Chapter 7. Local Area Network Communications Protocols

Size: px
Start display at page:

Download "Chapter 7. Local Area Network Communications Protocols"

Transcription

1 Chapter 7 Local Area Network Communications Protocols

2 IP Version 4 The most commonly used network layer protocol is IP, or the Internet Protocol. As its name would indicate, IP is the protocol used on the World Wide Web (WWW). All WWW browsing, exchanging, and media streaming on the Internet is carried by IP. The Internet Protocol was the first packet switched protocol The version of IP most currently used is version four, or IPv4. However, as IP continues to gain acceptance and the size and traffic levels on the Internet continue to grow, IPv4 is hitting its limits an updated version of IP: IPv6, also known as IPng (for Next Generation) was developed

3 IP Addressing Rather than breaking the segment and host portions of the network layer address into separate units, as was done in IPX, IP combines IPv4 addresses are 32 bits long and are represented as a sequence of four octets. Each octet is a decimal representation of an 8-bit section of the overall IP address. In Figure 7-20, each 8-bit section of the overall IP address is converted to its decimal value and separated by a period. This is commonly referred to as a dotted decimal approach to representing IP addresses the two into a single hierarchical IP address

4 The IP Address Figure 7-20: IPv4 addresses are 32 bits long and are represented as a sequence of four octets. Each octet is a decimal representation of an 8-bit section of the overall IP address

5 IP Address Classes Because the IP address contains both the network segment and host addresses, there must be a means of differentiating which bits belong to which each part. The original IPv4 specification provided this differentiation through the use of address classes. There are three basic address classes used for addressing normal network hosts that vary in the number of hosts that can be located on the network segment. The relatively few Class A networks support the largest number of hosts, Class B networks offer more segments of fewer hosts and Class C networks offer many segments of relatively few hosts.

6 As illustrated in Figure 7-21, these classfull addresses are broken apart on octet boundaries In addition to these basic address classes, two additional classes, class D and class E, can be used for IPv4 addressing. Class D addresses are reserved for multicast systems such as routers, while Class E addresses are reserved for future use. As shown in Figure 7-21, the class of an address can be identified by examining the first few bits of the address

7 IPv4 Class Addressing IP addresses contain both the network segment and host addresses. The original IPv4 specification provided the ability to differentiate segment and host addresses through the use of address classes.

8 The assignment of address classes and network ID ranges to a particular organization wishing to connect to the Internet is the responsibility of the Internet Activities Board (IAB) If an organization has no intention of ever accessing the Internet, then there may not be a need to register with the IAB for an IP address class and range of valid network IDs. However, even in this case, all workstations on all communicating networks must have IP addresses unique within the internal corporate network

9 Subnetworking One of the strengths of the IP protocol is its ability to support network subnetworking An organization with only ten hosts that needs to be on the Internet must be given at least a class C network. The unused addresses cannot be used elsewhere on the Internet and are wasted. This problem is compounded if the organization has three locations that each need ten hosts. In a true classfull addressing scheme the organization would require at least three class C networks be assigned even though there are theoretically enough addresses in a single class C network to meet their needs

10 Ideally, there would be a way to take the address space available in a classfull network and break it into multiple subnetworks that each contain a limited number of hosts. For instance, a given organization could be issued a single class B network ID address with its associated 65,534 host IDs. This host section could be broken into multiple subnetworks (or subnets) and be distributed across multiple, geographically distributed locations

11 The solution to the above dilemma is subnetworking. By applying a 32 bit subnet mask to their assigned Class B IP address, a portion of the bits which make up the host ID can be reserved for denoting subnetworks, with the remaining bits being reserved for host IDs per subnetwork. If the first 8 bits of the host ID were reserved for subnetwork addresses and the final 8 bits of the host ID were reserved for hosts per subnetwork, this would allow the same class B address to yield 254 subnetworks with 254 hosts each, as opposed to one network with 65,534 hosts.

12 Figure 7-22 provides examples of subnet masks. The overall effect of subnetworking is to create multiple network segments within the address space given by the IAB Subnetworking allows multiple network segments to be created within a single IP network address space. By creating such subnetworks, routing is also easily extended. From the perspective of a host outside the network, all hosts on any of the subnetworks appear to be on the original single network. Therefore these hosts simply route the packets to the gateway router for the network regardless of the actual destination subnetwork.

13 The gateway router is configured to understand the subnetworking method used and routes the packets across the subnetworks to their intended destination

14 Routing with Subnetting The gateway router accepts all packets destined for the 10.x.x.x network and routes them based on class B subnet working where the second octet has been made part of the network address rather than part of the host address.

15 Subnet Masks As previously mentioned, an IP address contains both a segment address and a host address for a host, with the first X bits representing the segment address and the remaining 32-X bits representing the host address. As long as addresses are used in a classfull manner, the location of the split between the segment address and the host address can be determined by the first few bits of the IP address

16 However, when a classfull network segment is subnetworked, this is no longer possible. The segment address becomes the original network address plus the sub-network address, with the remaining bits used for the host address. Because there is no way of knowing if an address has been subnetworked or how many bits have been stolen from the original host section to create subnetworks, there is no way to know exactly how many bits are used for each merely by looking at the IP address.

17 This problem is illustrated in Figure To resolve this problem there must be a way of identifying which bits are used for each portion of the overall address. This is accomplished via a subnet mask. Asubnet mask is a 32-bit binary sequence that divides the IP address by using a 1 to indicate that the corresponding position in the IP address is part of the segment address and by using a 0 to indicate that the corresponding portion in the IP address is part of the host address. Because the segment address is the first x bits and the host address is the remaining bits, a subnet mask will always consist of x ones followed by 32-x zeros.

18 The effect of using varying subnet masks on an IP address is shown in Figure Just like IP addresses, subnet masks are usually referred to in dotted decimal forma

19 IP Segment Address vs. Host Address Fig: There must be a way of identifying which bits are used for each portion of the overall address. This is accomplished via a subnet mask

20 Use of Subnet Masks Fig 7-24: A subnet mask is a 32-bit binary sequence that divides the IP address by using a 1 to indicate that the corresponding position is part of the segment address and by using a 0 to indicate that the corresponding portion is part of the host address

21 Special Host Addresses Once an IP address had been divided into a segment address and a range of host addresses through the application of a subnet mask, the resulting IP addresses may be assigned to the hosts on the network segment. However there are two reserved host-section addresses that may not be assigned to a host the address that corresponds to all ones in the host section and the address that corresponds to all zeros in the host section. Using all ones in the host section of the IP address denotes the broadcast address for the segment. This address is used to send a single message to every host on the network segment.

