# Chapter 2 Objectives

Save this PDF as:

Size: px
Start display at page:

## Transcription

1 Chapter 2 Engr228 Circuit Analysis Dr Curtis Nelson Chapter 2 Objectives Understand symbols and behavior of the following circuit elements: Independent voltage and current sources; Dependent voltage and current sources; Resistors. Be able to use Ohm s and Kirchhoff s laws to analyze circuits. Know how to calculate the power for each element in a circuit and determine whether or not the power balances. 1

2 Circuit Element A circuit element most often has two terminals. The relationship between the voltage v across the terminals and the current i through the device defines the circuit element model. Various Circuit Elements Electric sources Independent Sources voltage, current; Dependent Sources voltage, current. Resistors, inductors, capacitors Measurement devices Ammeters (current); Voltmeters (volts); Ohmmeters (resistance). Electric wire 2

3 Independent Voltage Sources An ideal voltage source is a circuit element that will maintain the specified voltage v s across its terminals. A Battery as an Independent Voltage Source An ideal battery is an example of an independent voltage source. - A real-world battery has a maximum power that it can deliver. 3

4 Independent Current Sources An ideal current source is a circuit element that maintains the specified current flow i s through its terminals. Dependent Voltage and Current Sources A dependent voltage or current source establishes a voltage or current whose value depends on a voltage or current elsewhere in the circuit. Dependent sources are sometimes called controlled sources. 4

5 Active and Passive Elements Active elements are capable of generating electric energy: Voltage sources; Current sources. Passive elements that cannot generate electric energy: Resistors; Capacitors; Inductors; Transistors. Interconnections of Ideal Sources Which of the following are valid connections? a) Valid b) Valid c) Not Valid d) Not Valid e) Valid 5

6 The Concept of Ground Ground is commonly referred to as a reference point. Ground is said to be at a potential of 0.00 volts. In other words, Ground has zero voltage. Ground symbols: Ground 1 Volt 1V 1Ω 0 Volts 6

7 Open Circuit An open circuit means no current can flow (i = 0). Voltage across an open circuit: any value. An open circuit is equivalent to a resistance of Ω. Open circuit summary: Infinite resistance; Zero current; Voltage can be any value. 1V 1Ω Short Circuit A short circuit means the voltage is zero (v = 0). Current through a short circuit: any value. A short circuit is equivalent to a resistance of 0 Ω. Short circuit summary: - Zero resistance; - Zero voltage; - Current can be any value. 1V 1Ω 7

8 Current Current is the same in all elements connected in Series. 1A 1V 1Ω 1A 1A Voltage Voltage is the same for all elements connected in Parallel. x + 1 Volts 1V 1Ω x Volts 8

9 Resistance (R) and Conductance (G) Resistance (R) is the capacity of a material to impede the flow of current. More current will flow if there is less resistance. Conductance (G) is the inverse of resistance. The unit of resistance is the ohm (R), has the symbol Ω, and has units of (volts/amp). The circuit symbol used for a resistor of R ohms is: Ohm s Law The relationship between voltage, current, and resistance is defined by Ohm s law which states that where V = IR V = the voltage in volts; I = the current in amps; R = the resistance in ohms. 9

10 Other Forms of Ohm s Law Ohm s law can be expressed in any one of three forms, depending on which quantities are known: V = IR I = V/R R = V/I (I and R known) (V and R known) (V and I known) Ohm s Law Illustrated 10

11 Example 2.3 Using Ohm s law, calculate the values of v and i in the examples below and determine the power dissipated in each resistor. a) v a = 8V p = 8W b) i b = 10A p = 500W c) v c = -20V p = 20W (positive) d) i d = -2A p = 100W Wire Gauge and Resistivity The resistance of a wire is determined by the resistivity of the conductor as well as the geometry: R = ρ l / A In most cases, the resistance of wires can be assumed to be 0 Ω. 11

12 Resistors Resistor Color Code Chart 12

13 Ohm s Law Example Calculate the value of R from the information shown in the graph below: R is the inverse of the slope of the line: R = V/I = (8V)/(4A) = 2Ω Power and its Alternate Forms Resistors always absorb power: p = vi = v 2 /R = i 2 R 13

