# Introduction to Electric Circuits. Dr. William A. Stapleton Ingram School Of Engineering Texas State University San Marcos

Save this PDF as:

Size: px
Start display at page:

Download "Introduction to Electric Circuits. Dr. William A. Stapleton Ingram School Of Engineering Texas State University San Marcos"

## Transcription

1 Introduction to Electric Circuits Dr. William A. Stapleton Ingram School Of Engineering Texas State University San Marcos

2 Electrical Circuits (Over)simplified The simple model of matter is that it is made up of atoms which have positively-charged nuclei orbited by negatively-charged electrons. Given sufficient energy, an electron can be dislodged from its atom. Think of electricity as the flow of energy carried by the movement of electrons dislodged from atoms. An electrical circuit is formed when there is a closed path around which the electrons flow.

3 Circuits Primer part 2 In electrical circuits, we are interested in the movement of energy from one location to another. Some elements in a circuit supply energy. These are called sources. Some elements in a circuit expend energy. These are called loads or sinks. The total energy supplied must equal the total energy expended. We typically measure energy somewhat indirectly. Energy is measured in Joules (J). Power is energy per unit time. Power is measured in Watts (W). A Watt is one Joule per second. 1W = 1J/s A 100W light bulb expends 100 Joules each second.

4 Circuits Primer part 3 We said a 100W light bulb expends 100 Joules each second. We also said to think of electricity as the flow of energy carried by the movement of electrons dislodged from atoms. To get energy to the light bulb, we make a circuit from the power producing plant to the light bulb. In that circuit each moving electron is charged with energy at the source. When an electron passes through the sink (light) that energy is expended. The amount of power that can be supplied depends on two factors: The number of electrons that can move through the wires The amount of energy carried with each electron

5 Circuits Primer part 4 The number of electrons flowing in a circuit is called current. Current is measured in Amperes (A). An Ampere is one Coulomb of electrons per second. A Coulomb is 6,241,507,648,655,549,400 (6.24 x ) electrons. The amount of energy per electron is called voltage. Voltage is measured in Volts (V). One Volt is one Joule per Coulomb. So to determine power we take the product of the number of electrons flowing (current) and the energy per electron (voltage) and we should get a measure of power (wattage) Voltage * Current = Power In units V*A=W or (J/C)*(C/s) = (J/s)

6 Figuring the numbers Consider the electrical power equation: o Voltage * Current = Power For a 100W light bulb attached to a 110V wall outlet, we concluded: o 110V * Current = 100W, so that o Current = 100W / 110V = (10/11)A We need a more convenient way to represent a circuit than a verbal description.

7 Introducing Circuit Elements Since we need a more convenient way to represent a circuit than a verbal description, we will introduce simple models for a few common circuit elements. Please keep in mind that the actual devices we are modeling are considerably more complex than these models. However, much of the time, we don t need to worry about the full complexity and a simple model gives us results that are close enough. One of the challenges in becoming an engineer is gaining enough experience to be able to say what constitutes close enough for a given situation.

8 Voltage Supply A common voltage source is a chemical battery. These are examples of direct current (dc) power supplies. A dc voltage supply operates by giving each electron which flows through it a fixed amount of energy. (e.g. fixed voltage = fixed energy per electron) dc Voltage Source Energy per electron is increased by a fixed amount as current passes from the - to + end. Current may flow either direction (source or sink)

9 Batteries A common example of a dc voltage supply is a battery. They have a different symbol than generalpurpose supplies. Batteries use a chemical reaction to provide energy to electrons passing through the battery. A common symbol for a battery appears below:

10 Current Supply A dc current supply operates by forcing a fixed current (a fixed number of electrons per second) through the source in the indicated direction. Current supplies are somewhat less common than voltage supplies. dc Current Source Current magnitude leaving source is fixed. Voltage across source is adjusted to allow this to happen.

11 Resistance Resistance is the property which describes how easy (or difficult) it is to cause electrons to move (current) in a material when electrical energy (voltage) is applied. Resistance is measured in units called Ohms with symbol. 1 Ohm = 1 Volt/Ampere or 1 = 1V/A In some materials, such as most metals, it is relatively easy to cause electrons to move. These materials have low resistance and are commonly called conductors. In other materials, such as rubber or plastic, it is relatively difficult to cause electrons to move. These materials have high resistance and are commonly called insulators. A few materials, such as silicon, are conductors under some circumstances and insulators under other circumstances. These are called semiconductors.

12 Impedance and Ohm s Law Impedance is the electrical property for a device which describes how voltage and current interact in that device. Ohm s Law states that the ratio of voltage (V) to current (I) for any device is its impedance (Z) so: Ohm s Law: V/I = Z Also written as V=IZ or V/Z=I From the V/I=Z form, it should be obvious that impedance is in units of Volts/Ampere or Ohms so resistance must be a form of impedance.

13 Resistor The simplest electrical device model is the resistor. This is a device whose impedance is simply its resistance to electrical flow. In this case resistance (R) is equivalent to impedance (Z). The circuit symbol for a resistor is: + V R - I R R In general V=IZ For a resistor Z=R So V R =I R R

14 Back to the light bulb Electrically, an incandescent light bulb can often be modeled as a simple resistance. The 100W light bulb is rated to draw that much power at the standard 110V of a wall outlet. It would draw different amounts of power with different voltages applied. We want to know how it would react. We said at 110V, a 100W bulb, modeled as a resistor, draws (10/11)A of current Ohm s Law says V/I=R so R=110V/((10/11)A) = 121 So, if we were to plug the light into a 220V outlet (like a clothes dryer uses), how much current would it draw (before it dies)? V=IR or I=V/R so I = 220V/121 = A How much power does the bulb draw at 220V? P=V*I so P=220V * A = 400W so double the voltage means quadruple the power!?!