22 All zeros in the host section of the IP address is the address of the network segment itself. This address is used by routers to refer to the network in their routing tables. For a class C network these addresses correspond to x.x.x.255 and x.x.x.0, respectively

23 Default Gateway (Router) For IP networks that consist of multiple network segments, each host must also be configured with a default gateway (sometime referred to as a gateway of last resort). The default gateway address represents a router that should be used to route packets on remote network segments

24 So

25 The routing prefix is expressed in CIDR notation. It is written as the first address of a network followed by the bit-length of the prefix, separated by a slash (/) character. For example, /24 is the prefix of the Internet Protocol Version 4 network starting at the given address, having 24 bits allocated for the network prefix, and the remaining 8 bits reserved for host addressing In IPv4 the routing prefix is also specified in the form of the subnet mask, which is expressed in quad-dotted decimal representation like an address. For example, is the network mask for the /24 prefix

26 The routing prefix of an address is written in a form identical to that of the address itself. This is called the network mask, or netmask, of the address. For example, a specification of the most-significant 18 bits of an IPv4 address, , is written as If this mask designates a subnet within a larger network, it is also called the subnet mask The modern standard form of specification of the network prefix, used for both IPv4 and IPv6, counts the number of bits in the prefix and appends that number to the address with a slash (/) separator: , netmask is written as /16

27 The process of subnetting involves the separation of the network and subnet portion of an address from the host identifier. This is performed by a bitwise AND operation between the IP address and the (sub)network prefix. The result yields the network address or prefix, and the remainder is the host identifier

28 the address specification /24 represents the given IPv4 address and its associated routing prefix , or equivalently, its subnet mask The IPv4 block /22 represents the 1024 IPv4 addresses from to The number of addresses of a subnet defined by the mask or prefix can be calculated as 2 address size - mask, in which the address size for IPv6 is 128 and 32 for IPv4. For example, in IPv4, a mask of /29 gives: = 2 3 = 8 addresses

29 The mathematical operation for calculating the network prefix is the binary and. The result of the operation yields the network prefix and the host number 130 of a possible maximum of 256 addresses Determining the network prefix The following example shows the separation of the network prefix and the host identifier from an address ( ) and its associated /24 network mask ( ). The operation is visualized in a table using binary address formats

30 Subnetting Subnetting is the process of designating some high-order bits from the host part and grouping them with the network mask to form the subnet mask. This divides a network into smaller subnets. The following diagram modifies the example by moving 2 bits from the host part to the subnet mask to form a smaller subnet one fourth the previous size:

31 The subnet mask is the network address plus the bits reserved for identifying the subnetwork. (By convention, the bits for the network address are all set to 1, though it would also work if the bits were set exactly as in the network address.) In this case, therefore, the subnet mask would be It's called a mask because it can be used to identify the subnet to which an IP address belongs by performing a bitwise AND operation on the mask and the IP address

32 Subnet and host counts The number of subnetworks available, and the number of possible hosts in a network may be readily calculated. In the example (above) two bits were borrowed to create subnetworks, thus creating 4 (22) possible subnets

33

34 Packet Construction IP packets have a minimum length of 576 bytes and a maximum length of 64K bytes. Depending on the underlying layer two protocol(s) used to deliver the packet, an IP packet may be broken into smaller packet fragments as described earlier in this chapter. As shown in Figure 7-26, the IP header can be either 20 or 24 bytes long, resulting in an effective data payload of 552 to 65,516 bytes. Packets are sent with the bits transmitted in network byte order (from left to right). The IPv4 packet layout is illustrated in Figure 7-26

35 IPv4 Packet

36 Private Addressing and Network Address Translation One way to cope with the rapid depletion of IP addresses is through the use of private addressing However, traffic that remains only on an organization s private network does not need to be globally unique. It only needs to be unique across that organization s private network Three ranges of private IP addresses:

37 Traffic using any of the above address ranges must remain on the organization s private network. Since anyone is welcome to use these address ranges, they are not globally unique and therefore cannot be used on the Internet. Computers on a network using the Private IP address space can still send and receive traffic to/from the Internet by using network address translation (NAT). There are two basic types of NAT Static NAT and dynamic NAT with dynamic NAT the most commonly implemented

38 Regardless of the approach used, NAT is provided by a router (such as Internet gateway devices from Linksys and D-Link among others) A static NAT (SNAT) solution has multiple public IP addresses defined on the external NIC on the NAT server. The server then statically binds a public address with a private address from the internal network. The SNAT process is shown in Figure 7-28.

39 Static Network Address Translation

40 Dynamic Network Address Translation

41 Dynamic NAT (DNAT), also known as Port Address Translation, takes the concept of NAT further by allowing a single public address to serve multiple private addresses. This is accomplished by translating port numbers as well as source addresses. As shown in Figure 7-29, the DNAT process consists of the following steps:

42 1. Outbound traffic from the internal host is sent to the NAT box. 2. The source address is translated from the private address of the internal host to the public address of the NAT box. 3. The source port number is changed from its original value to a value that represents the internal host. 4. The NAT box makes a table in which ports are assigned to each internal address. 5. The packet is forwarded to the original destination

43 ICMP: Internet Control Message Protocol The Internet Control Message Protocol (ICMP) delivers a variety of error status and control messages related to the ability of IP to deliver its encapsulated payloads. ICMP uses IP as a transport mechanism and is able to deliver a variety of error and control messages through the use of type and code fields as illustrated in Figure 7-30

44 ICMP Protocol Layout ICMP delivers a variety of error status and control messages related to the ability of IP to deliver its encapsulated payloads The most common use of ICMP from the user s perspective checking for network connectivity between two hosts.

45 Transport Layer Protocols The remaining OSI session, presentation, and application layer functionality are implemented by Internet application layer protocols

46 UDP User Datagram Protocol The User Datagram Protocol (UDP) is used to provide unreliable, connectionless messaging services for applications. The header has two main purposes: It allows UDP to keep track of which applications it is sending a datagram to and from through the use of port addresses. It passes those messages along to IP for subsequent delivery. Because UDP does not provide reliable connection-oriented services, the UDP packet header is small. UDP uses only an 8-byte header as illustrated in Figure 7-32

47 UDP Header Layout User Datagram Protocol (UDP) is used to provide unreliable, connectionless messaging services for applications.

