Data & Computer Communications. Lecture 8. Network Layer: Logical addressing. In this lecture we will cover the following topics:

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Data & Computer Communications. Lecture 8. Network Layer: Logical addressing. In this lecture we will cover the following topics:"

Transcription

1 Data & Computer Communications MSCEG 425 Lecture 8 Network Layer: Logical addressing Fall Overview In this lecture we will cover the following topics: 14.Network Layer: Logical addressing 14.1 IPv4 Addresses 14.2 IPv6 Addresses 14.3 Summary (part 14) 2

2 Position of Network Layer 3 Duties of Network Layer Internetworking Logically connecting heterogeneous networks to look like single network to upper transport and application layers. Addressing Each device (a computer or a router) over the Internet must have unique and universally accepted address. Routing Packet can not choose its route to the destination. The routers connecting LANs and WANs make this decision. Packetizing The network layer encapsulates datagram/segments received from upper layers and makes packets out of them. Fragmenting Each router de-capsulates the IP datagram from the received frame, process it and encapsulates it into another frame. 4

3 14.1 IPv4 ADDRESSES An IPv4 address is a 32-bit address that uniquely and universally defines the connection of a device (for example, a computer or a router) to the Internet. Topics discussed in this section: Address Space Notations Classful Addressing Classless Addressing Network Address Translation (NAT) 5 Note An IPv4 address is 32 bits long. Note The address space of IPv4 is 2 32 or 4,294,967,296. 6

4 Note The IPv4 addresses are unique and universal. 7 Dotted-decimal notation and binary notation for an IPv4 address Binary Notation Dotted-Decimal Notation Identifier used in network layer to identify each device connected to the Internet 32-bit binary address that uniquely and universally defines the connection of a host or a router to the Internet. In Internet, no two devices can have the same IP For readability, we divide the IP address into 4 bytes. Dotted-decimal notation: Each byte is separated by dots. 8

5 Example Change the following IPv4 addresses from binary notation to dotted-decimal notation. Solution We replace each group of 8 bits with its equivalent decimal number (see Appendix B) and add dots for separation. 9 Example Change the following IPv4 addresses from dotted-decimal notation to binary notation. Solution We replace each decimal number with its binary equivalent 10

6 Example Find the error, if any, in the following IPv4 addresses. Solution a. There must be no leading zero (045). b. There can be no more than four numbers. c. Each number needs to be less than or equal to 255. d. A mixture of binary notation and dotted-decimal notation is not allowed. 11 Note In classful addressing, the address space is divided into five classes: A, B, C, D, and E. 12

7 Classful addressing The address space is divided into five classes: A, B, C, D and E 13 Example Find the class of each address. a b c d Solution a. The first bit is 0. This is a class A address. b. The first 2 bits are 1; the third bit is 0. This is a class C address. c. The first byte is 14; the class is A. d. The first byte is 252; the class is E. 14

8 Number of blocks and block size in classful IPv4 addressing 15 Note In classful addressing, a large part of the available addresses were wasted. 16

9 Default masks for classful addressing 17 Note Classful addressing, which is almost obsolete, is replaced with classless addressing. 18

10 Example The figure below shows a block of addresses, in both binary and dotteddecimal notation, granted to a small business that needs 16 addresses. We can see that the restrictions are applied to this block. The addresses are contiguous. The number of addresses is a power of 2 (16 = 2 4 ), and the first address is divisible by 16. The first address, when converted to a decimal number, is 3,440,387,360, which when divided by 16 results in 215,024, Note In IPv4 addressing, a block of addresses can be defined as x.y.z.t /n in which x.y.z.t defines one of the addresses and the /n defines the mask. 20

11 Note The first address in the block can be found by setting the rightmost 32 n bits to 0s. 21 Example A block of addresses is granted to a small organization. We know that one of the addresses is /28. What is the first address in the block? Solution The binary representation of the given address is If we set rightmost bits to 0, we get or This is actually the block shown in figure below. 22

12 Note The last address in the block can be found by setting the rightmost 32 n bits to 1s. 23 Example Find the last address for the block in previous example. Solution The binary representation of the given address is If we set rightmost bits to 1, we get or This is actually the block shown in figure below. 24

13 Note The number of addresses in the block can be found by using the formula 2 32 n. 25 Example Find the number of addresses in previous example. Solution The value of n is 28, which means that number of addresses is or

14 Example Another way to find the first address, the last address, and the number of addresses is to represent the mask as a 32-bit binary (or 8-digit hexadecimal) number. This is particularly useful when we are writing a program to find these pieces of information. In Example 19.5 the /28 can be represented as (twenty-eight 1s and four 0s). Find: a. The first address b. The last address c. The number of addresses. 27 Example (continued) Solution a. The first address can be found by ANDing the given addresses with the mask. ANDing here is done bit by bit. The result of ANDing 2 bits is 1 if both bits are 1s; the result is 0 otherwise. 28

15 Example 19.9 (continued) b. The last address can be found by ORing the given addresses with the complement of the mask. ORing here is done bit by bit. The result of ORing 2 bits is 0 if both bits are 0s; the result is 1 otherwise. The complement of a number is found by changing each 1 to 0 and each 0 to 1. c. The number of addresses can be found by complementing the mask, interpreting it as a decimal number, and adding 1 to it. 29 A network configuration for the block /28 30

16 Network address Network address is an address that defines the network itself; it cannot be assigned to a host. All hostid bytes are 0s Defines the network to the rest of the Internet. First address in the block Given the network address, we can find the class of the address. Note The first address in a block is normally not assigned to any device; it is used as the network address that represents the organization to the rest of the world. 31 Levels of hierarchy Levels of Hierarchy To reach a host on the Internet, we must first reach the network by using the first portion of the address (netid) Then we must reach the host itself by using the second portion (hostid) IP addresses are designed with two levels of hierarchy. 32

17 Note Each address in the block can be considered as a two-level hierarchical structure: the leftmost n bits (prefix) define the network; the rightmost 32 n bits define the host. 33 Netid, Hostid Netid: Network address. Hostid: Node address 34

18 Hierarchy in telephone numbers 35 Three-level hierarchy in an IPv4 address Adding subnetworks creates an intermediate level of hierarchy in the IP addressing system. Now we have three levels: site, subnet, and host. The site is the first level. The second level is the subnet. The host is the third level. 36

