AR9161 B.Tech. VI Sem. Chemical Engineering Process Dynamics &Control Model Answer


 Judith Stafford
 1 years ago
 Views:
Transcription
1 AR9161 B.Tech. VI Sem. Chemical Engineering Process Dynamics &Control Model Answer Ans (1) Section A i. (A) ii. iii. iv. (B) (B) (B) v. (D) vi. vii. viii. ix. (C) (B) (B) (C) x. (A) Section B
2 (1) (i) Servo Problem versus Regulator Problem Fig. Block diagram of a simple control system. The control system of Fig. can be considered from the point of view of its ability to handle either of two types of situations. In the first situation, which is called the servomechanismtype (or servo) problem, we assume that there is no change in load Ti and that we are interested in changing the bath temperature according to some prescribed function of time. For this problem, the set point TR would be changed in accordance with the desired variation in bath temperature. If the variation is sufficiently slow, the bath temperature may be expected to follow the variation in TR very closely. There are occasions when a control system in the chemical industry will be operated in this manner. For example, one may be interested in varying the temperature of a reactor according to a prescribed timetemperature pattern. However, the majority of problems that may be described as the servo type come from fields other than the chemical industry. The tracking of missiles and aircraft and the automatic machining of intricate parts from a master pattern are wellknown examples of the servotype problem. The other situation will be referred to as the regulator problem. In this case, the desired value TR is to remain fixed and the purpose of the control system is to maintain the controlled variable at TR in spite of changes in load Ti. This problem is very common in the chemical industry, and a complicated industrial process will often have many selfcontained control systems, each of which maintains a particular process variable at a desired value. These control systems are of the regulator type. In considering control systems in the following chapters, we shall frequently discuss the response of a linear control system to a change in set point (servo problem) separately from the response to a change in load (regulator problem). However, it should be realized that this is done only for convenience. The basic approach to obtaining the response of either type is essentially the same, and the two responses may be superimposed to obtain the response to any linear combination of setpoint and load changes.
3 Fig. Block diagram of a simple control system. (1) (ii)feedback Control The control system shown in Fig. is called a closedloop system or a feedback system because the measured value of the controlled variable is returned or fed back to a device called the comparator. In the comparator, the controlled variable is compared with the desired value or set point. If there is any difference between the measured variable and the set point, an error is generated. This error enters a controller, which in turn adjusts the final control element in order to return the controlled variable to the set point. Negative Feedback The feedback principle, which is illustrated by Fig. 9.2, involves the use of the controlled variable T to maintain itself at a desired value TR. The arrangement of the apparatus of Fig. 9.2 is often described as negative feedback to contrast with another arrangement called positive feedback. Negative feedback ensures that the difference between TR and T, is used to adjust the control element so that the tendency is to reduce the error. For example, assume that the system is at steady state and that T = T,,, = TR. If the load Ti should increase, T and T,,, would start to increase, which would cause the error E to become negative. With proportional control, the decrease in error would cause the controller and final control element to decrease the flow of heat to the system with the result that the flow of heat would eventually be reduced to a value such that T approaches T R. Positive Feedback If the signal to the comparator were obtained by adding TR and T,, we would have a positive feedback system, which is inherently unstable. To see that this is true, again assume that the system is at steady state and that T = T,,, = TR. If Ti were to increase, T and T,,, would increase, which would cause the signal the comparator (E in Fig) to increase, with the result that the heat to the system would increase. However, this action, which is just the opposite of that needed, would cause T to increase further. It should be clear that this situation would cause T to run away and control would not be achieved. For this reason, positive feedback would never be used intentionally in the system of Fig. However, in more complex systems it may arise naturally.