48 Due to the small size of UDP packet headers and the fact that they require no acknowledgments from the receiving host, UDP is the perfect transport/session layer protocol for delivering streaming media packets

49 TCP Transmission Control Protocol The majority of network traffic requires a more reliable connection than UDP offers. To provide connection-oriented, reliable data transmission, the Transmission Control Protocol (TCP) is the transport/session layer protocol of choice. Reliability is assured through the additional fields contained within the TCP header that offer flow control, acknowledgments of successful receipt of packets after error checking, retransmission of packets as required, and proper sequencing of packets.

50 The fact that TCP is considered connection-oriented implies that a point-to-point connection between source and destination computers must be established before transmission can begin and that the connection will be torn down after transmission has concluded. This is accomplished through the use of TCP flags. When an originating host needs to establish a connection with another host, it sends a TCP packet containing an SYN flag and a sequence number to the destination. This sequence number is used as the starting point for the stream of TCP packets from the source to the destination.

51 TCP Header Layout Reliability is assured through the additional fields contained within the TCP header that offer flow control, acknowledgments of successful receipt of packets after error checking, retransmission of packets as required, and proper sequencing of packets

52 When the destination host receives the initial SYN packet, it responds by sending an ACK of the SYN packet s sequence number with a SYN packet and sequence number to establish the return half of the connection. The originating host then sends an ACK to the destination host s SYN packet and the connection is established. Subsequent packets in each direction increment the sequence numbers. When communication is complete the originating host sends an FIN flag to the destination and tears down the connection. This process is illustrated in Figure 7-34

53 Connection Creation & Tear Down A point-to-point connection between source and destination computers is established before transmission begins The connection is torn down after transmission has concluded

54 UDP and TCP Port Numbers UDP and TCP provide session layer addressing through the use of ports. Ports are specific 16-bit addresses that are uniquely related to particular applications. Source port and destination port addresses are included in the UDP/TCP header

55 Automatic IP Address Assignment Each host on an IP-based network must have a unique IP address. Traditionally, these addresses were statically assigned to each host through an interactive process. Although this is an effective manner to assign IP addresses, it does represent some problems: Someone must serve as the central authority to ensure that each host has a unique IP address. From a practical perspective it makes sense to have the DNS administrator perform this task as they keep track of all IP addresses while managing the DNS tables. When the IP address of a host is changed, it requires administrator intervention in assigning a new IP address.

56 To resolve these issues services have been developed to automatically assign IP addresses to network hosts: DHCP Dynamic Host Control Protocol (DHCP) the Dynamic Host Configuration Protocol allows special servers to dynamically assign TCP/IP addresses to hosts. A DHCP server references a database of available IP addresses and can dynamically assign available addresses to requesting clients.

57 IP addresses issued by DHCP are leased, rather than being permanently assigned. The length of time that IP addresses can be kept by DHCP clients is known as the lease duration. Dial-in users are typically assigned an IP address only for the duration of their call

Networking Test 4 Study Guide

Networking Test 4 Study Guide Networking Test 4 Study Guide True/False Indicate whether the statement is true or false. 1. IPX/SPX is considered the protocol suite of the Internet, and it is the most widely used protocol suite in LANs.

More information

IP Addressing A Simplified Tutorial

IP Addressing A Simplified Tutorial Application Note IP Addressing A Simplified Tutorial July 2002 COMPAS ID 92962 Avaya Labs 1 All information in this document is subject to change without notice. Although the information is believed to

More information

OSI Network Layer OSI Layer 3

OSI Network Layer OSI Layer 3 OSI Network Layer OSI Layer 3 Network Fundamentals Chapter 5 ١ Objectives Identify the role of the Network Layer, as it describes communication from one end device to another end device Examine the most

More information

Guide to Network Defense and Countermeasures Third Edition. Chapter 2 TCP/IP

Guide to Network Defense and Countermeasures Third Edition. Chapter 2 TCP/IP Guide to Network Defense and Countermeasures Third Edition Chapter 2 TCP/IP Objectives Explain the fundamentals of TCP/IP networking Describe IPv4 packet structure and explain packet fragmentation Describe

More information

Module 6. Internetworking. Version 2 CSE IIT, Kharagpur

Module 6. Internetworking. Version 2 CSE IIT, Kharagpur Module 6 Internetworking Lesson 2 Internet Protocol (IP) Specific Instructional Objectives At the end of this lesson, the students will be able to: Explain the relationship between TCP/IP and OSI model

More information

IP Subnetting and Addressing

IP Subnetting and Addressing Indian Institute of Technology Kharagpur IP Subnetting and Addressing Prof Indranil Sengupta Computer Science and Engineering Indian Institute of Technology Kharagpur Lecture 6: IP Subnetting and Addressing

More information

TCP/IP Basis. OSI Model

TCP/IP Basis. OSI Model TCP/IP Basis 高 雄 大 學 資 訊 工 程 學 系 嚴 力 行 Source OSI Model Destination Application Presentation Session Transport Network Data-Link Physical ENCAPSULATION DATA SEGMENT PACKET FRAME BITS 0101010101010101010

More information

APPENDIX B. Routers route based on the network number. The router that delivers the data packet to the correct destination host uses the host ID.

APPENDIX B. Routers route based on the network number. The router that delivers the data packet to the correct destination host uses the host ID. APPENDIX B IP Subnetting IP Addressing Routers route based on the network number. The router that delivers the data packet to the correct destination host uses the host ID. IP Classes An IP address is

More information

(Refer Slide Time: 02:17)

(Refer Slide Time: 02:17) Internet Technology Prof. Indranil Sengupta Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur Lecture No #06 IP Subnetting and Addressing (Not audible: (00:46)) Now,

More information

PART IV. Network Layer

PART IV. Network Layer PART IV Network Layer Position of network layer Network layer duties Internetworking : heterogeneous Physical Networks To look Like a single network to he upper layers The address at Network layer must

More information

Lab 10.4.1 IP Addressing Overview

Lab 10.4.1 IP Addressing Overview Lab 10.4.1 IP ing Overview Estimated time: 30 min. Objectives: Background: This lab will focus on your ability to accomplish the following tasks: Name the five different classes of IP addresses Describe

More information

Introduction to IP v6

Introduction to IP v6 IP v 1-3: defined and replaced Introduction to IP v6 IP v4 - current version; 20 years old IP v5 - streams protocol IP v6 - replacement for IP v4 During developments it was called IPng - Next Generation

More information

CCNA Tutorial Series SUBNETTING

CCNA Tutorial Series SUBNETTING CCNA Tutorial Series This document contains the Course Map For The Interactive flash tutorial at: http://www.semsim.com/ccna/tutorial/subnetting/subnetting.html HOME PAGE Course Objectives Pre-test By