19 Subnetting Sub-netting We can divide a network into sub-networks while making the world knows only the main network. In sub-netting, a network is divided into several smaller groups with each sub-network (or subnet) having its own sub-network address. 37 Example An ISP is granted a block of addresses starting with /16 (65,536 addresses). The ISP needs to distribute these addresses to three groups of customers as follows: a. The first group has 64 customers; each needs 256 addresses. b. The second group has 128 customers; each needs 128 addresses. c. The third group has 128 customers; each needs 64 addresses. Design the subblocks and find out how many addresses are still available after these allocations. 38

20 Example (continued) Solution Figure in slide 42 shows the situation. Group 1 For this group, each customer needs 256 addresses. This means that 8 (log2 256) bits are needed to define each host. The prefix length is then 32 8 = 24. The addresses are: 39 Example (continued) Group 2 For this group, each customer needs 128 addresses. This means that 7 (log2 128) bits are needed to define each host. The prefix length is then 32 7 = 25. The addresses are 40

21 Example (continued) Group 3 For this group, each customer needs 64 addresses. This means that 6 (log 2 64) bits are needed to each host. The prefix length is then 32 6 = 26. The addresses are: Number of granted addresses to the ISP: 65,536 Number of allocated addresses by the ISP: 40,960 Number of available addresses: 24, An example of address allocation and distribution by an ISP 42

22 Mask A router routes the packet based on network address and subnetwork address. A router inside a network routes based on subnetwork address but a router outside a network routes based on network address. Router uses the 32-bit mask to identify the network address. Routers outside an organization use a default mask; the routers inside an organization use a subnet mask Default mask 32-bit binary number that gives the network address when ANDed with an address in the block. 43 Default masks Class In Binary In Dotted-Decimal Using Slash A /8 B /16 C /24 Netid is retained and hostid sets to 0s. 44

23 Example A router outside the organization receives a packet with destination address Show how it finds the network address to route the packet. Solution: The router follows three steps: 1. The router looks at the first byte of the address to find the class. It is class B. 2. The default mask for class B is The router ANDs this mask with the address to get The router looks in its routing table to find out how to route the packet to this destination. Later, we will see what happens if this destination does not exist. 45 Subnet mask Number of 1s in a subnet mask is more than the number of 1s in the corresponding default mask. In a subnet mask, we change some of the leftmost 0s in the default mask to make a subnet mask. 46

24 Example A router inside the organization receives the same packet with destination address Show how it finds the subnetwork address to route the packet. Solution: The router follows three steps: 1. The router must know the mask. We assume it is /19, as shown in Figure The router applies the mask to the address, The subnet address is The router looks in its routing table to find how to route the packet to this destination. Later, we will see what happens if this destination does not exist. 47 Supernetting Although class A and B addresses are almost depleted, class C addresses are still available. In supernetting, an organization can combine several class C blocks to create a larger range of addresses. Several networks are combined to create a supernetwork. 48

25 Classless Addressing A range of addresses meant a block of addresses in class A, B, or C. What about a small business that needed only 16 addresses? Or a household that needed only two addresses? ISPs provide IP; people connect via dial-up modem, DSL, or cable modem to the ISP. Variable-length blocks: No class boundaries. Mask: Provide a block, it is given the first address and mask. Subnetting Classless InterDomain Routing (CIDR) 49 Dynamic Address Configuration Each computer has IP address, subnet mask, IP address of a router, IP address of a name server; This information is usually stored in a configuration file and accessed by the computer during the bootstrap (boot) process. Dynamic Host Configuration Protocol (DHCP) is a protocol designed to provide the information dynamically (based on demand). DHCP is a client-server program. When a DHCP client requests a temporary IP address, the DHCP server goes to the pool of available (unused) IP addresses and assigns an IP address for a negotiable period of time. When a DHCP client sends a request to a DHCP server, the server first checks its static database. If an entry with the requested physical address exists in the static database, the permanent IP address of the client is returned. On the other hand, if the entry does not exist in the static database, the server selects an IP address from the available pool, assigns the address to the client, and adds the entry to the dynamic database. 50

26 Addresses for private networks 51 A Network Address Translation (NAT) implementation NAT enables a user to have a large set of addresses internally and one address, or a small set of addresses, externally. The traffic inside can use the large set; the traffic outside, the small set. 52

27 Address Translation All the outgoing packets go through the NAT router, which replaces the source address in the packet with the global NAT address. All incoming packets also pass through the NAT router, which replaces the destination address in the packet (the NAT router global address) with the appropriate private address. 53 NAT address translation Using one IP address: private address to external address mapping. Limitation is that only the private network can initiate a connection and not vice-versa. Only one request at a time. 54

28 Five-column translation table Using a pool of IP addresses More than one global address is there and we map to one of them. Limited by the number of global IP. Using both IP and port numbers Mapping with IPs and Port numbers. 55 An ISP and NAT 56

29 14.2 IPv6 ADDRESSES Despite all short-term term solutions, address depletion is still a long-term problem for the Internet. This and other problems in the IP protocol itself have been the motivation for IPv6. Topics discussed in this section: Structure Address Space 57 Note An IPv6 address is 128 bits long. 58

30 IPv6 address in binary and hexadecimal colon notation 59 Abbreviated IPv6 addresses 60

31 Example Expand the address 0:15::1:12:1213 to its original. Solution We first need to align the left side of the double colon to the left of the original pattern and the right side of the double colon to the right of the original pattern to find how many 0s we need to replace the double colon. This means that the original address is. 61 Type prefixes for IPv6 addresses 62

32 Type prefixes for IPv6 addresses (continued) 63 Prefixes for provider-based unicast address 64

33 Multicast address in IPv6 65 Reserved addresses in IPv6 66

34 Local addresses in IPv SUMMARY (part 14) There are two popular approaches to packet switching: the datagram approach and the virtual circuit approach. In the datagram approach, each packet is treated independently of all other packets. At the network layer, a global addressing system that uniquely identifies every host and router is necessary for delivery of a packet from network to network. The Internet address (or IP address) is 32 bits (for IPv4) that uniquely and universally defines a host or router on the internet. The portion of the IP address that identifies the network is called the netid. The portion of the IP address that identifies the host or router on the network is called the hostid. There are five classes of IP addresses. Classes A, B, and C differ in the number of hosts allowed per network. Class D is for multicasting, and class E is reserved. The class of a network is easily determined by examination of the first byte. Unicast communication is one source sending a packet to one destination. Multicast communication is one source sending a packet to multiple destinations. Subetting divides one large network into several smaller ones. Subnetting adds an intermediate level of hierarchy in IP addressing. Default masking is a process that extracts the network address from an IP address. Subnet masking is a process that extracts the subnetwork address from an IP address Supernetting combines several networks into one large one. 68