14 Power Example Calculate the power absorbed or generated by both elements in the circuit below: 2.5mA 10V 4KΩ DC source generates power: 10V * -2.5mA = - 25mW Resistor absorbs power: 10V * 2.5mA = 25mW Sum of all power in a circuit must = 0 Note: Resistors always absorb power but DC sources can either generate or absorb power. Textbook Problem 2.10 (Nilsson 10E) Find the total power developed in the circuit if v o = 5 V. P 9A = -135W P 20V = 180W P 10va = -75W P vg = 27W P 6A = 3W P total = 210W and generated power = absorbed power 14

15 Nodes, Paths, Loops, Branches These two circuits are equivalent. There are three nodes and five branches: Node: a point at which two or more elements have a common connection; Path: a sequence of nodes; Branch: a single path in a circuit composed of one simple element and the node at each end of that element; Loop: a closed path. Kirchhoff s Current Law Kirchhoff s Current Law (KCL) states that the algebraic sum of all currents entering a node is zero. i A + i B + ( i C ) + ( i D ) = 0 15

16 KCL: Alternative Forms Current IN is positive: i A + i B + ( i C ) + ( i D ) = 0 Current OUT is positive: (-i A )+ (-i B ) + i C + i D = 0 Current IN = Current OUT: i A + i B = i C + i D KCL Application Find the current through resistor R 3 if it is known that the voltage source supplies a current of 3 A. Answer: i = 6 A 16

17 Kirchhoff s Voltage Law Kirchhoff s Voltage Law (KVL) states that the algebraic sum of the voltages around any closed path is zero. -v 1 + v 2 + -v 3 = 0 KVL: Alternative Forms Sum of RISES is zero (clockwise from B): v 1 +(- v 2 ) + v 3 = 0 Sum of DROPS is zero (clockwise from B): (-v 1 ) + v 2 + (-v 3 ) = 0 Sum of RISES is equal to sum of DROPS (clockwise from B): v 1 + v 2 = v 3 17

18 KVL Application Find the current i x and the voltage v x Answer: v x = 12 V and i x =120 ma Textbook Problem Nilsson 9E Find the values of i a, i b, v o, and the power absorbed or generated by all circuit elements. i a = 2A i b = 0.5A v o = 40V P 4 = 25W P 20 = 80W P 80 = 20W P 50v = -125W (delivered) 18

19 Circuit Analysis with Dependent Sources Circuits that contain dependent sources can be analyzed using Ohm s and Kirchhoff s laws. A dependent source generally adds another equation to the solution process. Textbook Example - Figure 2.22 (Nilsson 9E) A) Use Kirchhoff s and Ohm s laws to find the voltage v o B) Show that the total power developed equals the total power dissipated. A) v o = 480 V B) Power developed = W 19

20 Problem 2.22 (Nilsson 10E) The current i 0 is 1 A. A) Find i 1. B) Find the power dissipated in each resistor. C) Verify that the power developed = power absorbed. A) i 1 = 2A B) P 4 = 100W P 50 = 50W P 10 = 90W P 65 = 260W P 25 = 400W C) P 150V = 900W = sum of powers dissipated in the 5 resistors. Example Compute the power absorbed in each element of the circuit below: 120V 30Ω + - 2V A - 15Ω V A + Answer: P 120 = -960W P 30 = 1920W P dep = -1920W P 15 = 960W 20

21 Chapter 2 Summary Understand symbols and behavior of the following circuit elements: Independent voltage and current sources; Dependent voltage and current sources; Resistors. Defined and used Ohm s and Kirchhoff s laws to analyze circuits. Illustrated how to calculate power for each element in a circuit and determine whether or not power balances. 21

### Experiment 3 ~ Ohm's Law, Measurement of Voltage, Current and Resistance

Experiment 3 ~ Ohm's Law, Measurement of Voltage, Current and Resistance Objective: In this experiment you will learn to use the multi-meter to measure voltage, current and resistance. Equipment: Bread

### Lecture Notes: ECS 203 Basic Electrical Engineering Semester 1/2010. Dr.Prapun Suksompong 1 June 16, 2010

Sirindhorn International Institute of Technology Thammasat University School of Information, Computer and Communication Technology Lecture Notes: ECS 203 Basic Electrical Engineering Semester 1/2010 Dr.Prapun

### Chapter 5. Parallel Circuits ISU EE. C.Y. Lee

Chapter 5 Parallel Circuits Objectives Identify a parallel circuit Determine the voltage across each parallel branch Apply Kirchhoff s current law Determine total parallel resistance Apply Ohm s law in