More information

http://computernetworkingnotes.com/ccna-study-guide/basic-of-network-addressing.html

http://computernetworkingnotes.com/ccna-study-guide/basic-of-network-addressing.html Subnetting is a process of dividing large network into the smaller networks based on layer 3 IP address. Every computer on network has an IP address that represent its location on network. Two version

More information

TCP/IP Concepts Review. A CEH Perspective

TCP/IP Concepts Review. A CEH Perspective TCP/IP Concepts Review A CEH Perspective 1 Objectives At the end of this unit, you will be able to: Describe the TCP/IP protocol stack For each level, explain roles and vulnerabilities Explain basic IP

More information

Lecture 15. IP address space managed by Internet Assigned Numbers Authority (IANA)

Lecture 15. IP address space managed by Internet Assigned Numbers Authority (IANA) Lecture 15 IP Address Each host and router on the Internet has an IP address, which consist of a combination of network number and host number. The combination is unique; no two machines have the same

More information

IP address format: Dotted decimal notation: 10000000 00001011 00000011 00011111 128.11.3.31

IP address format: Dotted decimal notation: 10000000 00001011 00000011 00011111 128.11.3.31 IP address format: 7 24 Class A 0 Network ID Host ID 14 16 Class B 1 0 Network ID Host ID 21 8 Class C 1 1 0 Network ID Host ID 28 Class D 1 1 1 0 Multicast Address Dotted decimal notation: 10000000 00001011

More information

IP Addressing Introductory material.

IP Addressing Introductory material. IP Addressing Introductory material. A module devoted to IP addresses. Addresses & Names Hardware (Layer 2) Lowest level Ethernet (MAC), Serial point-to-point,.. Network (Layer 3) IP IPX, SNA, others Transport

More information

Course Overview: Learn the essential skills needed to set up, configure, support, and troubleshoot your TCP/IP-based network.

Course Overview: Learn the essential skills needed to set up, configure, support, and troubleshoot your TCP/IP-based network. Course Name: TCP/IP Networking Course Overview: Learn the essential skills needed to set up, configure, support, and troubleshoot your TCP/IP-based network. TCP/IP is the globally accepted group of protocols

More information

1 Data information is sent onto the network cable using which of the following? A Communication protocol B Data packet

1 Data information is sent onto the network cable using which of the following? A Communication protocol B Data packet Review questions 1 Data information is sent onto the network cable using which of the following? A Communication protocol B Data packet C Media access method D Packages 2 To which TCP/IP architecture layer

More information

- IPv4 Addressing and Subnetting -

- IPv4 Addressing and Subnetting - 1 Hardware Addressing - IPv4 Addressing and Subnetting - A hardware address is used to uniquely identify a host within a local network. Hardware addressing is a function of the Data-Link layer of the OSI

More information

Ethernet. Ethernet. Network Devices

Ethernet. Ethernet. Network Devices Ethernet Babak Kia Adjunct Professor Boston University College of Engineering ENG SC757 - Advanced Microprocessor Design Ethernet Ethernet is a term used to refer to a diverse set of frame based networking

More information

You can probably work with decimal. binary numbers needed by the. Working with binary numbers is time- consuming & error-prone.

You can probably work with decimal. binary numbers needed by the. Working with binary numbers is time- consuming & error-prone. IP Addressing & Subnetting Made Easy Working with IP Addresses Introduction You can probably work with decimal numbers much easier than with the binary numbers needed by the computer. Working with binary

More information

DO NOT REPLICATE. Analyze IP. Given a Windows Server 2003 computer, you will use Network Monitor to view and analyze all the fields of IP.

DO NOT REPLICATE. Analyze IP. Given a Windows Server 2003 computer, you will use Network Monitor to view and analyze all the fields of IP. Advanced TCP/IP Overview There is one primary set of protocols that runs networks and the Internet today. In this lesson, you will work with those protocols: the Transmission Control Protocol (TCP) and

More information

2. IP Networks, IP Hosts and IP Ports

2. IP Networks, IP Hosts and IP Ports 1. Introduction to IP... 1 2. IP Networks, IP Hosts and IP Ports... 1 3. IP Packet Structure... 2 4. IP Address Structure... 2 Network Portion... 2 Host Portion... 3 Global vs. Private IP Addresses...3

More information

Lecture Computer Networks

Lecture Computer Networks Prof. Dr. H. P. Großmann mit M. Rabel sowie H. Hutschenreiter und T. Nau Sommersemester 2012 Institut für Organisation und Management von Informationssystemen Thomas Nau, kiz Lecture Computer Networks

More information

cnds@napier Slide 1 Introduction cnds@napier 1 Lecture 6 (Network Layer)

cnds@napier Slide 1 Introduction cnds@napier 1 Lecture 6 (Network Layer) Slide 1 Introduction In today s and next week s lecture we will cover two of the most important areas in networking and the Internet: IP and TCP. These cover the network and transport layer of the OSI

More information

Computer Networks. Lecture 3: IP Protocol. Marcin Bieńkowski. Institute of Computer Science University of Wrocław

Computer Networks. Lecture 3: IP Protocol. Marcin Bieńkowski. Institute of Computer Science University of Wrocław Computer Networks Lecture 3: IP Protocol Marcin Bieńkowski Institute of Computer Science University of Wrocław Computer networks (II UWr) Lecture 3 1 / 24 In previous lectures We learned about layer 1

More information

IP Addressing. -Internetworking (with TCP/IP) -Classful addressing -Subnetting and Supernetting -Classless addressing

IP Addressing. -Internetworking (with TCP/IP) -Classful addressing -Subnetting and Supernetting -Classless addressing IP Addressing -Internetworking (with TCP/IP) -Classful addressing -Subnetting and Supernetting -Classless addressing Internetworking The concept of internetworking: we need to make different networks communicate

More information

Lab 10.3.5a Basic Subnetting

Lab 10.3.5a Basic Subnetting Lab 10.3.5a Basic Subnetting Objective How to identify reasons to use a subnet mask How to distinguish between a default subnet mask and a custom subnet mask What given requirements determine the subnet

More information

The notation w.x.y.z is used when referring to a generalized IP address and shown in Figure 3.

The notation w.x.y.z is used when referring to a generalized IP address and shown in Figure 3. IP Addressing Each TCP/IP host is identified by a logical IP address. The IP address is a network layer address and has no dependence on the data link layer address (such as a MAC address of a network

More information

Chapter 3: Review of Important Networking Concepts. Magda El Zarki Dept. of CS UC Irvine elzarki@uci.edu http://www.ics.uci.