35 14.3 SUMMARY continued (part 14) In classless addressing, there are variable-length blocks that belong to no class. The entire address space is divided into blocks based on organization needs. The first address and the mask in classless addressing can define the whole block. A mask can be expressed in slash notation which is a slash followed by the number of 1s in the mask. Every computer attached to the Internet must know its IP address, the IP address of a router, the IP address of a name server, and its subnet mask (if it is part of a subnet). DHCP is a dynamic configuration protocol with two databases. The DHCP server issues a lease for an IP address to a client for a specific period of time. Network address translation (NAT) allows a private network to use a set of private addresses for internal communication and a set of global Internet addresses for external communication. NAT uses translation tables to route messages. The IP protocol is a connectionless protocol. Every packet is independent and has no relationship to any other packet. Every host or router has a routing table to route IP packets. In next-hop routing, instead of a complete list of the stops the packet must make, only the address of the next hop is listed in the routing table. In network-specific routing, all hosts on a network share one entry in the routing table. In host-specific routing, the full IP address of a host is given in the routing table. In default routing, a router is assigned to receive all packets with no match in the routing table. A static routing table's entries are updated manually by an administrator. Classless addressing requires hierarchial and geographic routing to prevent immense routing tables. 69 References B.A. Forouzan, Data Communications and Networking, 4th edition, McGraw-Hill, 2007 W. Stalling, Local and Metropolitan Area Networks, 6 th edition, Prentice Hall, 2000 W. Stallings, Data and Computer Communications, 7 th edition, Prentice Hall, 2004 F. Halsall, Data Communications, Computer Networks and Open Systems, 4 th edition, Addison Wesley,

CE363 Data Communications & Networking. Chapter 6 Network Layer: Logical Addressing

CE363 Data Communications & Networking. Chapter 6 Network Layer: Logical Addressing CE363 Data Communications & Networking Chapter 6 Network Layer: Logical Addressing TCP/IP and OSI model APPLICATION APPLICATION PRESENTATION SESSION TRANSPORT NETWORK Host-Network TRANSPORT NETWORK DATA

More information

Chapter 19 Network Layer: Logical Addressing 19.1

Chapter 19 Network Layer: Logical Addressing 19.1 Chapter 19 Network Layer: Logical Addressing 19.1 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 19-1 IPv4 ADDRESSES An IPv4 address is a 32-bit address that

More information

Chapter 5. IPv4 Addresses. TCP/IP Protocol Suite 1 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Chapter 5. IPv4 Addresses. TCP/IP Protocol Suite 1 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Chapter 5 IPv4 Addresses TCP/IP Protocol Suite 1 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Chapter Outline TCP/IP Protocol Suite 2 5-1 INTRODUCTION The

More information

Subnetting/Supernetting and Classless Addressing

Subnetting/Supernetting and Classless Addressing Chapter 5 Subnetting/Supernetting and Classless Addressing SUBNETTING SUPERNETTING CLASSLESS ADDRSSING The McGraw-Hill Companies, Inc., 2000 1 5.1 SUBNETTING The McGraw-Hill Companies, Inc., 2000 2 A network

More information

PART IV. Network Layer

PART IV. Network Layer PART IV Network Layer Position of network layer Network layer duties Internetworking : heterogeneous Physical Networks To look Like a single network to he upper layers The address at Network layer must

More information

COMP3331/COMP9331 Computer Networks and Applications IPv4. Lecture overview. IP addressing basics. Key concepts

COMP3331/COMP9331 Computer Networks and Applications IPv4. Lecture overview. IP addressing basics.  Key concepts COMP3331/COMP9331 Computer Networks and Applications IPv4 http://www.cse.unsw.edu.au/~cs3331/ 1 Lecture overview Key concepts Classful addressing Network mask Subnetting Supernetting Classless addressing

More information

Chapter 4. IP Addresses: Classful Addressing

Chapter 4. IP Addresses: Classful Addressing Chapter 4 IP Addresses: Classful Addressing Outlines Introduction Classfuladdressing Other issues Subnetting and supernetting 4.1 INTRODUCTION Introduction IP address, or Internet Address 32-bit binary

More information

TCP/IP Basis. OSI Model

TCP/IP Basis. OSI Model TCP/IP Basis 高 雄 大 學 資 訊 工 程 學 系 嚴 力 行 Source OSI Model Destination Application Presentation Session Transport Network Data-Link Physical ENCAPSULATION DATA SEGMENT PACKET FRAME BITS 0101010101010101010

More information

Classful IP Addressing (cont.)

Classful IP Addressing (cont.) Classful IP Addressing (cont.) 1 Address Prefix aka Net ID defines the network Address Suffix aka Host ID defines the node In Classful addressing, prefix is of fixed length (1, 2, or 3 bytes)! Classful

More information

8.2 The Internet Protocol

8.2 The Internet Protocol TCP/IP Protocol Suite HTTP SMTP DNS RTP Distributed applications Reliable stream service TCP UDP User datagram service Best-effort connectionless packet transfer Network Interface 1 IP Network Interface

More information

IP Addressing A Simplified Tutorial

IP Addressing A Simplified Tutorial Application Note IP Addressing A Simplified Tutorial July 2002 COMPAS ID 92962 Avaya Labs 1 All information in this document is subject to change without notice. Although the information is believed to

More information

Computer Network Foundation. Chun-Jen (James) Chung. Arizona State University

Computer Network Foundation. Chun-Jen (James) Chung. Arizona State University Computer Network Foundation Chun-Jen (James) Chung 1 Outline Network Addressing Subnetting Classless Inter-Domain Routing (CIDR) Route Aggregation Network Addressing How does the network decide where to

More information

Internet Addresses (You should read Chapter 4 in Forouzan)

Internet Addresses (You should read Chapter 4 in Forouzan) Internet Addresses (You should read Chapter 4 in Forouzan) IP Address is 32 Bits Long Conceptually the address is the pair (NETID, HOSTID) Addresses are assigned by the internet company for assignment

