EVENT ENABLER
FILE SYSTEM AUDITING WITH EMC ISILON AND EMC COMMON EVENT ENABLER Abstract This guide outlines best practices to configure a File System Audit solution in SMB and NFS environments with EMC Isilon, And
Benchmarking Hadoop & HBase on Violin
Technical White Paper Report Technical Report Benchmarking Hadoop & HBase on Violin Harnessing Big Data Analytics at the Speed of Memory Version 1.0 Abstract The purpose of benchmarking is to show advantages
VMware vsphere Big Data Extensions Administrator's and User's Guide
VMware vsphere Big Data Extensions Administrator's and User's Guide vsphere Big Data Extensions 1.0 This document supports the version of each product listed and supports all subsequent versions until
Data processing goes big
Test report: Integration Big Data Edition Data processing goes big Dr. Götz Güttich Integration is a powerful set of tools to access, transform, move and synchronize data. With more than 450 connectors,
Infomatics. Big-Data and Hadoop Developer Training with Oracle WDP
Big-Data and Hadoop Developer Training with Oracle WDP What is this course about? Big Data is a collection of large and complex data sets that cannot be processed using regular database management tools
Hitachi Data Migrator to Cloud Best Practices Guide
Hitachi Data Migrator to Cloud Best Practices Guide Global Solution Services Engineering April 2015 MK-92HNAS045-02 Notices and Disclaimer Copyright 2015 Corporation. All rights reserved. The performance
Hadoop & Spark Using Amazon EMR
Hadoop & Spark Using Amazon EMR Michael Hanisch, AWS Solutions Architecture 2015, Amazon Web Services, Inc. or its Affiliates. All rights reserved. Agenda Why did we build Amazon EMR? What is Amazon EMR?
White. Paper. EMC Isilon: A Scalable Storage Platform for Big Data. April 2014
White Paper EMC Isilon: A Scalable Storage Platform for Big Data By Nik Rouda, Senior Analyst and Terri McClure, Senior Analyst April 2014 This ESG White Paper was commissioned by EMC Isilon and is distributed
Constructing a Data Lake: Hadoop and Oracle Database United!
Constructing a Data Lake: Hadoop and Oracle Database United! Sharon Sophia Stephen Big Data PreSales Consultant February 21, 2015 Safe Harbor The following is intended to outline our general product direction.
Storage Architectures for Big Data in the Cloud
Storage Architectures for Big Data in the Cloud Sam Fineberg HP Storage CT Office/ May 2013 Overview Introduction What is big data? Big Data I/O Hadoop/HDFS SAN Distributed FS Cloud Summary Research Areas
ONEFS MULTIPROTOCOL SECURITY UNTANGLED
White Paper ONEFS MULTIPROTOCOL SECURITY UNTANGLED Abstract This paper describes the role that identity management, authentication, and access control play in the security system of the EMC Isilon OneFS
Using VMware VMotion with Oracle Database and EMC CLARiiON Storage Systems
Using VMware VMotion with Oracle Database and EMC CLARiiON Storage Systems Applied Technology Abstract By migrating VMware virtual machines from one physical environment to another, VMware VMotion can
Ankush Cluster Manager - Hadoop2 Technology User Guide
Ankush Cluster Manager - Hadoop2 Technology User Guide Ankush User Manual 1.5 Ankush User s Guide for Hadoop2, Version 1.5 This manual, and the accompanying software and other documentation, is protected
Data-Intensive Programming. Timo Aaltonen Department of Pervasive Computing
Data-Intensive Programming Timo Aaltonen Department of Pervasive Computing Data-Intensive Programming Lecturer: Timo Aaltonen University Lecturer [email protected] Assistants: Henri Terho and Antti
Cloudera Manager Training: Hands-On Exercises
201408 Cloudera Manager Training: Hands-On Exercises General Notes... 2 In- Class Preparation: Accessing Your Cluster... 3 Self- Study Preparation: Creating Your Cluster... 4 Hands- On Exercise: Working
Cisco Unified Data Center Solutions for MapR: Deliver Automated, High-Performance Hadoop Workloads
Solution Overview Cisco Unified Data Center Solutions for MapR: Deliver Automated, High-Performance Hadoop Workloads What You Will Learn MapR Hadoop clusters on Cisco Unified Computing System (Cisco UCS
EMC DATA DOMAIN OPERATING SYSTEM
EMC DATA DOMAIN OPERATING SYSTEM Powering EMC Protection Storage ESSENTIALS High-Speed, Scalable Deduplication Up to 58.7 TB/hr performance Reduces requirements for backup storage by 10 to 30x and archive
Isilon OneFS. Version 7.2.0. Web Administration Guide
Isilon OneFS Version 7.2.0 Web Administration Guide Copyright 2001-2015 EMC Corporation. All rights reserved. Published in USA. Published July, 2015 EMC believes the information in this publication is