4 Example: Feedback Level Control
5 (2) Solve x(0) = x (0) = 0 Taking Laplace transform of both sides, Inserting the initial conditions and rearranging gives Equating the numerators on each side gives We now equate the equation of like power of s to obtain A+B=0 2A+C=0 2A=2 Solving these equations gives A = 1, B =  1, and C = 2. Equation of x(s) now becomes Express the quadratic term in the form to match the following transform
6 Equating the coefficient of like power of s gives a=1, k=1 Using the table, we get (3) Two interacting systems (tanks) are connected in series. Obtain a transfer function that relates H 2 to Q. Fig. Two interacting tanks connected in series
7 Our problem is to find a transfer function that relates h 2 to q, that is, H 2 (s)/q(s).consider a case of two liquid level system connected in series as shown in fig. Where, q, q 1, h 1, A 1, R 1, are the input flow rate, output flow rate, liquid head, cross sectional area and resistance for tank one respectively. q 2, h 2, A 2, R 2, are the output flow rate, liquid head, cross sectional area and resistance for tank two respectively. Taking the material balance for tank one (1) (2) (3) At steady state From equation (1) and (5) (4) (5) (6) (7) From equation (2) and (6) (8) From equation (3) and (4) (9) (10) Transforming equation (7) through (10) gives (11) (12) (13) (14) (15)
8 Substituting the value of H1(s) from equation 15 into equation 13 gives Substituting the value of Q1(s) from equation (16) and Q2(s) from equation (14) into equation (12) gives (16) (17) (4) A mercury thermometer having a time constant of 0.1 min is placed in a temperature bath at 100 F and allowed to come to equilibrium with the bath. At time t = 0, the temperature of the bath begins to vary sinusoidally about its average temperature of l00 o F with an amplitude of 2 F If the frequency of oscillation is 10/π cycles/min, plot the ultimate response of the thermometer reading as a function of time. What is the phase lag? Solution Time constant τ = 0.1 min x s = 100 F A = 2 F
9 Consider a thermometer to be in equilibrium with a temperature bath at temperature x S. At some time t = 0, the bath temperature begins to vary according to the relationship x = x s +A sinwt (1) where, x = temperature of bath x s = temperature of bath before sinusoidal disturbance is applied A = amplitude of variation in temperature w = radian frequency, radkime In anticipation of a simple result we shall introduce a deviation variable X which is defined as X = x  x s, ( 2) X = x  x s = A sin wt ( 3) By referring to a table of transforms, the transform of Eq. (3) is (4) (5) (6) (7) (8) (9) (10) Equating the numerators on each side gives (11) We now equate the equation of like power of s to obtain C 1 + C 2 =0 (12) C 1 +( C 3 /τ)=0 (13) Putting s= 1/ τ gives
10 (14) Taking inverse Laplace transform gives (15) (16) At steady state t, the first term of the equation (16) vanishes (17) Time constant τ = 0.1 x s = 100 F A = 2 F Frequency of oscillation f = 10/π cycles/min Radian frequency w =2π f = 2π(10/π) = 20 rad/min Amplitude of the response τ Phase angle ϴ= tan 1 2 = or Phase lag = The response of the thermometer is therefore Y(t) = sin (20t ) or y(t) = sin (20t ) To obtain the lag in terms of time rather than angle, we proceed as follows: A frequency of 10/π cycles/min means that a complete cycle (peak to peak) occurs in (10/π) 1 min. Since one cycle is equivalent to and the lag is , the time corresponding to this lag is min The response of the thermometer reading and the variation in bath temperature are shown in Fig.
11 Fig. Response of thermomete
12 (5) (a) Give one example each of a system with first order and second order dynamics. Derive the transfer function of a second order system. Example of first order system : A mercury thermometer Example of second order system : Damped vibrator A secondorder transfer function will be developed by considering a classical example from mechanics. This is the damped vibrator, which is shown in Fig. A block of mass W resting on a horizontal, frictionless table is attached to a linear spring. Fig. Damped vibrator A viscous damper (dashpot) is also attached to the block. Assume that the system is free to oscillate horizontally under the influence of a forcing function F(t). The origin of the coordinate system is taken as the right edge of the block when the spring is in the relaxed or unstretched condition. At time zero, the block is assumed to be at rest at this origin. * Positive directions for force and displacement are indicated by the arrows in Fig. Consider the block at some instant when it is to the right of Y = 0 and when it is moving toward the right (positive direction). Under these conditions, the position Y and the velocity dy/dt arc both positive. At this particular instant, the following forces are acting on the block: 1. The force exerted by the spring (toward the left) of KY where K is a positive constant, called Hooke s constant. 2. The viscous friction force (acting to the left) of C dy/dt, where C is a positive constant called the damping coefficient. 3. The external force F(t) (acting toward the right). Newton s law of motion, which states that the sum of all forces acting on the mass is equal to the rate of change of momentum (mass X acceleration), takes the form (1) Rearrangement gives (2) where W = mass of block, lb, g c = 32.2(lb,)(ft)/(lbf)(sec2) C = viscous damping coefficient, lbf/(ft/sec) K = Hooke s constant, lbf/ft F(t) = driving force, a function of time, lbf Dividing Eq. (2) by K gives (3)