### Experiment #6, Series and Parallel Circuits, Kirchhoff s Laws

Physics 182 Spring 2013 Experiment #6 1 Experiment #6, Series and Parallel Circuits, Kirchhoff s Laws 1 Purpose Our purpose is to explore and validate Kirchhoff s laws as a way to better understanding

### Module 2. DC Circuit. Version 2 EE IIT, Kharagpur

Module 2 DC Circuit Lesson 5 Node-voltage analysis of resistive circuit in the context of dc voltages and currents Objectives To provide a powerful but simple circuit analysis tool based on Kirchhoff s

### Chapter 2. Circuit Analysis Techniques

Chapter 2 Circuit Analysis Techniques 1 Objectives To formulate the node-voltage equations. To solve electric circuits using the node voltage method. To introduce the mesh current method. To formulate

### Series and Parallel Circuits

Direct Current (DC) Direct current (DC) is the unidirectional flow of electric charge. The term DC is used to refer to power systems that use refer to the constant (not changing with time), mean (average)

### Problem set #5 EE 221, 09/26/ /03/2002 1

Chapter 3, Problem 42. Problem set #5 EE 221, 09/26/2002 10/03/2002 1 In the circuit of Fig. 3.75, choose v 1 to obtain a current i x of 2 A. Chapter 3, Solution 42. We first simplify as shown, making

### = (0.400 A) (4.80 V) = 1.92 W = (0.400 A) (7.20 V) = 2.88 W

Physics 2220 Module 06 Homework 0. What are the magnitude and direction of the current in the 8 Ω resister in the figure? Assume the current is moving clockwise. Then use Kirchhoff's second rule: 3.00

### R A _ + Figure 2: DC circuit to verify Ohm s Law. R is the resistor, A is the Ammeter, and V is the Voltmeter. A R _ +

Physics 221 Experiment 3: Simple DC Circuits and Resistors October 1, 2008 ntroduction n this experiment, we will investigate Ohm s Law, and study how resistors behave in various combinations. Along the

### Kirchhoff's Current Law (KCL)

Kirchhoff's Current Law (KCL) I. Charge (current flow) conservation law (the Kirchhoff s Current law) Pipe Pipe Pipe 3 Total volume of water per second flowing through pipe = total volume of water per

### THE BREADBOARD; DC POWER SUPPLY; RESISTANCE OF METERS; NODE VOLTAGES AND EQUIVALENT RESISTANCE; THÉVENIN EQUIVALENT CIRCUIT

THE BREADBOARD; DC POWER SUPPLY; RESISTANCE OF METERS; NODE VOLTAGES AND EQUIVALENT RESISTANCE; THÉVENIN EQUIVALENT CIRCUIT YOUR NAME LAB MEETING TIME Reference: C.W. Alexander and M.N.O Sadiku, Fundamentals

### Basic Laws Circuit Theorems Methods of Network Analysis Non-Linear Devices and Simulation Models

EE Modul 1: Electric Circuits Theory Basic Laws Circuit Theorems Methods of Network Analysis Non-Linear Devices and Simulation Models EE Modul 1: Electric Circuits Theory Current, Voltage, Impedance Ohm

### Experiment #5, Series and Parallel Circuits, Kirchhoff s Laws

Physics 182 Summer 2013 Experiment #5 1 Experiment #5, Series and Parallel Circuits, Kirchhoff s Laws 1 Purpose Our purpose is to explore and validate Kirchhoff s laws as a way to better understanding

### ElectronicsLab2.nb. Electronics Lab #2. Simple Series and Parallel Circuits

Electronics Lab #2 Simple Series and Parallel Circuits The definitions of series and parallel circuits will be given in this lab. Also, measurements in very simple series and parallel circuits will be

### Experiment NO.3 Series and parallel connection

Experiment NO.3 Series and parallel connection Object To study the properties of series and parallel connection. Apparatus 1. DC circuit training system 2. Set of wires. 3. DC Power supply 4. Digital A.V.O.