15 Another note on Power We said P=V*I for simple resistances Ohm s law says V=IR which also means I=V/R So, by substitution: P = V*I = (IR) * I = I 2 *R P = V*I = V * (V/R) = V 2 /R So, yes, Power at 2V is (2V) 2 /R = 4V 2 /R Power at (1/2)V is ((1/2)V) 2 /R = (1/4)(V 2 /R) Remember, P = V*I = I 2 *R = V 2 /R

16 Standard Resistor Values For resistors accurate to 10% (or more) of their rated value (common, inexpensive resistors) the rated values begin with the following two significant digit prefixes: 10, 12, 15, 18, 22, 27, 33, 39, 47, 56, 68, 82 These prefixes are available in decade increments e.g. available 33 sizes are 33, 330, 3300, 33000, etc. For 5% accuracy the prefixes are: 10, 11, 12, 13, 15, 16, 18, 20, 22, 24, 27, 30, 33, 36, 39, 43, 47, 51, 56, 62, 68, 75, 82, 91 For 1% (or better) accuracy the prefixes are 3 digits: 100, 102, 105, 107, 110, 113, 115, 118, 121, 124, 127, 130, 133, 137, 140, 143, 147, 150, 154, 158, 162, 165, 169, 174, 178, 182, 187, 191, 196, 200, 205, 210, 215, 221, 226, 232, 237, 243, 249, 255, 261, 267, 274, 280, 287, 294, 301, 309, 316, 324, 332, 340, 348, 357, 365, 374, 383, 392, 402, 412, 422, 432, 442, 453, 464, 475, 487, 499, 511, 523, 536, 549, 562, 576, 590, 604, 619, 634, 649, 665, 681, 698, 715, 732, 750, 768, 787, 806, 825, 845, 866, 887, 909, 931, 953, 976

17 Resistor Color Codes Many resistors are physically small so writing the value on the package becomes impractical. A standard package marking for resistors includes a set of colored bands on the package. The order and color of the bands corresponds to the resistance value, in ohms, of the resistor. The colors used in the resistor markings are as follows: Black, brown, red, orange, yellow, green, blue, violet, gray, white, gold, silver The order of the bands is important to properly reading the value. The final band is normally separated from the other bands by a space or gap. Alternatively, the first band may be extended to cap one end of the resistor. Depending on the intended application, resistors may be marked with 3-6 bands

18 Color Code Values Depending on context, the color bands can represent digits, multipliers, accuracy tolerance, or temperature coefficients Resistor (Ω) Value as: Color Digit Multiplier Tolerance Temperature Black 0 1 Brown 1 10 ± 1% 100 ppm/ C Red ± 2% 50 ppm/ C Orange ppm/ C Yellow ppm/ C Green ± 0.5% Blue ± 0.25% 10 ppm/ C Violet ± 0.1% 5 ppm/ C Gray ± 0.05% White ppm/ C Gold 0.1 ± 5% Silver 0.01 ± 10% No band ± 20%

19 Reading the Resistor Color Bands All resistor values are in units of ohms (Ω) 3 bands (less common, ±20% tolerance implied): 1 st digit, 2 nd digit, gap, multiplier 4 bands (typical): 1 st digit, 2 nd digit, multiplier, gap, tolerance 5 bands (common for high-precision): 1 st digit, 2 nd digit, 3 rd digit, multiplier, gap, tolerance 6 bands (rare): 1 st digit, 2 nd digit, 3 rd digit, multiplier, tolerance, gap, temperature coefficient

20 Example Resistor Color Codes R1 R2 R3 For R1: Yellow=4, violet=7, black= 10 0, silver = 10% so R1 = 47x 10 0 = 47 ± 10% For R2: Yellow=4, violet=7, orange= 10 3, gold = 5% so R2 = 47x 10 3 = = 47k ± 5% For R3: Orange=3, white=9, red=2, blue=10 6, brown = 1% R3 = 392x 10 6 = = 392M ± 1%

21 A Simple Circuit In the circuit below a 12V source is connected to a 120 resistor. We assume that the wires have such low resistance that we can treat them as perfect conductors that add 0 to the equation. Since V=IZ then 12V = I(120 ) or I=12V/120 =0.1A I 12V 120

22 Sign Convention A resistor is always a sink. It can only expend energy, never supply it. Our sign convention is such that for devices that sink energy, positive current flows from the end of the device with more positive voltage to the end with more negative voltage. Devices that supply energy have opposite polarity. I S + I R + V R R V S - Sink Expends energy - Source Supplies energy

23 A Simple Circuit - Power Remember, Power is the product of voltage and current so P=VI In the Source: P supplied =(12V)(0.1A) = 1.2W In the Resistor: P expended =(12V)(0.1A) = 1.2W Overall: P supplied = P expended so the Laws of Thermodynamics are satisfied 0.1A 12V 120

24 Power and Components In the last example, the resistor was dissipating 1.2W of power. This power is expended as heat. All resistors have a finite limit on how much power they can safely dissipate before the heat generated damages them. This is the rated power of the resistor. Most of the commonly available resistors will either be ¼W or ½W resistors. You will need to be certain that your circuit designs do not exceed these power ratings for your components. Resistors with higher power ratings exist, if needed for specialized designs.

25 Kirchoff s Laws Kirchoff s Voltage Law (KVL): The sum of all voltages around any closed path must equal 0 Kirchoff s Current Law (KCL): The sum of all currents at a node (point connecting elements) must equal 0 Stated another way: If you go around a loop, the total voltage rise from going - to + on elements equals the fall going + to - across other elements. Similarly, wherever elements meet, the currents entering the junction equal the currents leaving the junction.