13 For convenience, this is written as (4) τ (5) τ (6) (7) Solving for τ and ϕ from Eqs. (5) and (6) gives τ sec (8) dimensionless (9) By definition, both τ and ϕ must be positive. Equation (4) is written in a standard form that is widely used in control theory. Notice that, because of superposition, X(t) can be considered as a forcing function because it is proportional to the force F(t). If the block is motionless (dyldt = 0) and located at its rest position (Y = 0) before the forcing function is applied, the Laplace transform of Eq. (4) becomes τ τ (10) From this, the transfer function follows: τ τ (11) 5 (b) A control system having transfer function is expressed as The radian frequency for the control system is 1.9 rad/min. The time constant is 0.5 min. The control system is subjected to a step change of the magnitude 2. Calculate : (i) Rise time (ii) Decay ratio (iii) Maximum value of Y(t) (iv) Response time
14 Fig. Terms used to describe an underdamped secondorder response. Given X(s) = 2/s Time constant τ=0.5 min Radian frequency w= 1.9 rad/min Φ=0.312 (i)rise time ϴ= min Decay ratio=0.127
15 Ultimate value of the response Y ultimte (B) at t X(s)= 2/s = 10 Y ultimte (B)=10 Overshoot (B/A)=0.356 Response time ts=3 τ/ ϕ =4.76 min for % of ultimate value Response time ts=4 τ/ ϕ = 6.33 min for of ultimate value
16 (6) Determine the transfer function Y(s)/X(s) for the block diagram shown in Figure 1. From figure (1) (2) (3) (4) (5) (6) From equation (4) &(6) (7) From equation (3) &(4)
17 (8) From equation (2),(5)&(8) (9) From equation (1) &(7) (10) From equation (9) &(10) (11)
18 (7) Open loop transfer function of a negative feedback control system is given as: Sketch the root locus diagram. The open loop transfer function is given as: Negative feedback control becomes positive feedback control system. The open loop poles are P 1 = 1j P 2 = 1+j P 3 =5 The open loop zeros is, Z 1 =5 No. of open loop poles= b=3 No. of open loop poles= a=1 The BIP can be calculated as:
19
20
21 (8) A control system is represented by means of a block diagram shown in figure 2. R(s) +  C Figure 2 Determine the value of k c gain of controller which just causes instability. Use Routh criterion. Also determine the location of the pair of roots lie on the imaginary axis for the control system. Solution : The open loop transfer function for the control system is given as The characteristics equation of the control system is given as 1+G(s) = 0 Constructing the Routh Array. There are three numbers of roots therefore the number of rows are four Row r 1 2 (kc+1) m1 r 2 3 2kc m r 3 A 1 A 2 m+1 r 4 B 1 B 2
22 The unknown coefficients A 1, A 2, B 1 & B 2 can be calculated as and A 2 =0 and B 2 =0 The Routh Array becomes, Row r 1 2 (kc+1) m1 r 2 3 2kc m r 3 (3k c )/3 0 m+1 r 4 2k c 0 The control system becomes just unstable when all the element of m th row become zero
23 (9) Multicapacity noninteracting three CSTRS in series having time constants τ=1 minute for two CSTRS & τ=0.4 minute for third CSTRS. The system is controlled by PD controller having τ D = 0.1 minute transportation lag τ d = 0.4 minute & gain of controller is k c. Sketch the asymptotic Bode diagram. Obtain the design value of gain of controller. Solution: The individual transfer functions are The open loop transfer function is kc is the gain of the controller. 1. LFA W 0 AR 1 =1 LFA W AR 1 =w This is the equation of straight line with slope =1 passing through AR 1 =1, 0.1w=1, w=10. Corner frequency 2.
24
25
26
27 (10) There are two noninteracting liquidlevel system in series. The time constants for liquid level systems are 1 minute and 0.1 minute. The overall gain process is 0.1. The transportation lag parameter of the measuring elements is 0.1 minute. Sketch the asymptotic Bode diagram and determine : a. Ultimate gain. b. Ultimate period. c. Optimum controller setting. d. The design value of gain proportional controller. Solution: From given data The open loop transfer function is Where K is gain of the process K c is gain of the controller 1. LFA W 0 AR 1 =1 LFA W AR 1 =1/w This is the equation of straight line with slope =1 passing through AR 1 =1, w=1.
28
29
30
31
First Order System. Transfer function: Response to a unit step input is: Partial Fraction Expansion leads to: Inverse Laplace transform leads to:
First Order System Transfer function: Response to a unit step input is: Partial Fraction Expansion leads to: Inverse Laplace transform leads to: First Order System At t = T, the output is: T represents
More informationUnderstanding Poles and Zeros
MASSACHUSETTS INSTITUTE OF TECHNOLOGY DEPARTMENT OF MECHANICAL ENGINEERING 2.14 Analysis and Design of Feedback Control Systems Understanding Poles and Zeros 1 System Poles and Zeros The transfer function
More informationROOT LOCUS TECHNIQUES
ROOT LOCUS TECHNIQUES In this lecture you will learn the following : The definition of a root locus How to sketch root locus How to use the root locus to find the poles of a closed loop system How to use
More informationResponse to Harmonic Excitation Part 2: Damped Systems
Response to Harmonic Excitation Part 2: Damped Systems Part 1 covered the response of a single degree of freedom system to harmonic excitation without considering the effects of damping. However, almost
More information3.2 Sources, Sinks, Saddles, and Spirals
3.2. Sources, Sinks, Saddles, and Spirals 6 3.2 Sources, Sinks, Saddles, and Spirals The pictures in this section show solutions to Ay 00 C By 0 C Cy D 0. These are linear equations with constant coefficients
More informationA C O U S T I C S of W O O D Lecture 3
Jan Tippner, Dep. of Wood Science, FFWT MU Brno jan. tippner@mendelu. cz Content of lecture 3: 1. Damping 2. Internal friction in the wood Content of lecture 3: 1. Damping 2. Internal friction in the wood
More information1.10 Using Figure 1.6, verify that equation (1.10) satisfies the initial velocity condition. t + ") # x (t) = A! n. t + ") # v(0) = A!
1.1 Using Figure 1.6, verify that equation (1.1) satisfies the initial velocity condition. Solution: Following the lead given in Example 1.1., write down the general expression of the velocity by differentiating
More information10.450 Process Dynamics, Operations, and Control Lecture Notes  11 Lesson 11. Frequency response of dynamic systems.