More information

Savera Tanwir. Internet Protocol

Savera Tanwir. Internet Protocol Savera Tanwir Internet Protocol The IP Protocol The IPv4 (Internet Protocol) header. IP Packet Details Header and payload Header itself has a fixed part and variable part Version IPv4, IPv5 or IPv6 IHL,

More information

IP Subnetting and Addressing

IP Subnetting and Addressing Indian Institute of Technology Kharagpur IP Subnetting and Addressing Prof Indranil Sengupta Computer Science and Engineering Indian Institute of Technology Kharagpur Lecture 6: IP Subnetting and Addressing

More information

Chapter 4. IP Addresses: Classful Addressing

Chapter 4. IP Addresses: Classful Addressing Chapter 4 IP Addresses: Classful Addressing The McGraw-Hill Companies, Inc., 2000 1 CONTENTS INTRODUCTION CLASSFUL ADDRESSING OTHER ISSUES A SAMPLE INTERNET The McGraw-Hill Companies, Inc., 2000 2 4.1

More information

SUPPORT DE COURS. Dr. Omari Mohammed Maître de Conférences Classe A Université d Adrar Courriel : omarinmt@gmail.com

SUPPORT DE COURS. Dr. Omari Mohammed Maître de Conférences Classe A Université d Adrar Courriel : omarinmt@gmail.com Dr. Omari Mohammed Maître de Conférences Classe A Université d Adrar Courriel : omarinmt@gmail.com SUPPORT DE COURS Matière : Réseaux 2 Niveau : 3 ème Année Licence en Informatique Option : Réseaux et

More information

Future Internet Technologies

Future Internet Technologies Future Internet Technologies Traditional Internet Dr. Dennis Pfisterer Institut für Telematik, Universität zu Lübeck http://www.itm.uni-luebeck.de/people/pfisterer Internet Protocol v4 (IPv4) IPv4 Model

More information

IP Addressing. IP Addresses. Introductory material.

IP Addressing. IP Addresses. Introductory material. IP Addressing Introductory material. An entire module devoted to IP addresses. IP Addresses Structure of an IP address Classful IP addresses Limitations and problems with classful IP addresses Subnetting

More information

IP Addressing and Routing

IP Addressing and Routing IP Addressing and Routing 1 Basic IP Addressing Each host connected to the Internet is identified by a unique IP address. An IP address is a 32-bit quantity. Expressed as a dotted-decimal notation W.X.Y.Z.

More information

Internet Protocol (IP) IP - Network Layer. IP Routing. Advantages of Connectionless. CSCE 515: Computer Network Programming ------ IP routing

Internet Protocol (IP) IP - Network Layer. IP Routing. Advantages of Connectionless. CSCE 515: Computer Network Programming ------ IP routing Process Process Process Layer CSCE 515: Computer Network Programming ------ IP routing Wenyuan Xu ICMP, AP & AP TCP IP UDP Transport Layer Network Layer Department of Computer Science and Engineering University

More information

117.149.29.234. The address space of IPv4 is 2 32 or 4,294,967,296. Binary notation: 01110101 10010101 00011101 11101010

117.149.29.234. The address space of IPv4 is 2 32 or 4,294,967,296. Binary notation: 01110101 10010101 00011101 11101010 The address space of IPv4 is 2 32 or 4,294,967,296. Binary notation: 01110101 10010101 00011101 11101010 Dotted-decimal notation: 01110101 10010101 00011101 11101010 117 149 29 234 117.149.29.234 Hexadecimal

More information

(Refer Slide Time: 02:17)

(Refer Slide Time: 02:17) Internet Technology Prof. Indranil Sengupta Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur Lecture No #06 IP Subnetting and Addressing (Not audible: (00:46)) Now,

More information

Computer Networks. Lecture 3: IP Protocol. Marcin Bieńkowski. Institute of Computer Science University of Wrocław

Computer Networks. Lecture 3: IP Protocol. Marcin Bieńkowski. Institute of Computer Science University of Wrocław Computer Networks Lecture 3: IP Protocol Marcin Bieńkowski Institute of Computer Science University of Wrocław Computer networks (II UWr) Lecture 3 1 / 24 In previous lectures We learned about layer 1

More information

Internet Protocol Address

Internet Protocol Address SFWR 4C03: Computer Networks & Computer Security Jan 17-21, 2005 Lecturer: Kartik Krishnan Lecture 7-9 Internet Protocol Address Addressing is a critical component of the internet abstraction. To give

More information

IP Addressing Introductory material.

IP Addressing Introductory material. IP Addressing Introductory material. A module devoted to IP addresses. Addresses & Names Hardware (Layer 2) Lowest level Ethernet (MAC), Serial point-to-point,.. Network (Layer 3) IP IPX, SNA, others Transport

More information

CCNA Tutorial Series SUBNETTING

CCNA Tutorial Series SUBNETTING CCNA Tutorial Series This document contains the Course Map For The Interactive flash tutorial at: http://www.semsim.com/ccna/tutorial/subnetting/subnetting.html HOME PAGE Course Objectives Pre-test By

More information

WHITE PAPER. Understanding IP Addressing: Everything You Ever Wanted To Know

WHITE PAPER. Understanding IP Addressing: Everything You Ever Wanted To Know WHITE PAPER Understanding IP Addressing: Everything You Ever Wanted To Know Understanding IP Addressing: Everything You Ever Wanted To Know CONTENTS Internet Scaling Problems 1 Classful IP Addressing 3

More information

IP Addressing. -Internetworking (with TCP/IP) -Classful addressing -Subnetting and Supernetting -Classless addressing

IP Addressing. -Internetworking (with TCP/IP) -Classful addressing -Subnetting and Supernetting -Classless addressing IP Addressing -Internetworking (with TCP/IP) -Classful addressing -Subnetting and Supernetting -Classless addressing Internetworking The concept of internetworking: we need to make different networks communicate

More information

Efficient Addressing. Outline. Addressing Subnetting Supernetting CS 640 1

Efficient Addressing. Outline. Addressing Subnetting Supernetting CS 640 1 Efficient Addressing Outline Addressing Subnetting Supernetting CS 640 1 IPV4 Global Addresses Properties IPv4 uses 32 bit address space globally unique hierarchical: network + host 7 24 Dot Notation 10.3.2.4

More information

Lab#2: IP Addressing and Subnetting

Lab#2: IP Addressing and Subnetting IP Addressing Lab#2: IP Addressing and Subnetting Each Network Interface Card (NIC or Network card) present in a PC is assigned one Network address called as IP address. This IP address is assigned by