Chapter 3: Review of Important Networking Concepts. Magda El Zarki Dept. of CS UC Irvine elzarki@uci.edu http://www.ics.uci. Chapter 3: Review of Important Networking Concepts Magda El Zarki Dept. of CS UC Irvine elzarki@uci.edu http://www.ics.uci.edu/~magda 1 Networking Concepts Protocol Architecture Protocol Layers Encapsulation

More information

8.2 The Internet Protocol

8.2 The Internet Protocol TCP/IP Protocol Suite HTTP SMTP DNS RTP Distributed applications Reliable stream service TCP UDP User datagram service Best-effort connectionless packet transfer Network Interface 1 IP Network Interface

More information

Internet Protocol version 4 Part I

Internet Protocol version 4 Part I Internet Protocol version 4 Part I Claudio Cicconetti International Master on Information Technology International Master on Communication Networks Engineering Table of Contents

More information

RARP: Reverse Address Resolution Protocol

RARP: Reverse Address Resolution Protocol SFWR 4C03: Computer Networks and Computer Security January 19-22 2004 Lecturer: Kartik Krishnan Lectures 7-9 RARP: Reverse Address Resolution Protocol When a system with a local disk is bootstrapped it

More information

Expert Reference Series of White Papers. Basics of IP Address Subnetting

Expert Reference Series of White Papers. Basics of IP Address Subnetting Expert Reference Series of White Papers Basics of IP Address Subnetting 1-800-COURSES www.globalknowledge.com Basics of IP Address Subnetting Norbert Gregorio, Global Knowledge Instructor Introduction

More information

Savera Tanwir. Internet Protocol

Savera Tanwir. Internet Protocol Savera Tanwir Internet Protocol The IP Protocol The IPv4 (Internet Protocol) header. IP Packet Details Header and payload Header itself has a fixed part and variable part Version IPv4, IPv5 or IPv6 IHL,

More information

Computer Networks. Introduc)on to Naming, Addressing, and Rou)ng. Week 09. College of Information Science and Engineering Ritsumeikan University

Computer Networks. Introduc)on to Naming, Addressing, and Rou)ng. Week 09. College of Information Science and Engineering Ritsumeikan University Computer Networks Introduc)on to Naming, Addressing, and Rou)ng Week 09 College of Information Science and Engineering Ritsumeikan University MAC Addresses l MAC address is intended to be a unique identifier

More information

Expert Reference Series of White Papers. Binary and IP Address Basics of Subnetting

Expert Reference Series of White Papers. Binary and IP Address Basics of Subnetting Expert Reference Series of White Papers Binary and IP Address Basics of Subnetting 1-800-COURSES www.globalknowledge.com Binary and IP Address Basics of Subnetting Alan Thomas, CCNA, CCSI, Global Knowledge

More information

IP - The Internet Protocol

IP - The Internet Protocol Orientation IP - The Internet Protocol IP (Internet Protocol) is a Network Layer Protocol. IP s current version is Version 4 (IPv4). It is specified in RFC 891. TCP UDP Transport Layer ICMP IP IGMP Network

More information

IP Addressing. IP Addresses. Introductory material.

IP Addressing. IP Addresses. Introductory material. IP Addressing Introductory material. An entire module devoted to IP addresses. IP Addresses Structure of an IP address Classful IP addresses Limitations and problems with classful IP addresses Subnetting

More information

Networking Theory. Jeffrey Miller, Ph.D. CSCI 201L USC CSCI 201L

Networking Theory. Jeffrey Miller, Ph.D. CSCI 201L  USC CSCI 201L Networking Theory CSCI 201L Jeffrey Miller, Ph.D. HTTP://WWW-SCF.USC.EDU/~CSCI201 USC CSCI 201L Outline Networking Overview DNS IP Addressing Subnets DHCP Ports NAT Test Yourself USC CSCI 201L 2/24 Networking

More information

CE363 Data Communications & Networking. Chapter 6 Network Layer: Logical Addressing

CE363 Data Communications & Networking. Chapter 6 Network Layer: Logical Addressing CE363 Data Communications & Networking Chapter 6 Network Layer: Logical Addressing TCP/IP and OSI model APPLICATION APPLICATION PRESENTATION SESSION TRANSPORT NETWORK Host-Network TRANSPORT NETWORK DATA

More information

IP Network Layer. Datagram ID FLAG Fragment Offset. IP Datagrams. IP Addresses. IP Addresses. CSCE 515: Computer Network Programming TCP/IP

IP Network Layer. Datagram ID FLAG Fragment Offset. IP Datagrams. IP Addresses. IP Addresses. CSCE 515: Computer Network Programming TCP/IP CSCE 515: Computer Network Programming TCP/IP IP Network Layer Wenyuan Xu Department of Computer Science and Engineering University of South Carolina IP Datagrams IP is the network layer packet delivery

More information

Mobile IP Network Layer Lesson 02 TCP/IP Suite and IP Protocol

Mobile IP Network Layer Lesson 02 TCP/IP Suite and IP Protocol Mobile IP Network Layer Lesson 02 TCP/IP Suite and IP Protocol 1 TCP/IP protocol suite A suite of protocols for networking for the Internet Transmission control protocol (TCP) or User Datagram protocol

More information

Guide to TCP/IP, Third Edition. Chapter 3: Data Link and Network Layer TCP/IP Protocols

Guide to TCP/IP, Third Edition. Chapter 3: Data Link and Network Layer TCP/IP Protocols Guide to TCP/IP, Third Edition Chapter 3: Data Link and Network Layer TCP/IP Protocols Objectives Understand the role that data link protocols, such as SLIP and PPP, play for TCP/IP Distinguish among various

More information

IP Subnetting. Subnetting

IP Subnetting. Subnetting IP Subnetting Shailesh N. Sisat Prajkta S. Bhopale Vishwajit K. Barbudhe Abstract - Network management becomes more and more important as computer-networks grow steadily. A critical skill for any network

More information

Transport and Network Layer

Transport and Network Layer Transport and Network Layer 1 Introduction Responsible for moving messages from end-to-end in a network Closely tied together TCP/IP: most commonly used protocol o Used in Internet o Compatible with a

More information

Source net: 200.1.1.0 Destination net: 200.1.2.0 Subnet mask: 255.255.255.0 Subnet mask: 255.255.255.0. Router Hub

Source net: 200.1.1.0 Destination net: 200.1.2.0 Subnet mask: 255.255.255.0 Subnet mask: 255.255.255.0. Router Hub then to a router. Remember that with a Class C network address, the first 3 octets, or 24 bits, are assigned as the network address. So, these are two different Class C networks. This leaves one octet,

More information

Classful IP Addressing (cont.)