Lesson. Frequency response of dynamic systems..0 Context We have worked with step, pulse, and sine disturbances. Of course, there are many sine disturbances, because the applied frequency may vary. Surely
More informationHooke s Law and Simple Harmonic Motion
Hooke s Law and Simple Harmonic Motion OBJECTIVE to measure the spring constant of the springs using Hooke s Law to explore the static properties of springy objects and springs, connected in series and
More informationECE 3510 Final given: Spring 11
ECE 50 Final given: Spring This part of the exam is Closed book, Closed notes, No Calculator.. ( pts) For each of the timedomain signals shown, draw the poles of the signal's Laplace transform on the
More informationApplications of SecondOrder Differential Equations
Applications of SecondOrder Differential Equations Secondorder linear differential equations have a variety of applications in science and engineering. In this section we explore two of them: the vibration
More informationPhysics 41 HW Set 1 Chapter 15
Physics 4 HW Set Chapter 5 Serway 8 th OC:, 4, 7 CQ: 4, 8 P: 4, 5, 8, 8, 0, 9,, 4, 9, 4, 5, 5 Discussion Problems:, 57, 59, 67, 74 OC CQ P: 4, 5, 8, 8, 0, 9,, 4, 9, 4, 5, 5 Discussion Problems:, 57, 59,
More informationMechanical Vibrations
Mechanical Vibrations A mass m is suspended at the end of a spring, its weight stretches the spring by a length L to reach a static state (the equilibrium position of the system). Let u(t) denote the displacement,
More informationChapter 24 Physical Pendulum
Chapter 4 Physical Pendulum 4.1 Introduction... 1 4.1.1 Simple Pendulum: Torque Approach... 1 4. Physical Pendulum... 4.3 Worked Examples... 4 Example 4.1 Oscillating Rod... 4 Example 4.3 Torsional Oscillator...
More informationRoot Locus. E(s) K. R(s) C(s) 1 s(s+a) Consider the closed loop transfer function:
Consider the closed loop transfer function: Root Locus R(s) +  E(s) K 1 s(s+a) C(s) How do the poles of the closedloop system change as a function of the gain K? The closedloop transfer function is:
More informationVectors and Phasors. A supplement for students taking BTEC National, Unit 5, Electrical and Electronic Principles. Owen Bishop
Vectors and phasors Vectors and Phasors A supplement for students taking BTEC National, Unit 5, Electrical and Electronic Principles Owen Bishop Copyrught 2007, Owen Bishop 1 page 1 Electronics Circuits
More informationSecond Order Systems
Second Order Systems Second Order Equations Standard Form G () s = τ s K + ζτs + 1 K = Gain τ = Natural Period of Oscillation ζ = Damping Factor (zeta) Note: this has to be 1.0!!! Corresponding Differential
More information1 of 10 11/23/2009 6:37 PM
hapter 14 Homework Due: 9:00am on Thursday November 19 2009 Note: To understand how points are awarded read your instructor's Grading Policy. [Return to Standard Assignment View] Good Vibes: Introduction
More informationSimple Harmonic Motion
Simple Harmonic Motion 1 Object To determine the period of motion of objects that are executing simple harmonic motion and to check the theoretical prediction of such periods. 2 Apparatus Assorted weights
More informationChapter 13, example problems: x (cm) 10.0
Chapter 13, example problems: (13.04) Reading Fig. 1330 (reproduced on the right): (a) Frequency f = 1/ T = 1/ (16s) = 0.0625 Hz. (since the figure shows that T/2 is 8 s.) (b) The amplitude is 10 cm.
More informationANALYTICAL METHODS FOR ENGINEERS
UNIT 1: Unit code: QCF Level: 4 Credit value: 15 ANALYTICAL METHODS FOR ENGINEERS A/601/1401 OUTCOME  TRIGONOMETRIC METHODS TUTORIAL 1 SINUSOIDAL FUNCTION Be able to analyse and model engineering situations
More informationPositive Feedback and Oscillators
Physics 3330 Experiment #6 Fall 1999 Positive Feedback and Oscillators Purpose In this experiment we will study how spontaneous oscillations may be caused by positive feedback. You will construct an active
More informationUnit  6 Vibrations of Two Degree of Freedom Systems
Unit  6 Vibrations of Two Degree of Freedom Systems Dr. T. Jagadish. Professor for Post Graduation, Department of Mechanical Engineering, Bangalore Institute of Technology, Bangalore Introduction A two
More informationStructural Dynamics, Dynamic Force and Dynamic System
Structural Dynamics, Dynamic Force and Dynamic System Structural Dynamics Conventional structural analysis is based on the concept of statics, which can be derived from Newton s 1 st law of motion. This
More informationMathematical Modeling and response analysis of mechanical systems are the subjects of this chapter.