### Student Exploration: Circuits

Name: Date: Student Exploration: Circuits Vocabulary: ammeter, circuit, current, ohmmeter, Ohm s law, parallel circuit, resistance, resistor, series circuit, voltage Prior Knowledge Questions (Do these

### Students will need about 30 minutes to complete these constructed response tasks.

Electric Title of Circuits Concept Constructed Response Teacher Guide Students will need about 30 minutes to complete these constructed response tasks. Objectives assessed: Understand the functions of

### EDEXCEL NATIONAL CERTIFICATE/DIPLOMA UNIT 5 - ELECTRICAL AND ELECTRONIC PRINCIPLES NQF LEVEL 3 OUTCOME 1 - D.C. CIRCUITS

EDEXCEL NATIONAL CERTIFICATE/DIPLOMA UNIT 5 - ELECTRICAL AND ELECTRONIC PRINCIPLES NQF LEVEL 3 OUTCOME - D.C. CIRCUITS Be able to use circuit theory to determine voltage, current and resistance in direct

### EMF and Terminal Voltage Resistors in Series and Parallel Kirchhoff s Rules EMFs in Series and Parallel; Charging a Battery Circuits with Capacitors

Chapter 19 DC Electrical Circuits Topics in Chapter 19 EMF and Terminal Voltage Resistors in Series and Parallel Kirchhoff s Rules EMFs in Series and Parallel; Charging a Battery Circuits with Capacitors

### Series and Parallel Resistive Circuits Physics Lab VIII

Series and Parallel Resistive Circuits Physics Lab VIII Objective In the set of experiments, the theoretical expressions used to calculate the total resistance in a combination of resistors will be tested

### The current that flows is determined by the potential difference across the conductor and the resistance of the conductor (Ohm s law): V = IR P = VI

PHYS1000 DC electric circuits 1 Electric circuits Electric current Charge can move freely in a conductor if an electric field is present; the moving charge is an electric current (SI unit is the ampere

### Lab 4 Series and Parallel Resistors

Lab 4 Series and Parallel Resistors What You Need To Know: (a) (b) R 3 FIGURE - Circuit diagrams. (a) and are in series. (b) and are not in series. The Physics Last week you examined how the current and

### Chapter 1. Fundamental Electrical Concepts

Chapter 1 Fundamental Electrical Concepts Charge, current, voltage, power circuits, nodes, branches Branch and node voltages, Kirchhoff Laws Basic circuit elements, combinations 01 fundamental 1 1.3 Electrical

### Chapter 07. Series-Parallel Circuits

Chapter 07 Series-Parallel Circuits Source: Circuit Analysis: Theory and Practice Delmar Cengage Learning The Series-Parallel Network Complex circuits May be separated both series and/or parallel elements

### Lecture 10. Resistor Circuits, Batteries and EMF

Lecture 10. Resistor Circuits, Batteries and EMF Outline: Connection of Resistors: In Parallel and In Series. Batteries. Non-ideal batteries: internal resistance. Potential distribution around a complete

### First Year (Electrical & Electronics Engineering)

Z PRACTICAL WORK BOOK For The Course EE-113 Basic Electrical Engineering For First Year (Electrical & Electronics Engineering) Name of Student: Class: Batch : Discipline: Class Roll No.: Examination Seat

### Electrical Fundamentals Module 3: Parallel Circuits

Electrical Fundamentals Module 3: Parallel Circuits PREPARED BY IAT Curriculum Unit August 2008 Institute of Applied Technology, 2008 ATE310- Electrical Fundamentals 2 Module 3 Parallel Circuits Module

### Series and Parallel Resistive Circuits

Series and Parallel Resistive Circuits The configuration of circuit elements clearly affects the behaviour of a circuit. Resistors connected in series or in parallel are very common in a circuit and act

### Chapter 7 Direct-Current Circuits

Chapter 7 Direct-Current Circuits 7. Introduction...7-7. Electromotive Force...7-3 7.3 Resistors in Series and in Parallel...7-5 7.4 Kirchhoff s Circuit Rules...7-7 7.5 Voltage-Current Measurements...7-9

### Chapter 19 DC Circuits

Lecture PowerPoints Chapter 19 Physics: Principles with Applications, 6 th edition Giancoli Chapter 19 DC Circuits 2005 Pearson Prentice Hall This work is protected by United States copyright laws and

### Circuits. PHY2049: Chapter 27 1

Circuits PHY2049: Chapter 27 1 What You Already Know Nature of current Current density Drift speed and current Ohm s law Conductivity and resistivity Calculating resistance from resistivity Power in electric

### People s Physics Book

The Big Ideas: The name electric current is given to the phenomenon that occurs when an electric field moves down a wire at close to the speed of light. Voltage is the electrical energy density (energy

