Solution to homework problem # and 7.1

Size: px
Start display at page:

Download "Solution to homework problem # and 7.1"

Transcription

1 Let us first review some basic concepts. Solution to homewk problem # and Derive the dual problem from the Lagrangian duality. It wks f convex problems, including all linear programming problems. Given a convex optimization problem fx gi x 0, f i = 1,...,m 1 h i x = 0, f i = 1,...,m 2 let us first write down its Lagrangian function and v i are free variables. Then we have m 1 m 2 Lx,u,v = fx + u i g i x + v i h i x, i=1 i=1 where u i 0, f i = 1,...,m 1, primal problem min x dual problem max u 0,v max Lx,u,v u 0,v min Lx,u,v x To derive the dual problem, we need to compute min x Lx,u,v, which can be calculated by using x Lx,u,v = 0. Indeed, x L = 0, together with, gives the constraints of the dual problem. Suppose gu,v = min x Lx,u,v, then the dual problem is Do not fget, and DO NOT add v 0. gu, v x Lx,u,v = 0 2. F linear programming problems, we have some easy-to-use fmulas. However, one need to be careful on choosing the crect fmula to use. In the following table, the first primal problem is written in its canonical fm, and the second is in its standard fm. primal problem dual problem f = c t x g = bt y Ax b A y + u = c x 0 y 0, f = c t x g = b t y Ax = b A y + u = c x 0 g = b t y A t y c y 0 g = b t y A t y c The fmula given in textbook uses v instead of y. This v is different from the v in Lagrangian duality fms. 3. The Lagrangian duality in item 1 and the fmulas in item 2 should give exactly the same dual problem. Sometime they may have differently-looking fms. However, by eliminating slack variables using a change of variable, these fms can be shown to be equivalent. 1

2 Solution f # The primal problem is f = x 3y x + y = 6 x + y 4 The Lagrangian function can be written as Lx,y,u,v = x 3y + u x + y 4 + vx + y 6, where. Notice that v should be a free variable. Then the dual problem is equivalent to the following saddle point problem: max min Lx,y,u,v. u 0, v x,y To compute min x,y Lx,y,u,v, let us take x 0 = y 0 and when u, v satisfy these two equations, we have { 1 u + v = u + v = 0 min Lx,y,u,v = 1 u + vx u + vy 4u 6v = 0x + 0y 4u 6v. x,y Substitute this into max u 0, v min x,y Lx,y,u,v, the dual problem can be written as, g = 4u 6v 1 u + v = u + v = 0 Notice that is required by the Lagrangian function, and v should be a free variable. It is not hard to find that the primal problem has min f = 16 at x,y = 1,5, and the dual problem has max g = 16 at u,v = 1,2. The details are skipped. 2

3 Alternative solution f # You can also solve the problem as follows. The primal problem is equivalent to f = x 3y x + y 6 x y 6 x + y 4 Then the Lagrangian function becomes Lx,y,u 1,u 2,u 3 = x 3y + u 1 x + y 6 + u 2 x y u 3 x + y 4 where u 1, u 2, u 3 0. Then min x,y Lx,y,u 1,u 2,u 3 is taken at the point where { x u 1 u 2 u 3 = 0 = y u 1 u 2 + u 3 = 0, and its values is Hence the dual problem can also be written as min x,y Lx,y,u 1,u 2,u 3 = 6u 1 + 6u 2 4u 3. g = 6u 1 + 6u 2 4u u 1 u 2 u 3 = u 1 u 2 + u 3 = 0 u 1, u 2, u 3 0 Notice that by setting u = u 3, which should satisfy, and v = u 1 u 2, which should be a free variable, we get exactly the same fm as in the previous solution. 3