Chapter 3 Mechanical Systems Dr. A.Aziz. Bazoune 3.1 INTRODUCTION Mathematical Modeling and response analysis of mechanical systems are the subjects of this chapter. 3. MECHANICAL ELEMENTS Any mechanical
More informationLab M1: The Simple Pendulum
Lab M1: The Simple Pendulum Introduction. The simple pendulum is a favorite introductory exercise because Galileo's experiments on pendulums in the early 1600s are usually regarded as the beginning of
More informationPrelab Exercises: Hooke's Law and the Behavior of Springs
59 Prelab Exercises: Hooke's Law and the Behavior of Springs Study the description of the experiment that follows and answer the following questions.. (3 marks) Explain why a mass suspended vertically
More informationTechnical Guide No. 100. High Performance Drives  speed and torque regulation
Technical Guide No. 100 High Performance Drives  speed and torque regulation Process Regulator Speed Regulator Torque Regulator Process Technical Guide: The illustrations, charts and examples given in
More informationController Design in Frequency Domain
ECSE 4440 Control System Engineering Fall 2001 Project 3 Controller Design in Frequency Domain TA 1. Abstract 2. Introduction 3. Controller design in Frequency domain 4. Experiment 5. Colclusion 1. Abstract
More informationDamping in a variable mass on a spring pendulum
Damping in a variable mass on a spring pendulum Rafael M. Digilov, a M. Reiner, and Z. Weizman Department of Education in Technology and Science, TechnionIsrael Institute of Technology, Haifa 32000, Israel
More informationAP1 Oscillations. 1. Which of the following statements about a springblock oscillator in simple harmonic motion about its equilibrium point is false?
1. Which of the following statements about a springblock oscillator in simple harmonic motion about its equilibrium point is false? (A) The displacement is directly related to the acceleration. (B) The
More informationOscillations. Vern Lindberg. June 10, 2010
Oscillations Vern Lindberg June 10, 2010 You have discussed oscillations in Vibs and Waves: we will therefore touch lightly on Chapter 3, mainly trying to refresh your memory and extend the concepts. 1
More informationReview of First and SecondOrder System Response 1
MASSACHUSETTS INSTITUTE OF TECHNOLOGY DEPARTMENT OF MECHANICAL ENGINEERING 2.151 Advanced System Dynamics and Control Review of First and SecondOrder System Response 1 1 FirstOrder Linear System Transient
More informationFrequency response of a general purpose singlesided OpAmp amplifier
Frequency response of a general purpose singlesided OpAmp amplifier One configuration for a general purpose amplifier using an operational amplifier is the following. The circuit is characterized by:
More informationThe SternGerlach Experiment
Chapter The SternGerlach Experiment Let us now talk about a particular property of an atom, called its magnetic dipole moment. It is simplest to first recall what an electric dipole moment is. Consider
More informationPhysics in the Laundromat
Physics in the Laundromat Kirk T. McDonald Joseph Henry Laboratories, Princeton University, Princeton, NJ 08544 (Aug. 5, 1997) Abstract The spin cycle of a washing machine involves motion that is stabilized
More informationCHAPTER 12 PROPORTIONAL VALVES
CHATER ROORTIONAL VALVES Fluid ower Circuits and Controls, John S.Cundiff, 00 Introduction roportional valves were developed for applications where the precision of a servo valve is not needed, but more
More informationPhysics 9 Fall 2009 Homework 2  Solutions
Physics 9 Fall 009 Homework  s 1. Chapter 7  Exercise 5. An electric dipole is formed from ±1.0 nc charges spread.0 mm apart. The dipole is at the origin, oriented along the y axis. What is the electric
More informationΣ _. Feedback Amplifiers: One and Two Pole cases. Negative Feedback:
Feedback Amplifiers: One and Two Pole cases Negative Feedback: Σ _ a f There must be 180 o phase shift somewhere in the loop. This is often provided by an inverting amplifier or by use of a differential
More informationChapter 8: Potential Energy and Conservation of Energy. Work and kinetic energy are energies of motion.