### 1. Introduction and Chapter Objectives

Real Analog Circuits 1 Chapter 1: Circuit Analysis Fundamentals 1. Introduction and Chapter Objectives In this chapter, we introduce all fundamental concepts associated with circuit analysis. Electrical

### Laplace Transforms Circuit Analysis Passive element equivalents Review of ECE 221 methods in s domain Many examples

Laplace Transforms Circuit Analysis Passive element equivalents Review of ECE 221 methods in s domain Many examples J. McNames Portland State University ECE 222 Laplace Circuits Ver. 1.63 1 Example 1:

### Series and Parallel Circuits

Series and Parallel Circuits Components in a circuit can be connected in series or parallel. A series arrangement of components is where they are inline with each other, i.e. connected end-to-end. A parallel

### Unit 7: Electric Circuits

Multiple Choice Portion 1. The diagram below shows part of an electrical circuit. Unit 7: Electric Circuits 4. A 12 V battery supplies a 5.0 A current to two light bulbs as shown below. What are the magnitude

### Experiment 6 Parallel Circuits

Experiment 6 Parallel Circuits EL 111 - DC Fundamentals By: Walter Banzhaf, E.K. Smith, and Winfield Young University of Hartford Ward College of Technology Objectives: 1. For the student to investigate

### PHYSICS 111 LABORATORY Experiment #3 Current, Voltage and Resistance in Series and Parallel Circuits

PHYSCS 111 LABORATORY Experiment #3 Current, Voltage and Resistance in Series and Parallel Circuits This experiment is designed to investigate the relationship between current and potential in simple series

### Basic Ohm s Law & Series and Parallel Circuits

2:256 Let there be no compulsion in religion: Truth stands out clear from Error: whoever rejects evil and believes in Allah hath grasped the most trustworthy hand-hold that never breaks. And Allah heareth

### Series-Parallel Circuits. Objectives

Series-Parallel Circuits Objectives Identify series-parallel configuration Analyze series-parallel circuits Apply KVL and KCL to the series-parallel circuits Analyze loaded voltage dividers Determine the

### Chapter 11- Electricity

Chapter 11- Electricity Course Content Definition of Electricity Circuit Diagrams Series and Parallel Circuits Calculating total resistances Measurement of Electricity Ammeters and Voltmeters Ohm s Law

### Note-A-Rific: Characteristics

Note-A-Rific: Characteristics Any path along which electrons can flow is a circuit. For a continuous flow of electrons, there must be a complete circuit with no gaps. A gap is usually an electric switch

### LAB2 Resistors, Simple Resistive Circuits in Series and Parallel Objective:

LAB2 Resistors, Simple Resistive Circuits in Series and Parallel Objective: In this lab, you will become familiar with resistors and potentiometers and will learn how to measure resistance. You will also

### DC Circuits: Operational Amplifiers Hasan Demirel

DC Circuits: Operational Amplifiers Hasan Demirel Op Amps: Introduction Op Amp is short form of operational amplifier. An op amp is an electronic unit that behaves like a voltage controlled voltage source.

### Series and Parallel Circuits

Series and Parallel Circuits Direct-Current Series Circuits A series circuit is a circuit in which the components are connected in a line, one after the other, like railroad cars on a single track. There

### Electrical Circuit Calculations

Electrical Circuit Calculations Series Circuits Many circuits have more than one conversion device in them (i.e. toaster. heater. lamps etc.) and some have more than one source of electrical energy. If

### Nodal and Loop Analysis

Nodal and Loop Analysis The process of analyzing circuits can sometimes be a difficult task to do. Examining a circuit with the node or loop methods can reduce the amount of time required to get important

### Module 2. DC Circuit. Version 2 EE IIT, Kharagpur

Module DC Circuit Lesson 4 Loop Analysis of resistive circuit in the context of dc voltages and currents Objectives Meaning of circuit analysis; distinguish between the terms mesh and loop. To provide

### W03 Analysis of DC Circuits. Yrd. Doç. Dr. Aytaç Gören

W03 Analysis of DC Circuits Yrd. Doç. Dr. Aytaç Gören ELK 2018 - Contents W01 Basic Concepts in Electronics W02 AC to DC Conversion W03 Analysis of DC Circuits (self and condenser) W04 Transistors and