26 Kirchoff s Voltage Law in action Consider the following circuit and determine the voltages across each resistor. 80 I 30V

27 KVL Example We can see on the last diagram that there is only one path for current: from the 300V source, through the 80Ω, 300Ω, and 120Ω respectively, and back to the 300V source. Since the current, labeled I, goes through the 80Ω resistor, the voltage across the 80Ω, which we will call V 80, must be: V 80 =I* 80Ω Similarly for the 300Ω and 120Ω resistors, V 300 =I* 300Ω and V 120 =I* 120Ω We need to be careful to make certain that we choose the correct polarity for V 80, V 300, and V 120 The next slide shows the correct voltage polarities based on the assumed direction of I

28 Kirchoff s Voltage Law example Label the voltages with the correct polarity for the given current Pick a starting point 80 I V 80 30V V V 120

29 KVL example Beginning at the specified starting point, to write a KVL equation we can either traverse the loop clockwise or counter-clockwise. Clockwise: +300V V 80 V 300 V 120 = 0 Counter-clockwise: V V V V = 0 It should be clear that these two equations are functionally equivalent and may also be written as: V V V 80 = 300V

30 KVL example V V V 80 = 300V We know all of the resistor voltages in terms of I I*120Ω + I*300Ω + I*80Ω = 300V I*(120Ω + 300Ω + 80Ω) = 300V I = 300V/(120Ω + 300Ω + 80Ω) = 300V/500Ω = 0.6A V 120 = I*120Ω = 0.6A * 120Ω = 72V V 300 = I*300Ω = 0.6A * 300Ω = 180V V 80 = I*80Ω = 0.6A * 80Ω = 48V Confirmation: 72V + 180V + 48V = 300V

31 KVL example We found that I = 0.6A and V 120 = 72V, V 300 = 180V, V 80 = 48V So to find power dissipated in the resistors: P 120 = I* V 120 = 0.6A*72V = 43.2W P 300 = I* V 300 = 0.6A*180V = 108W P 80 = I* V 80 = 0.6A*48V = 28.8W The power generated by the source is: P source = I* 300 = 0.6A*300V = 180W For confirmation: 43.2W +108W W = 180W dissipated 180W generated = 180W dissipated

32 Kirchoff s Current Law in action Consider the following circuit and determine the current through each resistor. I S I 80 I 120 I V 80Ω V Ω V Ω V 300

33 Kirchoff s Current Law Example We can see on the last diagram that the 120V voltage source is effectively directly connected across each of the 80Ω, 300Ω, and 120Ω resistors respectively. Unlike the KVL example, the currents in the resistors are not shared. The last slide shows the correct current polarities based on the given direction of the voltage source.

34 KCL Example Since we know that V 120 = V 300 = V 80 = 120V, we can find the resistor currents easily. I 120 = V 120 /120Ω = 120V/120Ω = 1A I 80 = V 80 /80Ω = 120V/80Ω = 1.5A I 300 = V 300 /300Ω = 120V/300Ω = 0.4A Now, we use KCL to find the source current I S

35 Kirchoff s Current Law in action Determine all of the points where elements connect. These are called nodes. I S I 1 I 2 I 3 120V 80Ω V Ω V Ω V 300

36 KCL example At any node, KCL states that the current entering the node is equal to the current leaving the node. Consider the top node of the circuit. I S is entering the top node. I 120, I 80, and I 300 are exiting the top node. Therefore I S = I I 80 + I 300 = 1A + 1.5A + 0.4A = 2.9A

37 KCL example So to find power dissipated in the resistors: P 120 = I 120 * V 120 = 1A * 120V = 120W P 300 = I 300 * V 300 = 0.4A*120V = 48W P 80 = I 80 * V 80 = 1.5A*120V = 180W The power generated by the source is: P source = I S * 120V = 2.9A*120V = 348W For confirmation: 120W +48W + 180W = 348W dissipated 348W generated = 348W dissipated

38 Meters Picured on the next slide is an inexpensive multimeter from Harbor Freight Tools (approx \$5-\$7) This meter can measure voltage, current, and impedance.

39 Multimeter

40 Voltmeter A voltmeter is used to measure voltage which is potential energy difference between two points. This means that voltage is always measured as the difference between two points. Two common voltmeter symbols appear below V + V -

41 Using a Voltmeter Because a voltmeter measures the voltage difference across an element (or multiple elements), it is easy to use with an existing circuit. For example, to measure V 300 : 80 I V 80 30V V V V 120

42 Ammeter An ammeter is used to measure current flowing through a branch of a circuit. The current to be measured must flow through the ammeter. Two common ammeter symbols appear below A A

43 Using an Ammeter Because an ammeter measures the current flowing through it, circuits must be altered to include the ammeter. This makes using an ammeter less convenient than using a voltmeter for most applications. 80 I A V 80 30V V V 120

44 Ohmmeter An ohmmeter is used to measure resistance in an element. The element whose resistance is to be measured must be unconnected to any other elements, especially power sources. A common ohmmeter symbol appears below Ω

45 Using an Ohmmeter An ohmmeter is used to measure resistance in an unconnected element. The only appropriate ohmmeter circuit appears below Ω

46 Simplifying Circuits In complex circuits, we are often only looking of a small number of parameters (voltages or currents). While we are looking for these parameters, we need only be concerned with the net effect of all of the other components rather than their individual effects. We have already seen the two most common cases where we can combine.

47 Example Circuit 1 - Series In the circuit below, all of the resistors share exactly the same current flowing through them. Components that share the exact same current are said to be in series I S R 1 R 2 V S R 3 R 5 R 4

48 Example Circuit 1 - Series Since the resistors share the same current, we can say: V S =I S *R 1 +I S *R 2 +I S *R 3 +I S *R 4 +I S *R 5 So, V S =I S *(R 1 +R 2 +R 3 +R 4 +R 5 ) The source sees V S =I S *R EQ so R EQ =R 1 +R 2 +R 3 +R 4 +R 5 I S R 1 R 2 V S R 3 R 5 R 4

49 Series Resistance Remember, for resistances to be in series, they must share the exact same current. In general, for N resistances in series N R R EQ i i 1

50 Example Circuit 2 - Parallel In the circuit below, all of the resistors share exactly the same voltage across them. Components that share the exact same voltage (i.e. endpoints) are said to be in parallel I S V S R 1 R 2 R 3 R 4 R 5