4 Solution f # 7.1. The primal problem is This problem can be rewritten into a canonical fm: z = x 1 + 3x 2 x 1 + 4x 2 10 x 1 + 2x 2 10 x 1, x 2 0 f = x 1 3x x 1 2 x 1, x Hence by the fmula f the canonical fm on page 1 of this document, we have the dual problem: g = 10y 1 10y 2 y 1 y 2 + u 1 = 1 4y 1 2y 2 + u 2 = 3 y 0, g = 10y 1 10y 2 y 1 y 2 1 4y 1 2y 2 3 y 0 If you prefer to first write the primal problem into its standard fm, that s fine. The standard fm f the primal problem is f = x 1 3x 2 + 0x 3 + 0x x = x 1, x 2, x 3, x Use the fmula f the standard fm on page 1 of this document, we have the dual problem: g = 10y y 2 y 1 + y 2 + u 1 = 1 4y 1 + 2y 2 + u 2 = 3 y 1 + u 3 = 0 y 2 + u 4 = 0 g = 10y y 2 y 1 + y 2 1 4y 1 + 2y 2 3 y 1 0 y 2 0 It is not hard to see that all above four different fms in 4 boxes f the dual problem are equivalent. F example, take the two fms on the right. By changing the sign of variables y 1 and y 2, we can see that they are exactly the same. Finally, one can also use Lagrangian duality to find the dual f this problem. There are two possibilities. 1. Use the Lagrangian function f the canonical fm, which should be Lx,u = x 1 3x 2 + u 1 x 1 + 4x u 2 x 1 + 2x u 3 x 1 + u 4 x 2 where u 1, u 2, u 3, u 4 0. It is imptant not to fget constraints x 1 0 and x 2 0 in the Lagrangian function. Then using the fmula f the Lagrangian duality on page 1 of this document, we have the dual problem g = 10u 1 10u u 1 + u 2 u 3 = u 1 + 2u 2 u 4 = 0 u 1, u 2, u 3, u 4 0 4

5 2. Use the Lagrangian function f the standard fm, which should be Lx,u,v = x 1 3x 2 + v 1 x 1 + 4x 2 + x v 2 x 1 + 2x 2 + x u 1 x 1 + u 2 x 2 + u 3 x 3 + u 4 x 4 where u 1, u 2, u 3, u 4 0. Again, it is imptant not to fget constraints x i 0, f i = 1,2,3,4, in the Lagrangian function. Also, notice that v 1, v 2 are free variables, since they cresponds to equation type constraints of the standard fm. Then using the fmula f the Lagrangian duality, the dual problem is g = 10v 1 10v v 1 + v 2 u 1 = v 1 + 2v 2 u 2 = 0 v 1 u 3 = 0 v 2 u 4 = 0 u 1, u 2, u 3, u 4 0 Altogether, f problem # 7.1, we already have 6 different fms f the dual problem. All of them are equivalent. this is left as an exercise f you. It can also be shown that the minimum of the primal problem is 10, and the maximum of the dual problem no matter in which fm is 10. 5

Linear Programming Notes V Problem Transformations

Linear Programming Notes V Problem Transformations Linear Programming Notes V Problem Transformations 1 Introduction Any linear programming problem can be rewritten in either of two standard forms. In the first form, the objective is to maximize, the material

More information

Duality in General Programs. Ryan Tibshirani Convex Optimization 10-725/36-725

Duality in General Programs. Ryan Tibshirani Convex Optimization 10-725/36-725 Duality in General Programs Ryan Tibshirani Convex Optimization 10-725/36-725 1 Last time: duality in linear programs Given c R n, A R m n, b R m, G R r n, h R r : min x R n c T x max u R m, v R r b T

More information

Nonlinear Optimization: Algorithms 3: Interior-point methods

Nonlinear Optimization: Algorithms 3: Interior-point methods Nonlinear Optimization: Algorithms 3: Interior-point methods INSEAD, Spring 2006 Jean-Philippe Vert Ecole des Mines de Paris Jean-Philippe.Vert@mines.org Nonlinear optimization c 2006 Jean-Philippe Vert,

More information

Support Vector Machine (SVM)

Support Vector Machine (SVM) Support Vector Machine (SVM) CE-725: Statistical Pattern Recognition Sharif University of Technology Spring 2013 Soleymani Outline Margin concept Hard-Margin SVM Soft-Margin SVM Dual Problems of Hard-Margin

More information

1 Introduction. Linear Programming. Questions. A general optimization problem is of the form: choose x to. max f(x) subject to x S. where.