More information

Tutorial (03) IP addresses & Sub netting

Tutorial (03) IP addresses & Sub netting Tutorial (03) IP addresses & Sub netting Dr. Ahmed M. ElShafee ١ Agenda IP Addressing Conventions Original IPv4 Address Classes Subnetting CIDR (Classless InterDomain Routing) ٢ IP Addressing Conventions

More information

Computer Networks 1 (Mạng Máy Tính 1) Lectured by: Dr. Phạm Trần Vũ

Computer Networks 1 (Mạng Máy Tính 1) Lectured by: Dr. Phạm Trần Vũ Computer Networks 1 (Mạng Máy Tính 1) Lectured by: Dr. Phạm Trần Vũ 1 Lecture 7: Network Layer in the Internet Reference: Chapter 5 - Computer Networks, Andrew S. Tanenbaum, 4th Edition, Prentice Hall,

More information

Ch.9 Classless And Subnet Address Extensions (CIDR)

Ch.9 Classless And Subnet Address Extensions (CIDR) CSC521 Communication Protocols 網 路 通 訊 協 定 Ch.9 Classless And Subnet Address Extensions (CIDR) 吳 俊 興 國 立 高 雄 大 學 資 訊 工 程 學 系 Outline 1. Introduction 2. Review Of Relevant Facts 3. Minimizing Network Numbers

More information

Internetworking and Internet-1. Global Addresses

Internetworking and Internet-1. Global Addresses Internetworking and Internet Global Addresses IP servcie model has two parts Datagram (connectionless) packet delivery model Global addressing scheme awaytoidentifyall H in the internetwork Properties

More information

Internet Protocols. Addressing & Services. Updated: 9-29-2012

Internet Protocols. Addressing & Services. Updated: 9-29-2012 Internet Protocols Addressing & Services Updated: 9-29-2012 Virtual vs. Physical Networks MAC is the part of the underlying network MAC is used on the LAN What is the addressing mechanism in WAN? WAN is

More information

2.1.2.2.2 Variable length subnetting

2.1.2.2.2 Variable length subnetting 2.1.2.2.2 Variable length subnetting Variable length subnetting or variable length subnet masks (VLSM) allocated subnets within the same network can use different subnet masks. Advantage: conserves the

More information

Scaling the Network: Subnetting and Other Protocols. Networking CS 3470, Section 1

Scaling the Network: Subnetting and Other Protocols. Networking CS 3470, Section 1 Scaling the Network: Subnetting and Other Protocols Networking CS 3470, Section 1 Today CIDR Subnetting Private IP addresses ICMP, IMAP, and DHCP Protocols 2 Packet Encapsulation ** Creative Commons: http://en.wikipedia.org/wiki/file:udp_encapsulation.svg

More information

Internetworking and IP Address

Internetworking and IP Address Lecture 8 Internetworking and IP Address Motivation of Internetworking Internet Architecture and Router Internet TCP/IP Reference Model and Protocols IP Addresses - Binary and Dotted Decimal IP Address

More information

1. How many unique network IDs are there in class A addresses? # of unique hosts?

1. How many unique network IDs are there in class A addresses? # of unique hosts? CS445: IPv4 Addresses In-class activity Names: Part 1: Address Classes Original three classes of IPv4 addresses: A: 0 network (7 bits) host (24 bits) B: 10 network (14 bits) host (16 bits) C: 110 network

More information

We Are HERE! Subne\ng

We Are HERE! Subne\ng TELE 302 Network Design Lecture 21 Addressing Strategies Source: McCabe 12.1 ~ 12.4 Jeremiah Deng TELE Programme, University of Otago, 2013 We Are HERE! Requirements analysis Flow Analysis Logical Design

More information

ICS 351: Today's plan

ICS 351: Today's plan ICS 351: Today's plan Quiz, on overall Internet function, linux and IOS commands, network monitoring, protocols IPv4 addresses: network part and host part address masks IP interface configuration IPv6

More information

Computer Networks. Introduc)on to Naming, Addressing, and Rou)ng. Week 09. College of Information Science and Engineering Ritsumeikan University

Computer Networks. Introduc)on to Naming, Addressing, and Rou)ng. Week 09. College of Information Science and Engineering Ritsumeikan University Computer Networks Introduc)on to Naming, Addressing, and Rou)ng Week 09 College of Information Science and Engineering Ritsumeikan University MAC Addresses l MAC address is intended to be a unique identifier

More information

IP addressing. Interface: Connection between host, router and physical link. IP address: 32-bit identifier for host, router interface

IP addressing. Interface: Connection between host, router and physical link. IP address: 32-bit identifier for host, router interface IP addressing IP address: 32-bit identifier for host, router interface Interface: Connection between host, router and physical link routers typically have multiple interfaces host may have multiple interfaces

More information

Networking Basics. Version: 447. Copyright 2007-2010 ImageStream Internet Solutions, Inc., All rights Reserved.

Networking Basics. Version: 447. Copyright 2007-2010 ImageStream Internet Solutions, Inc., All rights Reserved. Version: 447 Copyright 2007-2010 ImageStream Internet Solutions, Inc., All rights Reserved. Table of Contents Networking Basics...1 Networking Basics...1 Introduction...1 Network Addressing...1 IP Addressing...1

More information

Module 6. Internetworking. Version 2 CSE IIT, Kharagpur

Module 6. Internetworking. Version 2 CSE IIT, Kharagpur Module 6 Internetworking Lesson 2 Internet Protocol (IP) Specific Instructional Objectives At the end of this lesson, the students will be able to: Explain the relationship between TCP/IP and OSI model

More information

IP Addressing. and Routing. Prepared by : Swapan Purkait Director. Nettech Private Ltd. swapan@nettech.in + 91 93315 90003

IP Addressing. and Routing. Prepared by : Swapan Purkait Director. Nettech Private Ltd. swapan@nettech.in + 91 93315 90003 For Summer Training on Computer Networking visit IP Addressing Prepared by : Swapan Purkait Director Nettech Private Limited swapan@nettech.in + 91 93315 90003 and Routing IP Addresses Basic IP Addressing

More information

Lecture 15. IP address space managed by Internet Assigned Numbers Authority (IANA)

Lecture 15. IP address space managed by Internet Assigned Numbers Authority (IANA) Lecture 15 IP Address Each host and router on the Internet has an IP address, which consist of a combination of network number and host number. The combination is unique; no two machines have the same