51 Example Circuit 2 - Parallel Since the resistors share the same voltage, we can say: I S =V S /R 1 +V S /R 2 +V S /R 3 +V S /R 4 +V S /R 5 So, I S =V S *(1/R 1 +1/R 2 +1/R 3 +1/R 4 +1/R 5 ) The source sees I S =V S /R EQ so 1/R EQ =1/R 1 +1/R 2 +1/R 3 +1/R 4 +1/R 5 I S V S R 1 R 2 R 3 R 4 R 5

52 Parallel Resistance Remember, for resistances to be in parallel, they must share the exact same voltage, i.e. the same endpoints. In general, for N resistances in parallel 1 N REQ i 1 1 R i R EQ N i R i

53 Quick Parallel Calculation for exactly Two Resistances Given R 1 and R 2 in parallel, to find the equivalent R EQ : 1/R EQ = (1/R 1 ) + (1/R 2 ) 1/R EQ = (R 2 /R 1 R 2 ) + (R 1 /R 1 R 2 ) 1/R EQ = (R 1 +R 2 )/(R 1 R 2 ) R EQ = (R 1 R 2 )/(R 1 +R 2 ) So, the parallel combination of two resistances may be expressed as the product of the two divided by the sum of the two.

54 Neither Series Nor Parallel None of the resistors in this circuit are either in series or in parallel I S R 1 R 2 R 3 V S R 4 R 5

55 Wye and Delta Two different ways to connect three common points Wye on left, Delta on right A R A A R C R B R 1 R 2 C B C R 3 B

56 Comparing Wye and Delta For the Wye: R AB = R A + R B R AC = R A + R C R BC = R B + R C For the Delta: R AB = R 2 (R 1 + R 3 ) = (R 2 *(R 1 + R 3 ) )/(R 1 + R 2 + R 3 ) R AC = R 1 (R 2 + R 3 ) = (R 1 *(R 2 + R 3 ) )/(R 1 + R 2 + R 3 ) R BC = R 3 (R 1 + R 2 ) = (R 3 *(R 1 + R 2 ) )/(R 1 + R 2 + R 3 ) Setting the two formulas equal for each path allows us to convert between Wye and Delta

57 Wye parameters in terms of Delta Resistances R A = (R 1 *R 2 )/(R 1 + R 2 + R 3 ) R B = (R 2 *R 3 )/(R 1 + R 2 + R 3 ) R C = (R 1 *R 3 )/(R 1 + R 2 + R 3 ) In each case the Wye resistance at a particular endpoint is formulated as the product of the two Delta resistances attached to that endpoint divided by the sum of all Delta resistances

58 Delta parameters in terms of Wye Resistances R 1 = (R A *R B + R A *R C + R B *R C )/R B R 2 = (R A *R B + R A *R C + R B *R C )/R C R 3 = (R A *R B + R A *R C + R B *R C )/R A In each case the Delta resistance between two endpoints is formulated as the sum of the products of each combination of two Wye resistances divided by the single Wye resistance which is not connected to either of the Delta resistance endpoints

### EDEXCEL NATIONAL CERTIFICATE/DIPLOMA UNIT 5 - ELECTRICAL AND ELECTRONIC PRINCIPLES NQF LEVEL 3 OUTCOME 1 - D.C. CIRCUITS

EDEXCEL NATIONAL CERTIFICATE/DIPLOMA UNIT 5 - ELECTRICAL AND ELECTRONIC PRINCIPLES NQF LEVEL 3 OUTCOME - D.C. CIRCUITS Be able to use circuit theory to determine voltage, current and resistance in direct

### Electrical Measurements

Electrical Measurements Experimental Objective The objective of this experiment is to become familiar with some of the electrical instruments. You will gain experience by wiring a simple electrical circuit

### DC Circuits (Combination of resistances)

Name: Partner: Partner: Partner: DC Circuits (Combination of resistances) EQUIPMENT NEEDED: Circuits Experiment Board One Dcell Battery Wire leads Multimeter 100, 330, 1k resistors Purpose The purpose

### R A _ + Figure 2: DC circuit to verify Ohm s Law. R is the resistor, A is the Ammeter, and V is the Voltmeter. A R _ +

Physics 221 Experiment 3: Simple DC Circuits and Resistors October 1, 2008 ntroduction n this experiment, we will investigate Ohm s Law, and study how resistors behave in various combinations. Along the

### Lab 3 - DC Circuits and Ohm s Law

Lab 3 DC Circuits and Ohm s Law L3-1 Name Date Partners Lab 3 - DC Circuits and Ohm s Law OBJECTIES To learn to apply the concept of potential difference (voltage) to explain the action of a battery in

### Electrostatics. Electrostatics Version 2

1. A 150-watt lightbulb is brighter than a 60.-watt lightbulb when both are operating at a potential difference of 110 volts. Compared to the resistance of and the current drawn by the 150-watt lightbulb,

### very small Ohm s Law and DC Circuits Purpose: Students will become familiar with DC potentiometers circuits and Ohm s Law. Introduction: P31220 Lab

Ohm s Law and DC Circuits Purpose: Students will become familiar with DC potentiometers circuits and Ohm s Law. Introduction: Ohm s Law for electrical resistance, V = IR, states the relationship between

### Background: Electric resistance, R, is defined by:

RESISTANCE & OHM S LAW (PART I and II) - 8 Objectives: To understand the relationship between applied voltage and current in a resistor and to verify Ohm s Law. To understand the relationship between applied

### Circuits and Resistivity

Circuits and Resistivity Look for knowledge not in books but in things themselves. W. Gilbert OBJECTIVES To learn the use of several types of electrical measuring instruments in DC circuits. To observe

### Basic Ohm s Law & Series and Parallel Circuits

2:256 Let there be no compulsion in religion: Truth stands out clear from Error: whoever rejects evil and believes in Allah hath grasped the most trustworthy hand-hold that never breaks. And Allah heareth