1 Introduction. Linear Programming. Questions. A general optimization problem is of the form: choose x to. max f(x) subject to x S. where. Introduction Linear Programming Neil Laws TT 00 A general optimization problem is of the form: choose x to maximise f(x) subject to x S where x = (x,..., x n ) T, f : R n R is the objective function, S

More information

4.6 Linear Programming duality

4.6 Linear Programming duality 4.6 Linear Programming duality To any minimization (maximization) LP we can associate a closely related maximization (minimization) LP. Different spaces and objective functions but in general same optimal

More information

Linear Programming for Optimization. Mark A. Schulze, Ph.D. Perceptive Scientific Instruments, Inc.

Linear Programming for Optimization. Mark A. Schulze, Ph.D. Perceptive Scientific Instruments, Inc. 1. Introduction Linear Programming for Optimization Mark A. Schulze, Ph.D. Perceptive Scientific Instruments, Inc. 1.1 Definition Linear programming is the name of a branch of applied mathematics that

More information

Duality of linear conic problems

Duality of linear conic problems Duality of linear conic problems Alexander Shapiro and Arkadi Nemirovski Abstract It is well known that the optimal values of a linear programming problem and its dual are equal to each other if at least

More information

Mathematical finance and linear programming (optimization)

Mathematical finance and linear programming (optimization) Mathematical finance and linear programming (optimization) Geir Dahl September 15, 2009 1 Introduction The purpose of this short note is to explain how linear programming (LP) (=linear optimization) may

More information

Linear Programming in Matrix Form

Linear Programming in Matrix Form Linear Programming in Matrix Form Appendix B We first introduce matrix concepts in linear programming by developing a variation of the simplex method called the revised simplex method. This algorithm,

More information

Chapter 9. Systems of Linear Equations

Chapter 9. Systems of Linear Equations Chapter 9. Systems of Linear Equations 9.1. Solve Systems of Linear Equations by Graphing KYOTE Standards: CR 21; CA 13 In this section we discuss how to solve systems of two linear equations in two variables

More information

SOLUTIONS FOR PROBLEM SET 2

SOLUTIONS FOR PROBLEM SET 2 SOLUTIONS FOR PROBLEM SET 2 A: There exist primes p such that p+6k is also prime for k = 1,2 and 3. One such prime is p = 11. Another such prime is p = 41. Prove that there exists exactly one prime p such

More information

SOLUTIONS. f x = 6x 2 6xy 24x, f y = 3x 2 6y. To find the critical points, we solve

SOLUTIONS. f x = 6x 2 6xy 24x, f y = 3x 2 6y. To find the critical points, we solve SOLUTIONS Problem. Find the critical points of the function f(x, y = 2x 3 3x 2 y 2x 2 3y 2 and determine their type i.e. local min/local max/saddle point. Are there any global min/max? Partial derivatives

More information

FOR TEACHERS ONLY. The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION ALGEBRA 2/TRIGONOMETRY

FOR TEACHERS ONLY. The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION ALGEBRA 2/TRIGONOMETRY FOR TEACHERS ONLY The University of the State of New Yk REGENTS HIGH SCHOOL EXAMINATION ALGEBRA 2/TRIGONOMETRY Tuesday, January 28, 2014 1:15 to 4:15 p.m., only SCORING KEY AND RATING GUIDE Mechanics of

More information

hij Mark Scheme Mathematics 6360 Statistics 6380 General Certificate of Education MS/SS1B Statistics 1B 2009 examination - January series

hij Mark Scheme Mathematics 6360 Statistics 6380 General Certificate of Education MS/SS1B Statistics 1B 2009 examination - January series Version 1.0: 0109 hij General Certificate of Education Mathematics 6360 Statistics 6380 MS/SS1B Statistics 1B Mark Scheme 2009 examination - January series Mark schemes are prepared by the Principal Examiner

More information

Several Views of Support Vector Machines

Several Views of Support Vector Machines Several Views of Support Vector Machines Ryan M. Rifkin Honda Research Institute USA, Inc. Human Intention Understanding Group 2007 Tikhonov Regularization We are considering algorithms of the form min

More information

What does the number m in y = mx + b measure? To find out, suppose (x 1, y 1 ) and (x 2, y 2 ) are two points on the graph of y = mx + b.