More information

2. IP Networks, IP Hosts and IP Ports

2. IP Networks, IP Hosts and IP Ports 1. Introduction to IP... 1 2. IP Networks, IP Hosts and IP Ports... 1 3. IP Packet Structure... 2 4. IP Address Structure... 2 Network Portion... 2 Host Portion... 3 Global vs. Private IP Addresses...3

More information

IP address format: Dotted decimal notation: 10000000 00001011 00000011 00011111 128.11.3.31

IP address format: Dotted decimal notation: 10000000 00001011 00000011 00011111 128.11.3.31 IP address format: 7 24 Class A 0 Network ID Host ID 14 16 Class B 1 0 Network ID Host ID 21 8 Class C 1 1 0 Network ID Host ID 28 Class D 1 1 1 0 Multicast Address Dotted decimal notation: 10000000 00001011

More information

RARP: Reverse Address Resolution Protocol

RARP: Reverse Address Resolution Protocol SFWR 4C03: Computer Networks and Computer Security January 19-22 2004 Lecturer: Kartik Krishnan Lectures 7-9 RARP: Reverse Address Resolution Protocol When a system with a local disk is bootstrapped it

More information

Internet Protocol version 4 Part I

Internet Protocol version 4 Part I Internet Protocol version 4 Part I Claudio Cicconetti International Master on Information Technology International Master on Communication Networks Engineering Table of Contents

More information

CCNA R&S: Introduction to Networks. Chapter 9: Subnetting IP Networks

CCNA R&S: Introduction to Networks. Chapter 9: Subnetting IP Networks CCNA R&S: Introduction to Networks Chapter 9: Subnetting IP Networks Frank Schneemann Chapter 9: Subnetting IP Networks Subnetting IP Networks In this chapter, you will be learning how devices can be grouped

More information

SUBNETS, CIDR, AND CLASSLESS ADDRESSING

SUBNETS, CIDR, AND CLASSLESS ADDRESSING Announcements SUBNETS, CIDR, AND CLASSLESS ADDRESSING Internet Protocols CSC / ECE 573 Fall, 005 No office hours tomorrow (Wednesday) out of town No class on Thursday Fall break! Midterm exam next Tuesday!

More information

Introduction to IP v6

Introduction to IP v6 IP v 1-3: defined and replaced Introduction to IP v6 IP v4 - current version; 20 years old IP v5 - streams protocol IP v6 - replacement for IP v4 During developments it was called IPng - Next Generation

More information

The notation w.x.y.z is used when referring to a generalized IP address and shown in Figure 3.

The notation w.x.y.z is used when referring to a generalized IP address and shown in Figure 3. IP Addressing Each TCP/IP host is identified by a logical IP address. The IP address is a network layer address and has no dependence on the data link layer address (such as a MAC address of a network

More information

COMP 631: COMPUTER NETWORKS. IP Addressing. Jasleen Kaur. Fall 2014. How to Deal With Heterogeneity & Scale?

COMP 631: COMPUTER NETWORKS. IP Addressing. Jasleen Kaur. Fall 2014. How to Deal With Heterogeneity & Scale? COMP 631: COMPUTER NETWORKS IP Addressing Jasleen Kaur Fall 2014 1 How to Deal With Heterogeneity & Scale? Requirements from IP addressing: Should be globally unique Should facilitate easy mapping to link-layer

More information

Chapter 4 IP Addresses: Classful Addressing

Chapter 4 IP Addresses: Classful Addressing Chapter 4 IP Addresses: Classful Addressing CONTENTS INTRODUCTION CLASSFUL ADDRESSING OTHER ISSUES A SAMPLE INTERNET 4.1 INTRODUCTION An IP address is a 32-bit address. The IP addresses are unique. Address

More information

Interconnection of Heterogeneous Networks. Internetworking. Service model. Addressing Address mapping Automatic host configuration

Interconnection of Heterogeneous Networks. Internetworking. Service model. Addressing Address mapping Automatic host configuration Interconnection of Heterogeneous Networks Internetworking Service model Addressing Address mapping Automatic host configuration Wireless LAN network@home outer Ethernet PPS Internet-Praktikum Internetworking

More information

TCP/IP Addressing and Subnetting. an excerpt from: A Technical Introduction to TCP/IP Internals. Presentation Copyright 1995 TGV Software, Inc.

TCP/IP Addressing and Subnetting. an excerpt from: A Technical Introduction to TCP/IP Internals. Presentation Copyright 1995 TGV Software, Inc. TCP/IP Addressing and Subnetting an excerpt from: A Technical Introduction to TCP/IP Internals Presentation Copyright 1995 TGV Software, Inc. IP Addressing Roadmap Format of IP Addresses Traditional Class

More information

IP Subnetting. Subnetting

IP Subnetting. Subnetting IP Subnetting Shailesh N. Sisat Prajkta S. Bhopale Vishwajit K. Barbudhe Abstract - Network management becomes more and more important as computer-networks grow steadily. A critical skill for any network

More information

Implementing IP Addressing Services

Implementing IP Addressing Services Implementing IP Addressing Services Accessing the WAN Chapter 7 Version 4.0 2006 Cisco Systems, Inc. All rights reserved. Cisco Public 1 Objectives Configure DHCP in an enterprise branch network Configure

More information

256 4 = 4,294,967,296 ten billion. 256 16 = 18,446,744,073,709,551,616 ten quintillion. IP Addressing. IPv4 Address Classes

256 4 = 4,294,967,296 ten billion. 256 16 = 18,446,744,073,709,551,616 ten quintillion. IP Addressing. IPv4 Address Classes IP Addressing With the exception of multicast addresses, Internet addresses consist of a network portion and a host portion. The network portion identifies a logical network to which the address refers,

More information

Lecture 8. IP Fundamentals

Lecture 8. IP Fundamentals Lecture 8. Internet Network Layer: IP Fundamentals Outline Layer 3 functionalities Internet Protocol (IP) characteristics IP packet (first look) IP addresses Routing tables: how to use ARP Layer 3 functionalities

More information

Guide to TCP/IP, Third Edition. Chapter 2: IP Addressing and Related Topics

Guide to TCP/IP, Third Edition. Chapter 2: IP Addressing and Related Topics Guide to TCP/IP, Third Edition Chapter 2: IP Addressing and Related Topics Objectives Understand IP addressing, anatomy and structures, and addresses from a computer s point of view Recognize and describe

More information

CS 348: Computer Networks. - IP addressing; 21 st Aug 2012. Instructor: Sridhar Iyer IIT Bombay

CS 348: Computer Networks. - IP addressing; 21 st Aug 2012. Instructor: Sridhar Iyer IIT Bombay CS 348: Computer Networks - IP addressing; 21 st Aug 2012 Instructor: Sridhar Iyer IIT Bombay Think-Pair-Share: IP addressing What is the need for IP addresses? Why not have only MAC addresses? Given that

More information

You can probably work with decimal. binary numbers needed by the. Working with binary numbers is time- consuming & error-prone.