### Circuit Analysis using the Node and Mesh Methods

Circuit Analysis using the Node and Mesh Methods We have seen that using Kirchhoff s laws and Ohm s law we can analyze any circuit to determine the operating conditions (the currents and voltages). The

### Unit 1 Physics Foundation, Circuit Elements, KVL & KCL Unit 2 Analysis Techniques Unit 3 Op Amps & Two-Ports

Unit 1 Physics Foundation, Circuit Elements, KVL & KCL Unit 2 Analysis Techniques Unit 3 Op Amps & Two-Ports ROSE-HULMAN INSTITUTE OF TECHNOLOGY ECE 203 DC Circuits Winter 09-10 Course Information and

### Last time : energy storage elements capacitor.

Last time : energy storage elements capacitor. Charge on plates Energy stored in the form of electric field Passive sign convention Vlt Voltage drop across real capacitor can not change abruptly because

### An Introduction to the Mofied Nodal Analysis

An Introduction to the Mofied Nodal Analysis Michael Hanke May 30, 2006 1 Introduction Gilbert Strang provides an introduction to the analysis of electrical circuits in his book Introduction to Applied

### Example: Determine the power supplied by each of the sources, independent and dependent, in this circuit:

Example: Determine the power supplied by each of the sources, independent and dependent, in this circuit: Solution: We ll begin by choosing the bottom node to be the reference node. Next we ll label the

### Analysis of a single-loop circuit using the KVL method

Analysis of a single-loop circuit using the KVL method Figure 1 is our circuit to analyze. We shall attempt to determine the current through each element, the voltage across each element, and the power

### Electrical Measurements

Electrical Measurements Experimental Objective The objective of this experiment is to become familiar with some of the electrical instruments. You will gain experience by wiring a simple electrical circuit

### CHAPTER 28 ELECTRIC CIRCUITS

CHAPTER 8 ELECTRIC CIRCUITS 1. Sketch a circuit diagram for a circuit that includes a resistor R 1 connected to the positive terminal of a battery, a pair of parallel resistors R and R connected to the

1 ANSWERS to CIRCUITS 1. The speed with which electrons move through a copper wire is typically 10-4 m s -1. a. Explain why is it that the electrons cannot travel faster in the conductor? b. Explain why

### Project 4: Introduction to Circuits The attached Project was prepared by Professor Yih-Fang Huang from the department of Electrical Engineering.

Project 4: Introduction to Circuits The attached Project was prepared by Professor Yih-Fang Huang from the department of Electrical Engineering. The examples given are example of basic problems that you

### Lesson Plan. Parallel Resistive Circuits Part 1 Electronics

Parallel Resistive Circuits Part 1 Electronics Lesson Plan Performance Objective At the end of the lesson, students will demonstrate the ability to apply problem solving and analytical techniques to calculate

### Electronics. Basic Concepts. Yrd. Doç. Dr. Aytaç GÖREN Yrd. Doç. Dr. Levent ÇETİN

Electronics Basic Concepts Electric charge Ordinary matter is made up of atoms which have positively charged nuclei and negatively charged electrons surrounding them. Charge is quantized as the subtraction

### Q1. (a) The diagram shows the voltage-current graphs for three different electrical components.

Q. (a) The diagram shows the voltage-current graphs for three different electrical components. Which one of the components A, B or C could be a 3 volt filament lamp? Explain the reason for your choice...................

### Chapter 5: Analysis of Time-Domain Circuits

Chapter 5: Analysis of Time-Domain Circuits This chapter begins the analysis of circuits containing elements with the ability to store energy: capacitors and inductors. We have already defined each of

### Chapter 27 = J. U = 120Ah 3600s 1h. Now we compute how long we can deliver a power of 100 W with this energy available.

Chapter 7 7. A certain car battery with 1.0 V emf has an initial carge of 10 A h. Assuming that the potential across the terminals stays constant until the battery is completely discharged, for how many

### Parallel DC circuits

Parallel DC circuits This worksheet and all related files are licensed under the Creative Commons Attribution License, version 1.0. To view a copy of this license, visit http://creativecommons.org/licenses/by/1.0/,

### UNIVERSITY OF CALIFORNIA BERKELEY Engineering 7 Department of Civil and Environmental Engineering. Linear Equations: Engineering Supplement