What does the number m in y = mx + b measure? To find out, suppose (x 1, y 1 ) and (x 2, y 2 ) are two points on the graph of y = mx + b. PRIMARY CONTENT MODULE Algebra - Linear Equations & Inequalities T-37/H-37 What does the number m in y = mx + b measure? To find out, suppose (x 1, y 1 ) and (x 2, y 2 ) are two points on the graph of

More information

Introduction to Support Vector Machines. Colin Campbell, Bristol University

Introduction to Support Vector Machines. Colin Campbell, Bristol University Introduction to Support Vector Machines Colin Campbell, Bristol University 1 Outline of talk. Part 1. An Introduction to SVMs 1.1. SVMs for binary classification. 1.2. Soft margins and multi-class classification.

More information

Two-Stage Stochastic Linear Programs

Two-Stage Stochastic Linear Programs Two-Stage Stochastic Linear Programs Operations Research Anthony Papavasiliou 1 / 27 Two-Stage Stochastic Linear Programs 1 Short Reviews Probability Spaces and Random Variables Convex Analysis 2 Deterministic

More information

FOR TEACHERS ONLY. The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION ALGEBRA 2/TRIGONOMETRY SCORING KEY AND RATING GUIDE

FOR TEACHERS ONLY. The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION ALGEBRA 2/TRIGONOMETRY SCORING KEY AND RATING GUIDE FOR TEACHERS ONLY The University of the State of New Yk REGENTS HIGH SCHOOL EXAMINATION ALGEBRA 2/TRIGONOMETRY Tuesday, January 25, 2011 1:15 to 4:15 p.m., only SCORING KEY AND RATING GUIDE Mechanics of

More information

FOR TEACHERS ONLY. The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION. Tuesday, June 3, 2014 9:15 a.m. to 12:15 p.m.

FOR TEACHERS ONLY. The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION. Tuesday, June 3, 2014 9:15 a.m. to 12:15 p.m. FOR TEACHERS ONLY The University of the State of New Yk REGENTS HIGH SCHOOL EXAMINATION ALGEBRA I (Common Ce) Tuesday, June 3, 2014 9:15 a.m. to 12:15 p.m., only SCORING KEY AND RATING GUIDE Mechanics

More information

2.3 Convex Constrained Optimization Problems

2.3 Convex Constrained Optimization Problems 42 CHAPTER 2. FUNDAMENTAL CONCEPTS IN CONVEX OPTIMIZATION Theorem 15 Let f : R n R and h : R R. Consider g(x) = h(f(x)) for all x R n. The function g is convex if either of the following two conditions

More information

Question 2: How do you solve a matrix equation using the matrix inverse?

Question 2: How do you solve a matrix equation using the matrix inverse? Question : How do you solve a matrix equation using the matrix inverse? In the previous question, we wrote systems of equations as a matrix equation AX B. In this format, the matrix A contains the coefficients

More information

Nonlinear Programming Methods.S2 Quadratic Programming

Nonlinear Programming Methods.S2 Quadratic Programming Nonlinear Programming Methods.S2 Quadratic Programming Operations Research Models and Methods Paul A. Jensen and Jonathan F. Bard A linearly constrained optimization problem with a quadratic objective

More information

Duality in Linear Programming

Duality in Linear Programming Duality in Linear Programming 4 In the preceding chapter on sensitivity analysis, we saw that the shadow-price interpretation of the optimal simplex multipliers is a very useful concept. First, these shadow

More information

Economic Principles Solutions to Problem Set 1

Economic Principles Solutions to Problem Set 1 Economic Principles Solutions to Problem Set 1 Question 1. Let < be represented b u : R n +! R. Prove that u (x) is strictl quasiconcave if and onl if < is strictl convex. If part: ( strict convexit of

More information

Distributed Machine Learning and Big Data

Distributed Machine Learning and Big Data Distributed Machine Learning and Big Data Sourangshu Bhattacharya Dept. of Computer Science and Engineering, IIT Kharagpur. http://cse.iitkgp.ac.in/~sourangshu/ August 21, 2015 Sourangshu Bhattacharya