You can probably work with decimal. binary numbers needed by the. Working with binary numbers is time- consuming & error-prone. IP Addressing & Subnetting Made Easy Working with IP Addresses Introduction You can probably work with decimal numbers much easier than with the binary numbers needed by the computer. Working with binary

More information

Module 2: Assigning IP Addresses in a Multiple Subnet Network

Module 2: Assigning IP Addresses in a Multiple Subnet Network Module 2: Assigning IP Addresses in a Multiple Subnet Network Contents Overview 1 Lesson: Assigning IP Addresses 2 Lesson: Creating a Subnet 19 Lesson: Using IP Routing Tables 29 Lesson: Overcoming Limitations

More information

TCP/IP works on 3 types of services (cont.): TCP/IP protocols are divided into three categories:

TCP/IP works on 3 types of services (cont.): TCP/IP protocols are divided into three categories: Due to the number of hardware possibilities for a network, there must be a set of rules for how data should be transmitted across the connection media. A protocol defines how the network devices and computers

More information

Topics. Subnetting. The Basics of Subnetting Subnet Mask Computing subnets and hosts Subnet Routing Creating a Subnet Example of Subnetting 1/37

Topics. Subnetting. The Basics of Subnetting Subnet Mask Computing subnets and hosts Subnet Routing Creating a Subnet Example of Subnetting 1/37 1/37 Subnetting Surasak Sanguanpong nguan@ku.ac.th http://www.cpe.ku.ac.th/~nguan Last updated: 27 June 2002 Topics 2/37 The Basics of Subnetting Subnet Mask Computing subnets and hosts Subnet Routing

More information

Network Basics GRAPHISOFT. for connecting to a BIM Server. 2009 (version 1.0)

Network Basics GRAPHISOFT. for connecting to a BIM Server. 2009 (version 1.0) for connecting to a BIM Server GRAPHISOFT 2009 (version 1.0) Basic Vocabulary...3 Local Area Networks...5 Examples of Local Area Networks...5 Example 1: LAN of two computers without any other network devices...5

More information

Subnetting,Supernetting, VLSM & CIDR

Subnetting,Supernetting, VLSM & CIDR Subnetting,Supernetting, VLSM & CIDR WHAT - IP Address Unique 32 or 128 bit Binary, used to identify a system on a Network or Internet. Network Portion Host Portion CLASSFULL ADDRESSING IP address space

More information

Guide to Network Defense and Countermeasures Third Edition. Chapter 2 TCP/IP

Guide to Network Defense and Countermeasures Third Edition. Chapter 2 TCP/IP Guide to Network Defense and Countermeasures Third Edition Chapter 2 TCP/IP Objectives Explain the fundamentals of TCP/IP networking Describe IPv4 packet structure and explain packet fragmentation Describe

More information

Network layer: Overview. Network layer functions IP Routing and forwarding

Network layer: Overview. Network layer functions IP Routing and forwarding Network layer: Overview Network layer functions IP Routing and forwarding 1 Network layer functions Transport packet from sending to receiving hosts Network layer protocols in every host, router application

More information

Computer Networks By Bahaa Q. Al-Mussawi Subnetting Basics Reduced network traffic Optimized network performance Simplified management

Computer Networks By Bahaa Q. Al-Mussawi Subnetting Basics Reduced network traffic Optimized network performance Simplified management Subnetting Basics You learned previously how to define and find the valid host ranges used in a Class A, Class B, and Class C network address by turning the host bits all off and then all on. This is very

More information

Network and Host Addresses 1.3. 2003, Cisco Systems, Inc. All rights reserved. INTRO v1.0a 6-4

Network and Host Addresses 1.3. 2003, Cisco Systems, Inc. All rights reserved. INTRO v1.0a 6-4 IP Addressing To facilitate the routing of packets over a network, the TCP/IP protocol suite uses a 32-bit logical address known as an IP address. This topic introduces the components of an IP address.

More information

VLSM and CIDR Malin Bornhager Halmstad University

VLSM and CIDR Malin Bornhager Halmstad University VLSM and CIDR Malin Bornhager Halmstad University Session Number 2002, Svenska-CNAP Halmstad University 1 Objectives Classless routing VLSM Example of a VLSM calculation 2 Classless routing CIDR (Classless

More information

The Subnet Training Guide

The Subnet Training Guide The Subnet Training Guide A Step By Step Guide on Understanding and Solving Subnetting Problems by Brendan Choi v25 easysubnetcom The Subnet Training Guide v25 easysubnetcom Chapter 1 Understanding IP

More information

04 Internet Protocol (IP)

04 Internet Protocol (IP) SE 4C03 Winter 2007 04 Internet Protocol (IP) William M. Farmer Department of Computing and Software McMaster University 29 January 2007 Internet Protocol (IP) IP provides a connectionless packet delivery

More information

APPENDIX B. Routers route based on the network number. The router that delivers the data packet to the correct destination host uses the host ID.