### OHM S LAW AND RESISTANCE

OHM S LAW AND RESISTANCE Resistance is one of the basic principles of Ohm s law, and can be found in virtually any device used to conduct electricity. Georg Simon Ohm was a German physicist who conducted

### Chapter 11- Electricity

Chapter 11- Electricity Course Content Definition of Electricity Circuit Diagrams Series and Parallel Circuits Calculating total resistances Measurement of Electricity Ammeters and Voltmeters Ohm s Law

### People s Physics Book

The Big Ideas: The name electric current is given to the phenomenon that occurs when an electric field moves down a wire at close to the speed of light. Voltage is the electrical energy density (energy

### Chapter 7 Direct-Current Circuits

Chapter 7 Direct-Current Circuits 7. Introduction...7-7. Electromotive Force...7-3 7.3 Resistors in Series and in Parallel...7-5 7.4 Kirchhoff s Circuit Rules...7-7 7.5 Voltage-Current Measurements...7-9

### Science AS90191 Describe Aspects of Physics.

Circuits and components Science AS90191 Describe Aspects of Physics. An electric current is the movement of electrons (negatively charged particles). A circuit is made up of components connected together

### Experiment #6, Series and Parallel Circuits, Kirchhoff s Laws

Physics 182 Spring 2013 Experiment #6 1 Experiment #6, Series and Parallel Circuits, Kirchhoff s Laws 1 Purpose Our purpose is to explore and validate Kirchhoff s laws as a way to better understanding

### Series and Parallel Resistive Circuits Physics Lab VIII

Series and Parallel Resistive Circuits Physics Lab VIII Objective In the set of experiments, the theoretical expressions used to calculate the total resistance in a combination of resistors will be tested

### The current that flows is determined by the potential difference across the conductor and the resistance of the conductor (Ohm s law): V = IR P = VI

PHYS1000 DC electric circuits 1 Electric circuits Electric current Charge can move freely in a conductor if an electric field is present; the moving charge is an electric current (SI unit is the ampere

### Two kinds of electrical charges

ELECTRICITY NOTES Two kinds of electrical charges Positive charge Negative charge Electrons are negatively charged Protons are positively charged The forces from positive charges are canceled by forces

### Experiment 3 ~ Ohm's Law, Measurement of Voltage, Current and Resistance

Experiment 3 ~ Ohm's Law, Measurement of Voltage, Current and Resistance Objective: In this experiment you will learn to use the multi-meter to measure voltage, current and resistance. Equipment: Bread

### Series and Parallel Circuits

Series and Parallel Circuits Components in a circuit can be connected in series or parallel. A series arrangement of components is where they are inline with each other, i.e. connected end-to-end. A parallel

### Resistance, Ohm s Law, and the Temperature of a Light Bulb Filament

Resistance, Ohm s Law, and the Temperature of a Light Bulb Filament Name Partner Date Introduction Carbon resistors are the kind typically used in wiring circuits. They are made from a small cylinder of

### Lab 4 Series and Parallel Resistors

Lab 4 Series and Parallel Resistors What You Need To Know: (a) (b) R 3 FIGURE - Circuit diagrams. (a) and are in series. (b) and are not in series. The Physics Last week you examined how the current and

### Experiment #5, Series and Parallel Circuits, Kirchhoff s Laws

Physics 182 Summer 2013 Experiment #5 1 Experiment #5, Series and Parallel Circuits, Kirchhoff s Laws 1 Purpose Our purpose is to explore and validate Kirchhoff s laws as a way to better understanding

### Lecture Notes: ECS 203 Basic Electrical Engineering Semester 1/2010. Dr.Prapun Suksompong 1 June 16, 2010

Sirindhorn International Institute of Technology Thammasat University School of Information, Computer and Communication Technology Lecture Notes: ECS 203 Basic Electrical Engineering Semester 1/2010 Dr.Prapun

### Electrical Fundamentals Module 3: Parallel Circuits

Electrical Fundamentals Module 3: Parallel Circuits PREPARED BY IAT Curriculum Unit August 2008 Institute of Applied Technology, 2008 ATE310- Electrical Fundamentals 2 Module 3 Parallel Circuits Module

### 7. What is the current in a circuit if 15 coulombs of electric charge move past a given point in 3 seconds? (1) 5 A (3) 18 A (2) 12 A (4) 45 A

1. Compared to the number of free electrons in a conductor, the number of free electrons in an insulator of the same volume is less the same greater 2. Most metals are good electrical conductors because

1 ANSWERS to CIRCUITS 1. The speed with which electrons move through a copper wire is typically 10-4 m s -1. a. Explain why is it that the electrons cannot travel faster in the conductor? b. Explain why

### = (0.400 A) (4.80 V) = 1.92 W = (0.400 A) (7.20 V) = 2.88 W

Physics 2220 Module 06 Homework 0. What are the magnitude and direction of the current in the 8 Ω resister in the figure? Assume the current is moving clockwise. Then use Kirchhoff's second rule: 3.00

### Electronics. Basic Concepts. Yrd. Doç. Dr. Aytaç GÖREN Yrd. Doç. Dr. Levent ÇETİN

Electronics Basic Concepts Electric charge Ordinary matter is made up of atoms which have positively charged nuclei and negatively charged electrons surrounding them. Charge is quantized as the subtraction

### 1. Introduction and Chapter Objectives

Real Analog Circuits 1 Chapter 1: Circuit Analysis Fundamentals 1. Introduction and Chapter Objectives In this chapter, we introduce all fundamental concepts associated with circuit analysis. Electrical

### Lab 3 Ohm s Law and Resistors

` Lab 3 Ohm s Law and Resistors What You Need To Know: The Physics One of the things that students have a difficult time with when they first learn about circuits is the electronics lingo. The lingo and

### Lab #2: Parallel and Series Resistors

Fall 2013 EELE 250 Circuits, Devices, and Motors Lab #2: Parallel and Series Resistors Scope: Use a multimeter to measure resistance, DC voltage, and current Use the color code for resistors. Use the prototype-board

### STUDY MATERIAL FOR CLASS 10+2 - Physics- CURRENT ELECTRICITY. The flow of electric charges in a particular direction constitutes electric current.