Classful IP Addressing (cont.) Classful IP Addressing (cont.) 1 Address Prefix aka Net ID defines the network Address Suffix aka Host ID defines the node In Classful addressing, prefix is of fixed length (1, 2, or 3 bytes)! Classful

More information

Internet Protocols. Addressing & Services. Updated: 9-29-2012

Internet Protocols. Addressing & Services. Updated: 9-29-2012 Internet Protocols Addressing & Services Updated: 9-29-2012 Virtual vs. Physical Networks MAC is the part of the underlying network MAC is used on the LAN What is the addressing mechanism in WAN? WAN is

More information

IPv4 Addressing Simplified. by Ken Foster B.S. IT Information; Security and Forensics Kaplan University January 23, 2011

IPv4 Addressing Simplified. by Ken Foster B.S. IT Information; Security and Forensics Kaplan University January 23, 2011 IPv4 Addressing Simplified by Ken Foster B.S. IT Information; Security and Forensics Kaplan University January 23, 2011 The concept of IP Addressing is foundational to overall routing in general. Without

More information

Dynamic Host Configuration Protocol (DHCP) 02 NAT and DHCP Tópicos Avançados de Redes

Dynamic Host Configuration Protocol (DHCP) 02 NAT and DHCP Tópicos Avançados de Redes Dynamic Host Configuration Protocol (DHCP) 1 1 Dynamic Assignment of IP addresses Dynamic assignment of IP addresses is desirable for several reasons: IP addresses are assigned on-demand Avoid manual IP

More information

Gary Hecht Computer Networking (IP Addressing, Subnet Masks, and Packets)

Gary Hecht Computer Networking (IP Addressing, Subnet Masks, and Packets) Gary Hecht Computer Networking (IP Addressing, Subnet Masks, and Packets) The diagram below illustrates four routers on the Internet backbone along with two companies that have gateways for their internal

More information

Network and Host Addresses 1.3. 2003, Cisco Systems, Inc. All rights reserved. INTRO v1.0a 6-4

Network and Host Addresses 1.3. 2003, Cisco Systems, Inc. All rights reserved. INTRO v1.0a 6-4 IP Addressing To facilitate the routing of packets over a network, the TCP/IP protocol suite uses a 32-bit logical address known as an IP address. This topic introduces the components of an IP address.

More information

100-101: Interconnecting Cisco Networking Devices Part 1 v2.0 (ICND1)

100-101: Interconnecting Cisco Networking Devices Part 1 v2.0 (ICND1) 100-101: Interconnecting Cisco Networking Devices Part 1 v2.0 (ICND1) Course Overview This course provides students with the knowledge and skills to implement and support a small switched and routed network.

More information

Lecture 8. IP Fundamentals

Lecture 8. IP Fundamentals Lecture 8. Internet Network Layer: IP Fundamentals Outline Layer 3 functionalities Internet Protocol (IP) characteristics IP packet (first look) IP addresses Routing tables: how to use ARP Layer 3 functionalities

More information

Introduction to IP & Addressing

Introduction to IP & Addressing Introduction to IP & Addressing Internet Protocol The IP in TCP/IP IP is the network layer protocol packet delivery service (host-to-host). translation between different data-link protocols. IP Datagrams

More information

Module 10 Subnetting Class A, B and C addresses. Solutions to the Lab Exercises 10.3.5a, 10.3.5b, 10.3.5c and 10.3.5d

Module 10 Subnetting Class A, B and C addresses. Solutions to the Lab Exercises 10.3.5a, 10.3.5b, 10.3.5c and 10.3.5d Module 10 Subnetting Class A, B and C addresses Solutions to the Lab Exercises 10.3.5a, 10.3.5b, 10.3.5c and 10.3.5d 10.3.5a Basic Subnetting Use the following information and answer the following subnet

More information

Internet Protocol Address

Internet Protocol Address SFWR 4C03: Computer Networks & Computer Security Jan 17-21, 2005 Lecturer: Kartik Krishnan Lecture 7-9 Internet Protocol Address Addressing is a critical component of the internet abstraction. To give

More information

Chapter 3. TCP/IP Networks. 3.1 Internet Protocol version 4 (IPv4)

Chapter 3. TCP/IP Networks. 3.1 Internet Protocol version 4 (IPv4) Chapter 3 TCP/IP Networks 3.1 Internet Protocol version 4 (IPv4) Internet Protocol version 4 is the fourth iteration of the Internet Protocol (IP) and it is the first version of the protocol to be widely

More information

Internet Addresses (You should read Chapter 4 in Forouzan)

Internet Addresses (You should read Chapter 4 in Forouzan) Internet Addresses (You should read Chapter 4 in Forouzan) IP Address is 32 Bits Long Conceptually the address is the pair (NETID, HOSTID) Addresses are assigned by the internet company for assignment

More information

TCP/IP: An overview. Syed A. Rizvi

TCP/IP: An overview. Syed A. Rizvi TCP/IP: An overview Syed A. Rizvi TCP/IP The Internet uses TCP/IP protocol suite to establish a connection between two computers. TCP/IP suite includes two protocols (1) Transmission Control Protocol or

More information

Interconnection of Heterogeneous Networks. Internetworking. Service model. Addressing Address mapping Automatic host configuration

Interconnection of Heterogeneous Networks. Internetworking. Service model. Addressing Address mapping Automatic host configuration Interconnection of Heterogeneous Networks Internetworking Service model Addressing Address mapping Automatic host configuration Wireless LAN network@home outer Ethernet PPS Internet-Praktikum Internetworking

More information

Chapter 5. IPv4 Addresses. TCP/IP Protocol Suite 1 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Chapter 5. IPv4 Addresses. TCP/IP Protocol Suite 1 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Chapter 5 IPv4 Addresses TCP/IP Protocol Suite 1 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Chapter Outline TCP/IP Protocol Suite 2 5-1 INTRODUCTION The

More information

TCP/IP Network Essentials. Linux System Administration and IP Services

TCP/IP Network Essentials. Linux System Administration and IP Services TCP/IP Network Essentials Linux System Administration and IP Services Layers Complex problems can be solved using the common divide and conquer principle. In this case the internals of the Internet are