UNIVERSITY OF CALIFORNIA BERKELEY Engineering 7 Department of Civil and Environmental Engineering Spring 203 Professor: S. Govindjee Linear Equations: Engineering Supplement Introduction The workhorse

### Objectives. to understand how to use a voltmeter to measure voltage

UNIT 10 MEASUREMENTS OF VOLTAGE (from Lillian C. McDermott and the Physics Education Group, Physics by Inquiry Volume II, John Wiley and Sons, NY, 1996) Objectives to understand how to use a voltmeter

### Kirchhoff's Rules and Applying Them

[ Assignment View ] [ Eðlisfræði 2, vor 2007 26. DC Circuits Assignment is due at 2:00am on Wednesday, February 21, 2007 Credit for problems submitted late will decrease to 0% after the deadline has passed.

### Lab 3 - DC Circuits and Ohm s Law

Lab 3 DC Circuits and Ohm s Law L3-1 Name Date Partners Lab 3 - DC Circuits and Ohm s Law OBJECTIES To learn to apply the concept of potential difference (voltage) to explain the action of a battery in

### Fig. 1 Analogue Multimeter Fig.2 Digital Multimeter

ELECTRICAL INSTRUMENT AND MEASUREMENT Electrical measuring instruments are devices used to measure electrical quantities such as electric current, voltage, resistance, electrical power and energy. MULTIMETERS

### Tutorial 12 Solutions

PHYS000 Tutorial 2 solutions Tutorial 2 Solutions. Two resistors, of 00 Ω and 200 Ω, are connected in series to a 6.0 V DC power supply. (a) Draw a circuit diagram. 6 V 00 Ω 200 Ω (b) What is the total

### AP1 Electricity. 1. A student wearing shoes stands on a tile floor. The students shoes do not fall into the tile floor due to

1. A student wearing shoes stands on a tile floor. The students shoes do not fall into the tile floor due to (A) a force of repulsion between the shoes and the floor due to macroscopic gravitational forces.

### 2.1 Introduction. 2.2 Terms and definitions

.1 Introduction An important step in the procedure for solving any circuit problem consists first in selecting a number of independent branch currents as (known as loop currents or mesh currents) variables,

### UNIVERSITY OF NORTH CAROLINA AT CHARLOTTE Department of Electrical and Computer Engineering

UNIVERSITY OF NORTH CAROLINA AT CHARLOTTE Department of Electrical and Computer Engineering EXPERIMENT 5 PARALLEL AND SERIES-PARALLEL CIRCUIT CHARACTERISTICS OBJECTIVES This experiment will have the student

### CURRENT ELECTRICITY INTRODUCTION TO RESISTANCE, CAPACITANCE AND INDUCTANCE

CURRENT ELECTRICITY INTRODUCTION TO RESI STANCE, CAPACITANCE AND INDUCTANCE P R E A M B L E This problem is adapted from an on-line knowledge enhancement module for a PGCE programme. It is used to cover

### Practice Problems - Chapter 33 Alternating Current Circuits

Multiple Choice Practice Problems - Chapter 33 Alternating Current Circuits 4. A high-voltage powerline operates at 500 000 V-rms and carries an rms current of 500 A. If the resistance of the cable is

### Chapter 7. DC Circuits

Chapter 7 DC Circuits 7.1 Introduction... 7-3 Example 7.1.1: Junctions, branches and loops... 7-4 7.2 Electromotive Force... 7-5 7.3 Electrical Energy and Power... 7-9 7.4 Resistors in Series and in Parallel...

### Kirchhoff s Laws Physics Lab IX

Kirchhoff s Laws Physics Lab IX Objective In the set of experiments, the theoretical relationships between the voltages and the currents in circuits containing several batteries and resistors in a network,

### very small Ohm s Law and DC Circuits Purpose: Students will become familiar with DC potentiometers circuits and Ohm s Law. Introduction: P31220 Lab

Ohm s Law and DC Circuits Purpose: Students will become familiar with DC potentiometers circuits and Ohm s Law. Introduction: Ohm s Law for electrical resistance, V = IR, states the relationship between

### DC Circuits (Combination of resistances)

Name: Partner: Partner: Partner: DC Circuits (Combination of resistances) EQUIPMENT NEEDED: Circuits Experiment Board One Dcell Battery Wire leads Multimeter 100, 330, 1k resistors Purpose The purpose

### Analog and Digital Meters

Analog and Digital Meters Devices and Measurements Objective At the conclusion of this presentation the student will describe and identify: Safety precautions when using test equipment Analog Multimeters