Chapter : 3 Current Electricity Current Electricity The branch of Physics which deals with the study of electric charges in motion is called current electricity. Electric current The flow of electric charges

### Kirchhoff's Rules and Applying Them

[ Assignment View ] [ Eðlisfræði 2, vor 2007 26. DC Circuits Assignment is due at 2:00am on Wednesday, February 21, 2007 Credit for problems submitted late will decrease to 0% after the deadline has passed.

### Electricity Review-Sheet

Name: ate: 1. The unit of electrical charge in the MKS system is the. volt. ampere. coulomb. mho 2. Which sketch best represents the charge distribution around a neutral electroscope when a positively

### Unit 7: Electric Circuits

Multiple Choice Portion 1. The diagram below shows part of an electrical circuit. Unit 7: Electric Circuits 4. A 12 V battery supplies a 5.0 A current to two light bulbs as shown below. What are the magnitude

### THE BREADBOARD; DC POWER SUPPLY; RESISTANCE OF METERS; NODE VOLTAGES AND EQUIVALENT RESISTANCE; THÉVENIN EQUIVALENT CIRCUIT

THE BREADBOARD; DC POWER SUPPLY; RESISTANCE OF METERS; NODE VOLTAGES AND EQUIVALENT RESISTANCE; THÉVENIN EQUIVALENT CIRCUIT YOUR NAME LAB MEETING TIME Reference: C.W. Alexander and M.N.O Sadiku, Fundamentals

### Objectives 200 CHAPTER 4 RESISTANCE

Objectives Explain the differences among conductors, insulators, and semiconductors. Define electrical resistance. Solve problems using resistance, voltage, and current. Describe a material that obeys

### Course description: Introduces the student to basic electricity with an emphasis on Ohms Law.

The following is presented for information purposes only and comes with no warranty. See http://www.bristolwatch.com/ Course Title: Basic Electricity and Ohms Law Course description: Introduces the student

### Note-A-Rific: Characteristics

Note-A-Rific: Characteristics Any path along which electrons can flow is a circuit. For a continuous flow of electrons, there must be a complete circuit with no gaps. A gap is usually an electric switch

### PS-6.2 Explain the factors that determine potential and kinetic energy and the transformation of one to the other.

PS-6.1 Explain how the law of conservation of energy applies to the transformation of various forms of energy (including mechanical energy, electrical energy, chemical energy, light energy, sound energy,

### Question Bank. Electric Circuits, Resistance and Ohm s Law

Electric Circuits, Resistance and Ohm s Law. Define the term current and state its SI unit. Ans. The rate of flow of charge in an electric circuit is called current. Its SI unit is ampere. 2. (a) Define

### LAB2 Resistors, Simple Resistive Circuits in Series and Parallel Objective:

LAB2 Resistors, Simple Resistive Circuits in Series and Parallel Objective: In this lab, you will become familiar with resistors and potentiometers and will learn how to measure resistance. You will also

### TOPIC 3.1: ELECTRIC CIRCUITS

TOPIC 3.1: ELECTRIC CIRCUITS S4P-3-1 S4P-3-2 S4P-3-3 S4P-3-4 S4P-3-5 S4P-3-6 Describe the origin of conventional current and relate its direction to the electron flow in a conductor. Describe the historical

### `Ohm s Law III -- Resistors in Series and Parallel

`Ohm s Law III -- esistors in Series and Parallel by Dr. ames E. Parks Department of Physics and Astronomy 40 Nielsen Physics Building he University of ennessee Knoxville, ennessee 7996-00 Copyright August,

### Ch. 20 Electric Circuits

Ch. 0 Electric Circuits 0. Electromotive Force Every electronic device depends on circuits. Electrical energy is transferred from a power source, such as a battery, to a device, say a light bulb. Conducting

### Student Exploration: Circuits

Name: Date: Student Exploration: Circuits Vocabulary: ammeter, circuit, current, ohmmeter, Ohm s law, parallel circuit, resistance, resistor, series circuit, voltage Prior Knowledge Questions (Do these

### Electricity CHAPTER 12 12.1 ELECTRIC CURRENT AND CIRCUIT

CHAPTER 12 Electricity Electricity has an important place in modern society. It is a controllable and convenient form of energy for a variety of uses in homes, schools, hospitals, industries and so on.

### How do you measure voltage and current in electric circuits? Materials

20A Electricity How do you measure voltage and current in electric circuits? Electricity Investigation 20A We use electricity every day, nearly every minute! In this Investigation you will build circuits

### Lab 2: Resistance, Current, and Voltage

2 Lab 2: Resistance, Current, and Voltage I. Before you come to la.. A. Read the following chapters from the text (Giancoli): 1. Chapter 25, sections 1, 2, 3, 5 2. Chapter 26, sections 1, 2, 3 B. Read

### 1) ASSOCIATE ELEMENTARY PARTICLES WITH THEIR ELECTRICAL CHARGE

Name Date STUDY GUIDE CHAPTER 5 ELECTRICITY AND MAGNETISM 1) ASSOCIATE ELEMENTARY PARTICLES WITH THEIR ELECTRICAL CHARGE Scientists now know that an atom is composed of even smaller particles of matter:

### Series and Parallel Circuits

Direct Current (DC) Direct current (DC) is the unidirectional flow of electric charge. The term DC is used to refer to power systems that use refer to the constant (not changing with time), mean (average)

### Analysis of a single-loop circuit using the KVL method

Analysis of a single-loop circuit using the KVL method Figure 1 is our circuit to analyze. We shall attempt to determine the current through each element, the voltage across each element, and the power