Chapter 8: Potential Energy and Conservation of Energy Work and kinetic energy are energies of motion. Consider a vertical spring oscillating with mass m attached to one end. At the extreme ends of travel
More informationStanding Waves on a String
1 of 6 Standing Waves on a String Summer 2004 Standing Waves on a String If a string is tied between two fixed supports, pulled tightly and sharply plucked at one end, a pulse will travel from one end
More informationPhysics 9e/Cutnell. correlated to the. College Board AP Physics 1 Course Objectives
Physics 9e/Cutnell correlated to the College Board AP Physics 1 Course Objectives Big Idea 1: Objects and systems have properties such as mass and charge. Systems may have internal structure. Enduring
More informationAP Physics C. Oscillations/SHM Review Packet
AP Physics C Oscillations/SHM Review Packet 1. A 0.5 kg mass on a spring has a displacement as a function of time given by the equation x(t) = 0.8Cos(πt). Find the following: a. The time for one complete
More informationAnnouncements. Dry Friction
Announcements Dry Friction Today s Objectives Understand the characteristics of dry friction Draw a FBD including friction Solve problems involving friction Class Activities Applications Characteristics
More informationMAE143A Signals & Systems, Final Exam  Wednesday March 16, 2005
MAE43A Signals & Systems, Final Exam  Wednesday March 6, 25 Instructions This quiz is open book. You may use whatever written materials you choose including your class notes and the textbook. You may
More informationEE 402 RECITATION #13 REPORT
MIDDLE EAST TECHNICAL UNIVERSITY EE 402 RECITATION #13 REPORT LEADLAG COMPENSATOR DESIGN F. Kağan İPEK Utku KIRAN Ç. Berkan Şahin 5/16/2013 Contents INTRODUCTION... 3 MODELLING... 3 OBTAINING PTF of OPEN
More informationTHE NOT SO SIMPLE PENDULUM
INTRODUCTION: THE NOT SO SIMPLE PENDULUM This laboratory experiment is used to study a wide range of topics in mechanics like velocity, acceleration, forces and their components, the gravitational force,
More informationSensor Performance Metrics
Sensor Performance Metrics Michael Todd Professor and Vice Chair Dept. of Structural Engineering University of California, San Diego mdtodd@ucsd.edu Email me if you want a copy. Outline Sensors as dynamic
More informationCoupled spring equations
int. j. math. educ. sci. technol., 2003 vol. 34, no. 1, 65 79 Coupled spring equations TEMPLE H. FAY* Technikon Pretoria and Mathematics, University of Southern Mississippi, Box 5045, Hattiesburg, MS 394065045,
More informationv v ax v a x a v a v = = = Since F = ma, it follows that a = F/m. The mass of the arrow is unchanged, and ( )
Week 3 homework IMPORTANT NOTE ABOUT WEBASSIGN: In the WebAssign versions of these problems, various details have been changed, so that the answers will come out differently. The method to find the solution
More informationTennessee State University
Tennessee State University Dept. of Physics & Mathematics PHYS 2010 CF SU 2009 Name 30% Time is 2 hours. Cheating will give you an Fgrade. Other instructions will be given in the Hall. MULTIPLE CHOICE.
More informationQNET Experiment #06: HVAC Proportional Integral (PI) Temperature Control Heating, Ventilation, and Air Conditioning Trainer (HVACT)
Quanser NIELVIS Trainer (QNET) Series: QNET Experiment #06: HVAC Proportional Integral (PI) Temperature Control Heating, Ventilation, and Air Conditioning Trainer (HVACT) Student Manual Table of Contents
More informationCopyright 2011 Casa Software Ltd. www.casaxps.com
Table of Contents Variable Forces and Differential Equations... 2 Differential Equations... 3 Second Order Linear Differential Equations with Constant Coefficients... 6 Reduction of Differential Equations
More informationFRICTION, WORK, AND THE INCLINED PLANE
FRICTION, WORK, AND THE INCLINED PLANE Objective: To measure the coefficient of static and inetic friction between a bloc and an inclined plane and to examine the relationship between the plane s angle
More informationTHE SPRING CONSTANT. Apparatus: A spiral spring, a set of weights, a weight hanger, a balance, a stop watch, and a twometer
THE SPRING CONSTANT Objective: To determine the spring constant of a spiral spring by Hooe s law and by its period of oscillatory motion in response to a weight. Apparatus: A spiral spring, a set of weights,
More informationIntroduction to Control Systems
CHAPTER 1 Introduction to Control Systems 1.1 INTRODUCTION In this Chapter, we describe very briefly an introduction to control systems. 1.2 CONTROL SYSTEMS Control systems in an interdisciplinary field
More informationChapter 8 Graphs and Functions:
Chapter 8 Graphs and Functions: Cartesian axes, coordinates and points 8.1 Pictorially we plot points and graphs in a plane (flat space) using a set of Cartesian axes traditionally called the x and y axes
More informationSecond Order Linear Differential Equations
CHAPTER 2 Second Order Linear Differential Equations 2.. Homogeneous Equations A differential equation is a relation involving variables x y y y. A solution is a function f x such that the substitution
More informationSpring Simple Harmonic Oscillator. Spring constant. Potential Energy stored in a Spring. Understanding oscillations. Understanding oscillations
Spring Simple Harmonic Oscillator Simple Harmonic Oscillations and Resonance We have an object attached to a spring. The object is on a horizontal frictionless surface. We move the object so the spring
More informationQUESTIONS : CHAPTER5: LAWS OF MOTION