APPENDIX B. Routers route based on the network number. The router that delivers the data packet to the correct destination host uses the host ID. APPENDIX B IP Subnetting IP Addressing Routers route based on the network number. The router that delivers the data packet to the correct destination host uses the host ID. IP Classes An IP address is

More information

Internet Working 5 th lecture. Chair of Communication Systems Department of Applied Sciences University of Freiburg 2004

Internet Working 5 th lecture. Chair of Communication Systems Department of Applied Sciences University of Freiburg 2004 5 th lecture Chair of Communication Systems Department of Applied Sciences University of Freiburg 2004 1 43 Last lecture Lecture room hopefully all got the message lecture on tuesday and thursday same

More information

Advanced IP Addressing

Advanced IP Addressing Advanced IP Addressing CS-765 A Aspects Of Systems Administration Spring-2005 Instructure: Jan Schauman Stevens Institute Of Technology, NJ. Prepared By: Modh, Jay A. M.S. NIS SID: 999-14-0352 Date: 05/02/2005

More information

Table of Contents. Cisco IP Addressing and Subnetting for New Users

Table of Contents. Cisco IP Addressing and Subnetting for New Users Table of Contents IP Addressing and Subnetting for New Users...1 Introduction...1 Before You Begin...1 Conventions...1 Prerequisites...1 Components Used...1 Additional Information...1 Understanding IP

More information

- IPv4 Addressing and Subnetting -

- IPv4 Addressing and Subnetting - 1 Hardware Addressing - IPv4 Addressing and Subnetting - A hardware address is used to uniquely identify a host within a local network. Hardware addressing is a function of the Data-Link layer of the OSI

More information

1 Data information is sent onto the network cable using which of the following? A Communication protocol B Data packet

1 Data information is sent onto the network cable using which of the following? A Communication protocol B Data packet Review questions 1 Data information is sent onto the network cable using which of the following? A Communication protocol B Data packet C Media access method D Packages 2 To which TCP/IP architecture layer

More information

CLASSFUL IPv4 ADDRESSES + DATAGRAM FORWARDING

CLASSFUL IPv4 ADDRESSES + DATAGRAM FORWARDING Today s Lecture CLASSFUL IPv4 ADDRESSES + DATAGRAM FORWARDING Internet Protocols CSC / ECE 573 Fall, 005 N. C. State University I. IPv4 Addresses II. Address Classes III. Special Case Addresses IV. Forwarding

More information

Chapter 5: Sample Questions, Problems and Solutions Bölüm 5: Örnek Sorular, Problemler ve Çözümleri Örnek Sorular (Sample Questions):

Chapter 5: Sample Questions, Problems and Solutions Bölüm 5: Örnek Sorular, Problemler ve Çözümleri Örnek Sorular (Sample Questions): Chapter 5: Sample Questions, Problems and Solutions Bölüm 5: Örnek Sorular, Problemler ve Çözümleri Örnek Sorular (Sample Questions): What is Store-and-Forward packet switching? What is a connectionless

More information

ADDRESSING 101 ==================================================== A name is a unique human-understandable identifier.

ADDRESSING 101 ==================================================== A name is a unique human-understandable identifier. ADDRESSING 101 1. What is in an address? An address is a unique computer-understandable identifier. Uniqueness is defined in a domain outside that domain, to retain uniqueness, one needs to have either

More information

Migrating to an IPv6 Internet while preserving IPv4 addresses

Migrating to an IPv6 Internet while preserving IPv4 addresses A Silicon Valley Insider Migrating to an IPv6 Internet while preserving IPv4 addresses Technology White Paper Serge-Paul Carrasco Abstract The Internet is running out of addresses! Depending on how long

More information

Transport and Network Layer

Transport and Network Layer Transport and Network Layer 1 Introduction Responsible for moving messages from end-to-end in a network Closely tied together TCP/IP: most commonly used protocol o Used in Internet o Compatible with a

More information

http://computernetworkingnotes.com/ccna-study-guide/basic-of-network-addressing.html

http://computernetworkingnotes.com/ccna-study-guide/basic-of-network-addressing.html Subnetting is a process of dividing large network into the smaller networks based on layer 3 IP address. Every computer on network has an IP address that represent its location on network. Two version

More information

Lecture Computer Networks

Lecture Computer Networks Prof. Dr. H. P. Großmann mit M. Rabel sowie H. Hutschenreiter und T. Nau Sommersemester 2012 Institut für Organisation und Management von Informationssystemen Thomas Nau, kiz Lecture Computer Networks

More information

Technical Support Information Belkin internal use only

Technical Support Information Belkin internal use only The fundamentals of TCP/IP networking TCP/IP (Transmission Control Protocol / Internet Protocols) is a set of networking protocols that is used for communication on the Internet and on many other networks.

More information

Expert Reference Series of White Papers. Binary and IP Address Basics of Subnetting

Expert Reference Series of White Papers. Binary and IP Address Basics of Subnetting Expert Reference Series of White Papers Binary and IP Address Basics of Subnetting 1-800-COURSES www.globalknowledge.com Binary and IP Address Basics of Subnetting Alan Thomas, CCNA, CCSI, Global Knowledge

More information

NETW 110 Lab 04 Handout - Subnetting IP Addresses

NETW 110 Lab 04 Handout - Subnetting IP Addresses Primary Address Classes In order to provide the flexibility required to support different size networks, the designers decided that the IP address space should be divided into three different address classes

More information

Mobile IP. Bheemarjuna Reddy Tamma IIT Hyderabad. Source: Slides of Charlie Perkins and Geert Heijenk on Mobile IP

Mobile IP. Bheemarjuna Reddy Tamma IIT Hyderabad. Source: Slides of Charlie Perkins and Geert Heijenk on Mobile IP Mobile IP Bheemarjuna Reddy Tamma IIT Hyderabad Source: Slides of Charlie Perkins and Geert Heijenk on Mobile IP IP Refresher Mobile IP Basics 3 parts of Mobile IP: Outline Advertising Care-of Addresses

More information

Introduction. Internet Address Depletion and CIDR. Introduction. Introduction

Introduction. Internet Address Depletion and CIDR. Introduction. Introduction Introduction Internet Address Depletion and A subnet is a subset of class A, B, or C networks IP addresses are formed of a network and host portions network mask used to separate the information Introduction

More information

IP Addressing and Subnetting for New Users

IP Addressing and Subnetting for New Users IP Addressing and Subnetting for New Users Document ID: 13788 Contents Introduction Prerequisites Requirements Components Used Additional Information Conventions Understanding IP Addresses Network Masks

More information

IP Address. Heng Sovannarith

IP Address. Heng Sovannarith IP Address Heng Sovannarith heng_sovannarith@yahoo.com Introduction An IP (Internet Protocol) address is a unique identifier for a node or host connection on an IP network. Every machine on the Internet

More information

2. What is the maximum value of each octet in an IP address? A. 28 B. 255 C. 256 D. None of the above

2. What is the maximum value of each octet in an IP address? A. 28 B. 255 C. 256 D. None of the above CCNA1 V3.0 Mod 10 (Ch 8) 1. How many bits are in an IP C. 64 2. What is the maximum value of each octet in an IP A. 28 55 C. 256 3. The network number plays what part in an IP A. It specifies the network

More information