### Experiment 4 ~ Resistors in Series & Parallel

Experiment 4 ~ Resistors in Series & Parallel Objective: In this experiment you will set up three circuits: one with resistors in series, one with resistors in parallel, and one with some of each. You

### Recitation 6 Chapter 21

Recitation 6 hapter 21 Problem 35. Determine the current in each branch of the circuit shown in Figure P21.35. 3. Ω 5. Ω 1. Ω 8. Ω 1. Ω ɛ 2 4 12 Let be the current on the left branch (going down), be the

### Chapter 10. RC Circuits ISU EE. C.Y. Lee

Chapter 10 RC Circuits Objectives Describe the relationship between current and voltage in an RC circuit Determine impedance and phase angle in a series RC circuit Analyze a series RC circuit Determine

### 120 CHAPTER 3 NODAL AND LOOP ANALYSIS TECHNIQUES SUMMARY PROBLEMS SECTION 3.1

IRWI03_082132v3 8/26/04 9:41 AM Page 120 120 CHAPTER 3 NODAL AND LOOP ANALYSIS TECHNIQUES SUMMARY Nodal analysis for an Nnode circuit Select one node in the Nnode circuit as the reference node. Assume

### Parallel and Series Resistors, Kirchoff s Law

Experiment 2 31 Kuwait University Physics 107 Physics Department Parallel and Series Resistors, Kirchoff s Law Introduction In this experiment the relations among voltages, currents and resistances for

### DC mesh current analysis

DC mesh current analysis This worksheet and all related files are licensed under the Creative Commons Attribution License, version 1.0. To view a copy of this license, visit http://creativecommons.org/licenses/by/1.0/,

### Node and Mesh Analysis

Node and Mesh Analysis 1 Copyright ODL Jan 2005 Open University Malaysia Circuit Terminology Name Definition Node Essential node Path Branch Essential Branch Loop Mesh A point where two ore more branches

### Physics 9 Fall 2009 Homework 6 - Solutions

. Chapter 32 - Exercise 8. Physics 9 Fall 29 Homework 6 - s How much power is dissipated by each resistor in the figure? First, let s figure out the current in the circuit. Since the two resistors are

### 13.10: How Series and Parallel Circuits Differ pg. 571

13.10: How Series and Parallel Circuits Differ pg. 571 Key Concepts: 5. Connecting loads in series and parallel affects the current, potential difference, and total resistance. - Using your knowledge of

### Kirchhoff s Voltage Law and RC Circuits

Kirchhoff s oltage Law and RC Circuits Apparatus 2 1.5 batteries 2 battery holders DC Power Supply 1 multimeter 1 capacitance meter 2 voltage probes 1 long bulb and 1 round bulb 2 sockets 1 set of alligator

### Experiment 8 Series-Parallel Circuits

Experiment 8 Series-Parallel Circuits EL 111 - DC Fundamentals By: Walter Banzhaf, E.K. Smith, and Winfield Young University of Hartford Ward College of Technology Objectives: 1. For the student to measure

### Method 1: 30x50 30 50 18.75 15 18.75 0.8. 80 Method 2: 15

The University of New South Wales School of Electrical Engineering and Telecommunications ELEC Electrical and Telecommunications Engineering Tutorial Solutions Q. In the figure below a voltage source and

### Charge and Discharge of a Capacitor

Charge and Discharge of a Capacitor INTRODUCTION Capacitors 1 are devices that can store electric charge and energy. Capacitors have several uses, such as filters in DC power supplies and as energy storage

### Current, Resistance and Electromotive Force. Young and Freedman Chapter 25

Current, Resistance and Electromotive Force Young and Freedman Chapter 25 Electric Current: Analogy, water flowing in a pipe H 2 0 gallons/minute Flow Rate is the NET amount of water passing through a

### Electrostatics. Electrostatics Version 2

1. A 150-watt lightbulb is brighter than a 60.-watt lightbulb when both are operating at a potential difference of 110 volts. Compared to the resistance of and the current drawn by the 150-watt lightbulb,

### Capacitance, Resistance, DC Circuits

This test covers capacitance, electrical current, resistance, emf, electrical power, Ohm s Law, Kirchhoff s Rules, and RC Circuits, with some problems requiring a knowledge of basic calculus. Part I. Multiple