QUESTIONS : CHAPTER5: LAWS OF MOTION 1. What is Aristotle s fallacy? 2. State Aristotlean law of motion 3. Why uniformly moving body comes to rest? 4. What is uniform motion? 5. Who discovered Aristotlean
More informationChapter 9: Controller design
Chapter 9. Controller Design 9.1. Introduction 9.2. Effect of negative feedback on the network transfer functions 9.2.1. Feedback reduces the transfer function from disturbances to the output 9.2.2. Feedback
More informationManufacturing Equipment Modeling
QUESTION 1 For a linear axis actuated by an electric motor complete the following: a. Derive a differential equation for the linear axis velocity assuming viscous friction acts on the DC motor shaft, leadscrew,
More information2.6 The driven oscillator
2.6. THE DRIVEN OSCILLATOR 131 2.6 The driven oscillator We would like to understand what happens when we apply forces to the harmonic oscillator. That is, we want to solve the equation M d2 x(t) 2 + γ
More information2.161 Signal Processing: Continuous and Discrete Fall 2008
MT OpenCourseWare http://ocw.mit.edu.6 Signal Processing: Continuous and Discrete Fall 00 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. MASSACHUSETTS
More informationcharge is detonated, causing the smaller glider with mass M, to move off to the right at 5 m/s. What is the
This test covers momentum, impulse, conservation of momentum, elastic collisions, inelastic collisions, perfectly inelastic collisions, 2D collisions, and centerofmass, with some problems requiring
More informationBode Diagrams of Transfer Functions and Impedances ECEN 2260 Supplementary Notes R. W. Erickson
Bode Diagrams of Transfer Functions and Impedances ECEN 2260 Supplementary Notes. W. Erickson In the design of a signal processing network, control system, or other analog system, it is usually necessary
More informationChapter 5 Newton s Laws of Motion
Chapter 5 Newton s Laws of Motion Force and Mass Units of Chapter 5 Newton s First Law of Motion Newton s Second Law of Motion Newton s Third Law of Motion The Vector Nature of Forces: Forces in Two Dimensions
More informationLecture L19  Vibration, Normal Modes, Natural Frequencies, Instability
S. Widnall 16.07 Dynamics Fall 2009 Version 1.0 Lecture L19  Vibration, Normal Modes, Natural Frequencies, Instability Vibration, Instability An important class of problems in dynamics concerns the free
More informationDC motors: dynamic model and control techniques
DC motors: dynamic model and control techniques Luca Zaccarian Contents 1 Magnetic considerations on rotating coils 1 1.1 Magnetic field and conductors.......................... 1 1.2 The magnetomotive
More informationUnit 3 Work and Energy Suggested Time: 25 Hours
Unit 3 Work and Energy Suggested Time: 25 Hours PHYSICS 2204 CURRICULUM GUIDE 55 DYNAMICS Work and Energy Introduction When two or more objects are considered at once, a system is involved. To make sense
More informationGeneral Physics Lab: Atwood s Machine
General Physics Lab: Atwood s Machine Introduction One may study Newton s second law using a device known as Atwood s machine, shown below. It consists of a pulley and two hanging masses. The difference
More informationProcess Control Primer
Process Control Primer At the onset of the Industrial Revolution, processes were controlled manually. Men turned valves, pulled levers or changed switches based on the need to turn devices on or off. As
More informationC B A T 3 T 2 T 1. 1. What is the magnitude of the force T 1? A) 37.5 N B) 75.0 N C) 113 N D) 157 N E) 192 N
Three boxes are connected by massless strings and are resting on a frictionless table. Each box has a mass of 15 kg, and the tension T 1 in the right string is accelerating the boxes to the right at a
More informationLab 2: Vector Analysis
Lab 2: Vector Analysis Objectives: to practice using graphical and analytical methods to add vectors in two dimensions Equipment: Meter stick Ruler Protractor Force table Ring Pulleys with attachments
More informationRLC Circuits. OBJECTIVES To observe free and driven oscillations of an RLC circuit.
ircuits It doesn t matter how beautiful your theory is, it doesn t matter how smart you are. If it doesn t agree with experiment, it s wrong. ichard Feynman (19181988) OBJETIVES To observe free and driven
More informationPhysics Spring Experiment #8 1 Experiment #8, Magnetic Forces Using the Current Balance
Physics 182  Spring 2012  Experiment #8 1 Experiment #8, Magnetic Forces Using the Current Balance 1 Purpose 1. To demonstrate and measure the magnetic forces between current carrying wires. 2. To verify
More information226 Chapter 15: OSCILLATIONS
Chapter 15: OSCILLATIONS 1. In simple harmonic motion, the restoring force must be proportional to the: A. amplitude B. frequency C. velocity D. displacement E. displacement squared 2. An oscillatory motion
More informationLesson 11. Luis Anchordoqui. Physics 168. Tuesday, December 8, 15
Lesson 11 Physics 168 1 Oscillations and Waves 2 Simple harmonic motion If an object vibrates or oscillates back and forth over same path each cycle taking same amount of time motion is called periodic
More informationDescription of Surge SECTION 3
SECTION 3 Description of Surge 31 SURGE VERSUS STALL Surge is a dynamic instability that occurs in dynamic compressors. Surge can also occur in axial and centrifugal pumps and blowers, but the occurrence
More informationASEN 3112  Structures. MDOF Dynamic Systems. ASEN 3112 Lecture 1 Slide 1
19 MDOF Dynamic Systems ASEN 3112 Lecture 1 Slide 1 A TwoDOF MassSpringDashpot Dynamic System Consider the lumpedparameter, massspringdashpot dynamic system shown in the Figure. It has two point