### Tristan s Guide to: Solving Series Circuits. Version: 1.0 Written in 2006. Written By: Tristan Miller Tristan@CatherineNorth.com

Tristan s Guide to: Solving Series Circuits. Version: 1.0 Written in 2006 Written By: Tristan Miller Tristan@CatherineNorth.com Series Circuits. A Series circuit, in my opinion, is the simplest circuit

### Chapter 13: Electric Circuits

Chapter 13: Electric Circuits 1. A household circuit rated at 120 Volts is protected by a fuse rated at 15 amps. What is the maximum number of 100 watt light bulbs which can be lit simultaneously in parallel

### Chapter 1. Fundamental Electrical Concepts

Chapter 1 Fundamental Electrical Concepts Charge, current, voltage, power circuits, nodes, branches Branch and node voltages, Kirchhoff Laws Basic circuit elements, combinations 01 fundamental 1 1.3 Electrical

### Basic Laws Circuit Theorems Methods of Network Analysis Non-Linear Devices and Simulation Models

EE Modul 1: Electric Circuits Theory Basic Laws Circuit Theorems Methods of Network Analysis Non-Linear Devices and Simulation Models EE Modul 1: Electric Circuits Theory Current, Voltage, Impedance Ohm

### EE 1202 Experiment #2 Resistor Circuits

EE 1202 Experiment #2 Resistor Circuits 1. ntroduction and Goals: Demonstrates the voltage-current relationships in DC and AC resistor circuits. Providing experience in using DC power supply, digital multimeter,

### Series and Parallel Resistive Circuits

Series and Parallel Resistive Circuits The configuration of circuit elements clearly affects the behaviour of a circuit. Resistors connected in series or in parallel are very common in a circuit and act

### Fig. 1 Analogue Multimeter Fig.2 Digital Multimeter

ELECTRICAL INSTRUMENT AND MEASUREMENT Electrical measuring instruments are devices used to measure electrical quantities such as electric current, voltage, resistance, electrical power and energy. MULTIMETERS

### Voltage Drop (Single-Phase)

Voltage Drop (Single-Phase) To Find: To Find Voltage Drop Formula: 2 x K x L x I V.D. = ------------------- C.M. Variables: C.M. = Circular Mill Area (Chapter 9, Table 8) To Find Voltage Drop Percentage

### Q1. (a) The diagram shows the voltage-current graphs for three different electrical components.

Q. (a) The diagram shows the voltage-current graphs for three different electrical components. Which one of the components A, B or C could be a 3 volt filament lamp? Explain the reason for your choice...................

### W03 Analysis of DC Circuits. Yrd. Doç. Dr. Aytaç Gören

W03 Analysis of DC Circuits Yrd. Doç. Dr. Aytaç Gören ELK 2018 - Contents W01 Basic Concepts in Electronics W02 AC to DC Conversion W03 Analysis of DC Circuits (self and condenser) W04 Transistors and

### ELECTRIC FIELD LINES AND EQUIPOTENTIAL SURFACES

ELECTRIC FIELD LINES AND EQUIPOTENTIAL SURFACES The purpose of this lab session is to experimentally investigate the relation between electric field lines of force and equipotential surfaces in two dimensions.

### PHYSICS 111 LABORATORY Experiment #3 Current, Voltage and Resistance in Series and Parallel Circuits

PHYSCS 111 LABORATORY Experiment #3 Current, Voltage and Resistance in Series and Parallel Circuits This experiment is designed to investigate the relationship between current and potential in simple series

### Preamble. Kirchoff Voltage Law (KVL) Series Resistors. In this section of my lectures we will be. resistor arrangements; series and

Preamble Series and Parallel Circuits Physics, 8th Edition Custom Edition Cutnell & Johnson Chapter 0.6-0.8, 0.0 Pages 60-68, 69-6 n this section of my lectures we will be developing the two common types

### CHAPTER 17 NOTES FOR EIGHTH GRADE PHYSICAL SCIENCE ALL MATTER IS COMPOSED OF VERY SMALL PARTICLES CALLED ATOMS.

CHAPTER 17 NOTES FOR EIGHTH GRADE PHYSICAL SCIENCE ALL MATTER IS COMPOSED OF VERY SMALL PARTICLES CALLED ATOMS. THE LAW OF ELECTRIC CHARGES STAES THAT LIKE CHARGES REPEL AND OPPOSITE CHARGES ATTRACT. BECAUSE

### Experiment 4 ~ Resistors in Series & Parallel

Experiment 4 ~ Resistors in Series & Parallel Objective: In this experiment you will set up three circuits: one with resistors in series, one with resistors in parallel, and one with some of each. You

### Chapter 18: Circuits and Circuit Elements 1. Schematic diagram: diagram that depicts the construction of an electrical apparatus

Chapter 18: Circuits and Circuit Elements 1 Section 1: Schematic Diagrams and Circuits Schematic Diagrams Schematic diagram: diagram that depicts the construction of an electrical apparatus Uses symbols

### Activity 1: Light Emitting Diodes (LEDs)

Activity 1: Light Emitting Diodes (LEDs) Time Required: 45 minutes Materials List Group Size: 2 Each pair needs: One each of the following: One Activity 1 bag containing: o Red LED o Yellow LED o Green

### Electrical Circuit Calculations

Electrical Circuit Calculations Series Circuits Many circuits have more than one conversion device in them (i.e. toaster. heater. lamps etc.) and some have more than one source of electrical energy. If

### Circuit symbol. Each of the cells has a potential difference of 1.5 volts. Figure 1. Use the correct answer from the box to complete the sentence.