More information

2. What is the maximum value of each octet in an IP address? A. 28 B. 255 C. 256 D. None of the above

2. What is the maximum value of each octet in an IP address? A. 28 B. 255 C. 256 D. None of the above CCNA1 V3.0 Mod 10 (Ch 8) 1. How many bits are in an IP C. 64 2. What is the maximum value of each octet in an IP A. 28 55 C. 256 3. The network number plays what part in an IP A. It specifies the network

More information

TCP/IP Tutorial. Transmission Control Protocol Internet Protocol

TCP/IP Tutorial. Transmission Control Protocol Internet Protocol TCP/IP Tutorial Transmission Control Protocol Internet Protocol 1 TCP/IP & OSI In OSI reference model terminology -the TCP/IP protocol suite covers the network and transport layers. TCP/IP can be used

More information

Overview. Securing TCP/IP. Introduction to TCP/IP (cont d) Introduction to TCP/IP

Overview. Securing TCP/IP. Introduction to TCP/IP (cont d) Introduction to TCP/IP Overview Securing TCP/IP Chapter 6 TCP/IP Open Systems Interconnection Model Anatomy of a Packet Internet Protocol Security (IPSec) Web Security (HTTP over TLS, Secure-HTTP) Lecturer: Pei-yih Ting 1 2

More information

Module 2: Assigning IP Addresses in a Multiple Subnet Network

Module 2: Assigning IP Addresses in a Multiple Subnet Network Module 2: Assigning IP Addresses in a Multiple Subnet Network Contents Overview 1 Lesson: Assigning IP Addresses 2 Lesson: Creating a Subnet 19 Lesson: Using IP Routing Tables 29 Lesson: Overcoming Limitations

More information

SOLUTIONS PRODUCTS TECH SUPPORT ABOUT JBM Online Ordering

SOLUTIONS PRODUCTS TECH SUPPORT ABOUT JBM Online Ordering SOLUTIONS PRODUCTS TECH SUPPORT ABOUT JBM Online Ordering SEARCH TCP/IP Tutorial This tutorial is intended to supply a brief overview of TCP/IP protocol. Explanations of IP addresses, classes, netmasks,

More information

IP Address. Heng Sovannarith

IP Address. Heng Sovannarith IP Address Heng Sovannarith heng_sovannarith@yahoo.com Introduction An IP (Internet Protocol) address is a unique identifier for a node or host connection on an IP network. Every machine on the Internet

More information

Network Basics GRAPHISOFT. for connecting to a BIM Server. 2009 (version 1.0)

Network Basics GRAPHISOFT. for connecting to a BIM Server. 2009 (version 1.0) for connecting to a BIM Server GRAPHISOFT 2009 (version 1.0) Basic Vocabulary...3 Local Area Networks...5 Examples of Local Area Networks...5 Example 1: LAN of two computers without any other network devices...5

More information

CS 43: Computer Networks IP. Kevin Webb Swarthmore College November 5, 2013

CS 43: Computer Networks IP. Kevin Webb Swarthmore College November 5, 2013 CS 43: Computer Networks IP Kevin Webb Swarthmore College November 5, 2013 Reading Quiz IP datagram format IP protocol version number header length (bytes) type of data max number remaining hops (decremented

More information

Scaling the Network: Subnetting and Other Protocols. Networking CS 3470, Section 1

Scaling the Network: Subnetting and Other Protocols. Networking CS 3470, Section 1 Scaling the Network: Subnetting and Other Protocols Networking CS 3470, Section 1 Today CIDR Subnetting Private IP addresses ICMP, IMAP, and DHCP Protocols 2 Packet Encapsulation ** Creative Commons: http://en.wikipedia.org/wiki/file:udp_encapsulation.svg

More information

IP Addressing and Subnetting. 2002, Cisco Systems, Inc. All rights reserved.

IP Addressing and Subnetting. 2002, Cisco Systems, Inc. All rights reserved. IP Addressing and Subnetting 2002, Cisco Systems, Inc. All rights reserved. 1 Objectives Upon completion, you will be able to: Discuss the Types of Network Addressing Explain the Form of an IP Address

More information

Computer Networks 1 (Mạng Máy Tính 1) Lectured by: Dr. Phạm Trần Vũ

Computer Networks 1 (Mạng Máy Tính 1) Lectured by: Dr. Phạm Trần Vũ Computer Networks 1 (Mạng Máy Tính 1) Lectured by: Dr. Phạm Trần Vũ 1 Lecture 7: Network Layer in the Internet Reference: Chapter 5 - Computer Networks, Andrew S. Tanenbaum, 4th Edition, Prentice Hall,

More information

Introduction to TCP/IP

Introduction to TCP/IP Introduction to TCP/IP Raj Jain The Ohio State University Columbus, OH 43210 Nayna Networks Milpitas, CA 95035 Email: Jain@ACM.Org http://www.cis.ohio-state.edu/~jain/ 1 Overview! Internetworking Protocol

More information

Internet Protocol. Raj Jain. Washington University in St. Louis.

Internet Protocol. Raj Jain. Washington University in St. Louis. Internet Protocol Raj Jain Washington University Saint Louis, MO 63131 Jain@cse.wustl.edu These slides are available on-line at: http://www.cse.wustl.edu/~jain/cse473-05/ 13-1 Overview! Internetworking

More information

Computer Networks By Bahaa Q. Al-Mussawi Subnetting Basics Reduced network traffic Optimized network performance Simplified management

Computer Networks By Bahaa Q. Al-Mussawi Subnetting Basics Reduced network traffic Optimized network performance Simplified management Subnetting Basics You learned previously how to define and find the valid host ranges used in a Class A, Class B, and Class C network address by turning the host bits all off and then all on. This is very

More information

21.4 Network Address Translation (NAT) 21.4.1 NAT concept

21.4 Network Address Translation (NAT) 21.4.1 NAT concept 21.4 Network Address Translation (NAT) This section explains Network Address Translation (NAT). NAT is also known as IP masquerading. It provides a mapping between internal IP addresses and officially

More information

Guide to TCP/IP, Third Edition. Chapter 2: IP Addressing and Related Topics

Guide to TCP/IP, Third Edition. Chapter 2: IP Addressing and Related Topics Guide to TCP/IP, Third Edition Chapter 2: IP Addressing and Related Topics Objectives Understand IP addressing, anatomy and structures, and addresses from a computer s point of view Recognize and describe

More information

How do I get to www.randomsite.com?