More informationLecture L2  Degrees of Freedom and Constraints, Rectilinear Motion
S. Widnall 6.07 Dynamics Fall 009 Version.0 Lecture L  Degrees of Freedom and Constraints, Rectilinear Motion Degrees of Freedom Degrees of freedom refers to the number of independent spatial coordinates
More informationSection 10.7 Parametric Equations
299 Section 10.7 Parametric Equations Objective 1: Defining and Graphing Parametric Equations. Recall when we defined the x (rcos(θ), rsin(θ)) and ycoordinates on a circle of radius r as a function of
More informationOp Amp Bandwidth and Bandwidth Flatness. OPEN LOOP GAIN db. Figure 1: Frequency Response of Voltage Feedback Op Amps
TUTORIAL Op Amp Bandwidth and Bandwidth Flatness BANDWIDTH OF VOLTAGE FEEDBACK OP AMPS The openloop frequency response of a voltage feedback op amp is shown in Figure 1 below. There are two possibilities:
More informationStudents Manual for the Exam. General Engineering and Electrical Civil Engineering Discipline
Students Manual for the Exam General Engineering and Electrical Civil Engineering Discipline  October March 2014 2013  COPYRIGHT NOTICE COPYRIGHTS 2013 NATIONAL CENTER FOR ASSESSMENT IN HIGHER EDUCATION
More information6. Vectors. 1 20092016 Scott Surgent (surgent@asu.edu)
6. Vectors For purposes of applications in calculus and physics, a vector has both a direction and a magnitude (length), and is usually represented as an arrow. The start of the arrow is the vector s foot,
More informationWASSCE / WAEC ELECTIVE / FURTHER MATHEMATICS SYLLABUS
Visit this link to read the introductory text for this syllabus. 1. Circular Measure Lengths of Arcs of circles and Radians Perimeters of Sectors and Segments measure in radians 2. Trigonometry (i) Sine,
More informationdspace DSP DS1104 based State Observer Design for Position Control of DC Servo Motor
dspace DSP DS1104 based State Observer Design for Position Control of DC Servo Motor Jaswandi Sawant, Divyesh Ginoya Department of Instrumentation and control, College of Engineering, Pune. ABSTRACT This
More informationChapter 4. Forces and Newton s Laws of Motion. continued
Chapter 4 Forces and Newton s Laws of Motion continued 4.9 Static and Kinetic Frictional Forces When an object is in contact with a surface forces can act on the objects. The component of this force acting
More informationAim : To study how the time period of a simple pendulum changes when its amplitude is changed.
Aim : To study how the time period of a simple pendulum changes when its amplitude is changed. Teacher s Signature Name: Suvrat Raju Class: XIID Board Roll No.: Table of Contents Aim..................................................1
More informationPhysics 1120: Simple Harmonic Motion Solutions
Questions: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Physics 1120: Simple Harmonic Motion Solutions 1. A 1.75 kg particle moves as function of time as follows: x = 4cos(1.33t+π/5) where distance is measured
More informationStructural Axial, Shear and Bending Moments
Structural Axial, Shear and Bending Moments Positive Internal Forces Acting Recall from mechanics of materials that the internal forces P (generic axial), V (shear) and M (moment) represent resultants
More informationExperiment P19: Simple Harmonic Motion  Mass on a Spring (Force Sensor, Motion Sensor)
PASCO scientific Physics Lab Manual: P191 Science Workshop S. H. M. Mass on a Spring Experiment P19: Simple Harmonic Motion  Mass on a Spring (Force Sensor, Motion Sensor) Concept Time SW Interface Macintosh
More information2After completing this chapter you should be able to
After completing this chapter you should be able to solve problems involving motion in a straight line with constant acceleration model an object moving vertically under gravity understand distance time
More informationRoots and Coefficients of a Quadratic Equation Summary
Roots and Coefficients of a Quadratic Equation Summary For a quadratic equation with roots α and β: Sum of roots = α + β = and Product of roots = αβ = Symmetrical functions of α and β include: x = and
More informationε: Voltage output of Signal Generator (also called the Source voltage or Applied
Experiment #10: LR & RC Circuits Frequency Response EQUIPMENT NEEDED Science Workshop Interface Power Amplifier (2) Voltage Sensor graph paper (optional) (3) Patch Cords Decade resistor, capacitor, and
More informationboth double. A. T and v max B. T remains the same and v max doubles. both remain the same. C. T and v max
Q13.1 An object on the end of a spring is oscillating in simple harmonic motion. If the amplitude of oscillation is doubled, how does this affect the oscillation period T and the object s maximum speed
More informationSTATIC AND KINETIC FRICTION
STATIC AND KINETIC FRICTION LAB MECH 3.COMP From Physics with Computers, Vernier Software & Technology, 2000. INTRODUCTION If you try to slide a heavy box resting on the floor, you may find it difficult
More information1. The diagram below represents magnetic lines of force within a region of space.
1. The diagram below represents magnetic lines of force within a region of space. 4. In which diagram below is the magnetic flux density at point P greatest? (1) (3) (2) (4) The magnetic field is strongest
More informationExperiment: Static and Kinetic Friction
PHY 201: General Physics I Lab page 1 of 6 OBJECTIVES Experiment: Static and Kinetic Friction Use a Force Sensor to measure the force of static friction. Determine the relationship between force of static
More information