Q.(a) Draw one line from each circuit symbol to its correct name. Circuit symbol Name Diode Light-dependent resistor (LDR) Lamp Light-emitting diode (LED) (3) Figure shows three circuits. The resistors

### Chapter 7. DC Circuits

Chapter 7 DC Circuits 7.1 Introduction... 7-3 Example 7.1.1: Junctions, branches and loops... 7-4 7.2 Electromotive Force... 7-5 7.3 Electrical Energy and Power... 7-9 7.4 Resistors in Series and in Parallel...

### FREQUENTLY ASKED QUESTIONS October 2, 2012

FREQUENTLY ASKED QUESTIONS October 2, 2012 Content Questions Why do batteries require resistors? Well, I don t know if they require resistors, but if you connect a battery to any circuit, there will always

### Ohm's Law and Circuits

2. Conductance, Insulators and Resistance A. A conductor in electricity is a material that allows electrons to flow through it easily. Metals, in general, are good conductors. Why? The property of conductance

### Shining a Light. Design & Technology. Year 9. Structure of an electric torch. Shining a Light

Looking at electronic circuits and what is meant by current, voltage, and resistance. Shining a Light Have you ever taken an electric torch to pieces to find out how it works? Look at the diagram below

### Series and Parallel Circuits

Series and Parallel Circuits Direct-Current Series Circuits A series circuit is a circuit in which the components are connected in a line, one after the other, like railroad cars on a single track. There

### Student Content Brief Advanced Level

Student Content Brief Advanced Level Electric Circuits Background Information There are a variety of forces acting on the body of the Sea Perch. One important force is pushing electrons through the wires

### CHAPTER 19: DC Circuits. Answers to Questions

HAPT 9: D ircuits Answers to Questions. The birds are safe because they are not grounded. Both of their legs are essentially at the same voltage (the only difference being due to the small resistance of

### Experiment NO.3 Series and parallel connection

Experiment NO.3 Series and parallel connection Object To study the properties of series and parallel connection. Apparatus 1. DC circuit training system 2. Set of wires. 3. DC Power supply 4. Digital A.V.O.

### Circuit Analysis using the Node and Mesh Methods

Circuit Analysis using the Node and Mesh Methods We have seen that using Kirchhoff s laws and Ohm s law we can analyze any circuit to determine the operating conditions (the currents and voltages). The

### Student Name Instructor Name. High School or Vocational Center Grade. COMPETENCY RECORD FOR ARTICULATION Muskegon Community College Electronics

Student Name Instructor Name High School or Vocational Center Grade COMPETENCY RECORD FOR ARTICULATION Muskegon Community College Electronics Please check below each skill the student has mastered as described,

### AP Physics Electricity and Magnetism #4 Electrical Circuits, Kirchoff s Rules

Name Period AP Physics Electricity and Magnetism #4 Electrical Circuits, Kirchoff s Rules Dr. Campbell 1. Four 240 Ω light bulbs are connected in series. What is the total resistance of the circuit? What

### STUDY GUIDE: ELECTRICITY AND MAGNETISM

319 S. Naperville Road Wheaton, IL 60187 www.questionsgalore.net Phone: (630) 580-5735 E-Mail: info@questionsgalore.net Fax: (630) 580-5765 STUDY GUIDE: ELECTRICITY AND MAGNETISM An atom is made of three

### Physics Worksheet Electric Circuits Section: Name: Series Circuits

Do Now: (1) What is electric circuit? (2) Convert the following picture into schematic diagram. Series Circuits 4. Label every component of the circuit; identify each of the voltage and current. 5. Relation

### RESISTOR COLOR CODE GUIDE

RESISTOR COLOR CODE GUIDE - Band Code. KΩ % st th nd rd Color st Band st nd Band rd Band nd rd Decimal Multiplier K, K, K, M,, M,,,,,,,.. th th % % % % % - Band Code Ω % Resistor Lead Left Calculation

### 1. The diagram below represents magnetic lines of force within a region of space.

1. The diagram below represents magnetic lines of force within a region of space. 4. In which diagram below is the magnetic flux density at point P greatest? (1) (3) (2) (4) The magnetic field is strongest

### Series and Parallel. How we wire the world

Series and Parallel How we wire the world Series vs Parallel Circuits Series Circuit Electrons only have one path to flow through. Parallel Circuit There are MULTIPLE paths for the current to flow through.

### ELECTRICAL CIRCUITS. Electrical Circuits

Electrical Circuits A complete path, or circuit, is needed before voltage can cause a current flow through resistances to perform work. There are several types of circuits, but all require the same basic

### CHAPTER 28 ELECTRIC CIRCUITS

CHAPTER 8 ELECTRIC CIRCUITS 1. Sketch a circuit diagram for a circuit that includes a resistor R 1 connected to the positive terminal of a battery, a pair of parallel resistors R and R connected to the

### Experiment #3, Ohm s Law

Experiment #3, Ohm s Law 1 Purpose Physics 182 - Summer 2013 - Experiment #3 1 To investigate the -oltage, -, characteristics of a carbon resistor at room temperature and at liquid nitrogen temperature,

### Chapter 17 Study Questions Name: Class:

Chapter 17 Study Questions Name: Class: Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. 1. If two charges repel each other, the two charges

### Chapter 5. Electrical Energy

Chapter 5 Electrical Energy Our modern technological society is largely defined by our widespread use of electrical energy. Electricity provides us with light, heat, refrigeration, communication, elevators,

### Kirchhoff s Voltage Law and RC Circuits

Kirchhoff s oltage Law and RC Circuits Apparatus 2 1.5 batteries 2 battery holders DC Power Supply 1 multimeter 1 capacitance meter 2 voltage probes 1 long bulb and 1 round bulb 2 sockets 1 set of alligator

### Nodal and Loop Analysis

Nodal and Loop Analysis The process of analyzing circuits can sometimes be a difficult task to do. Examining a circuit with the node or loop methods can reduce the amount of time required to get important

### Capacitors and RC Circuits

Chapter 6 Capacitors and RC Circuits Up until now, we have analyzed circuits that do not change with time. In other words, these circuits have no dynamic elements. When the behavior of all elements is