How do I get to www.randomsite.com? Networking Primer* *caveat: this is just a brief and incomplete introduction to networking to help students without a networking background learn Network Security. How do I get to www.randomsite.com? Local

More information

This tutorial will help you in understanding IPv4 and its associated terminologies along with appropriate references and examples.

This tutorial will help you in understanding IPv4 and its associated terminologies along with appropriate references and examples. About the Tutorial Internet Protocol version 4 (IPv4) is the fourth version in the development of the Internet Protocol (IP) and the first version of the protocol to be widely deployed. IPv4 is described

More information

CHAPTER 2 LITERATURE REVIEW

CHAPTER 2 LITERATURE REVIEW CHAPTER 2 LITERATURE REVIEW 2.1 Routing Process Routers are amongst the most crucial components of the internet, as each bit of information on the internet passes through many routers [2]. Routing is the

More information

TCP/IP and the Internet

TCP/IP and the Internet TCP/IP and the Internet Computer networking today is becoming more and more entwined with the internet. By far the most popular protocol set in use is TCP/IP (Transmission Control Protocol/Internet Protocol).

More information

CCNA R&S: Introduction to Networks. Chapter 9: Subnetting IP Networks

CCNA R&S: Introduction to Networks. Chapter 9: Subnetting IP Networks CCNA R&S: Introduction to Networks Chapter 9: Subnetting IP Networks Frank Schneemann Chapter 9: Subnetting IP Networks Subnetting IP Networks In this chapter, you will be learning how devices can be grouped

More information

Subnetting,Supernetting, VLSM & CIDR

Subnetting,Supernetting, VLSM & CIDR Subnetting,Supernetting, VLSM & CIDR WHAT - IP Address Unique 32 or 128 bit Binary, used to identify a system on a Network or Internet. Network Portion Host Portion CLASSFULL ADDRESSING IP address space

More information

TCP/IP works on 3 types of services (cont.): TCP/IP protocols are divided into three categories:

TCP/IP works on 3 types of services (cont.): TCP/IP protocols are divided into three categories: Due to the number of hardware possibilities for a network, there must be a set of rules for how data should be transmitted across the connection media. A protocol defines how the network devices and computers

More information

TCP/IP Cheat Sheet. A Free Study Guide by Boson Software, LLC

TCP/IP Cheat Sheet. A Free Study Guide by Boson Software, LLC boson_logo_tcpip.pdf 9/23/2010 11:28:19 AM TCP/IP Cheat Sheet A Free Study Guide by Boson Software, LLC Table 1 Address Class Summary Class s Hosts per Range of Network IDs (First Octet) Class A 126 16,777,214

More information

COMP3331/COMP9331 Computer Networks and Applications IPv4. Lecture overview. IP addressing basics. Key concepts

COMP3331/COMP9331 Computer Networks and Applications IPv4. Lecture overview. IP addressing basics.  Key concepts COMP3331/COMP9331 Computer Networks and Applications IPv4 http://www.cse.unsw.edu.au/~cs3331/ 1 Lecture overview Key concepts Classful addressing Network mask Subnetting Supernetting Classless addressing

More information

TCP/IP Fundamentals. OSI Seven Layer Model & Seminar Outline

TCP/IP Fundamentals. OSI Seven Layer Model & Seminar Outline OSI Seven Layer Model & Seminar Outline TCP/IP Fundamentals This seminar will present TCP/IP communications starting from Layer 2 up to Layer 4 (TCP/IP applications cover Layers 5-7) IP Addresses Data

More information

How to Create Subnets To create subnetworks, you take bits from the host portion of the IP address and reserve them to define the subnet address.

How to Create Subnets To create subnetworks, you take bits from the host portion of the IP address and reserve them to define the subnet address. SUBNET MASK To define the network and host portions of an address, the devices use a separate 32-bit pattern called a subnet mask. We express the subnet mask in the same dotted decimal format as the IPv4

More information

Internet Working 5 th lecture. Chair of Communication Systems Department of Applied Sciences University of Freiburg 2004

Internet Working 5 th lecture. Chair of Communication Systems Department of Applied Sciences University of Freiburg 2004 5 th lecture Chair of Communication Systems Department of Applied Sciences University of Freiburg 2004 1 43 Last lecture Lecture room hopefully all got the message lecture on tuesday and thursday same

More information

Networking Basics for Automation Engineers

Networking Basics for Automation Engineers Networking Basics for Automation Engineers Page 1 of 10 mac-solutions.co.uk v1.0 Oct 2014 1. What is Transmission Control Protocol/Internet Protocol (TCP/IP)------------------------------------------------------------

More information

Internet Protocol: IP packet headers. vendredi 18 octobre 13

Internet Protocol: IP packet headers. vendredi 18 octobre 13 Internet Protocol: IP packet headers 1 IPv4 header V L TOS Total Length Identification F Frag TTL Proto Checksum Options Source address Destination address Data (payload) Padding V: Version (IPv4 ; IPv6)

More information

One of the most important topics in any discussion of TCP/IP is IP. IP Addressing

One of the most important topics in any discussion of TCP/IP is IP. IP Addressing IP Addressing 125 machine, called a RARP server, responds with the answer, and the identity crisis is over. RARP uses the information it does know about the machine s MAC address to learn its IP address

More information

Topics. Subnetting. The Basics of Subnetting Subnet Mask Computing subnets and hosts Subnet Routing Creating a Subnet Example of Subnetting 1/37

Topics. Subnetting. The Basics of Subnetting Subnet Mask Computing subnets and hosts Subnet Routing Creating a Subnet Example of Subnetting 1/37 1/37 Subnetting Surasak Sanguanpong nguan@ku.ac.th http://www.cpe.ku.ac.th/~nguan Last updated: 27 June 2002 Topics 2/37 The Basics of Subnetting Subnet Mask Computing subnets and hosts Subnet Routing

More information

Chapter 9. IP Secure

Chapter 9. IP Secure Chapter 9 IP Secure 1 Network architecture is usually explained as a stack of different layers. Figure 1 explains the OSI (Open System Interconnect) model stack and IP (Internet Protocol) model stack.

More information

Internet Protocol (IP) IP - Network Layer. IP Routing. Advantages of Connectionless. CSCE 515: Computer Network Programming ------ IP routing

Internet Protocol (IP) IP - Network Layer. IP Routing. Advantages of Connectionless. CSCE 515: Computer Network Programming ------ IP routing Process Process Process Layer CSCE 515: Computer Network Programming ------ IP routing Wenyuan Xu ICMP, AP & AP TCP IP UDP Transport Layer Network Layer Department of Computer Science and Engineering University

More information