More information

Economics 326: Duality and the Slutsky Decomposition. Ethan Kaplan

Economics 326: Duality and the Slutsky Decomposition. Ethan Kaplan Economics 326: Duality and the Slutsky Decomposition Ethan Kaplan September 19, 2011 Outline 1. Convexity and Declining MRS 2. Duality and Hicksian Demand 3. Slutsky Decomposition 4. Net and Gross Substitutes

More information

IEOR 4404 Homework #2 Intro OR: Deterministic Models February 14, 2011 Prof. Jay Sethuraman Page 1 of 5. Homework #2

IEOR 4404 Homework #2 Intro OR: Deterministic Models February 14, 2011 Prof. Jay Sethuraman Page 1 of 5. Homework #2 IEOR 4404 Homework # Intro OR: Deterministic Models February 14, 011 Prof. Jay Sethuraman Page 1 of 5 Homework #.1 (a) What is the optimal solution of this problem? Let us consider that x 1, x and x 3

More information

L 2 : x = s + 1, y = s, z = 4s + 4. 3. Suppose that C has coordinates (x, y, z). Then from the vector equality AC = BD, one has

L 2 : x = s + 1, y = s, z = 4s + 4. 3. Suppose that C has coordinates (x, y, z). Then from the vector equality AC = BD, one has The line L through the points A and B is parallel to the vector AB = 3, 2, and has parametric equations x = 3t + 2, y = 2t +, z = t Therefore, the intersection point of the line with the plane should satisfy:

More information

10. Proximal point method

10. Proximal point method L. Vandenberghe EE236C Spring 2013-14) 10. Proximal point method proximal point method augmented Lagrangian method Moreau-Yosida smoothing 10-1 Proximal point method a conceptual algorithm for minimizing

More information

FOR TEACHERS ONLY. The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY

FOR TEACHERS ONLY. The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY FOR TEACHERS ONLY The University of the State of New Yk REGENTS HIGH SCHOOL EXAMINATION GEOMETRY Thursday, August 13, 2015 8:30 to 11:30 a.m., only SCORING KEY AND RATING GUIDE Mechanics of Rating The

More information

Chapter 4. Duality. 4.1 A Graphical Example

Chapter 4. Duality. 4.1 A Graphical Example Chapter 4 Duality Given any linear program, there is another related linear program called the dual. In this chapter, we will develop an understanding of the dual linear program. This understanding translates

More information

Support Vector Machines

Support Vector Machines Support Vector Machines Charlie Frogner 1 MIT 2011 1 Slides mostly stolen from Ryan Rifkin (Google). Plan Regularization derivation of SVMs. Analyzing the SVM problem: optimization, duality. Geometric

More information

Date: April 12, 2001. Contents

Date: April 12, 2001. Contents 2 Lagrange Multipliers Date: April 12, 2001 Contents 2.1. Introduction to Lagrange Multipliers......... p. 2 2.2. Enhanced Fritz John Optimality Conditions...... p. 12 2.3. Informative Lagrange Multipliers...........

More information

Section 13.5 Equations of Lines and Planes

Section 13.5 Equations of Lines and Planes Section 13.5 Equations of Lines and Planes Generalizing Linear Equations One of the main aspects of single variable calculus was approximating graphs of functions by lines - specifically, tangent lines.

More information

1 Solving LPs: The Simplex Algorithm of George Dantzig

1 Solving LPs: The Simplex Algorithm of George Dantzig Solving LPs: The Simplex Algorithm of George Dantzig. Simplex Pivoting: Dictionary Format We illustrate a general solution procedure, called the simplex algorithm, by implementing it on a very simple example.

More information

constraint. Let us penalize ourselves for making the constraint too big. We end up with a

constraint. Let us penalize ourselves for making the constraint too big. We end up with a Chapter 4 Constrained Optimization 4.1 Equality Constraints (Lagrangians) Suppose we have a problem: Maximize 5, (x 1, 2) 2, 2(x 2, 1) 2 subject to x 1 +4x 2 =3 If we ignore the constraint, we get the

More information

FOR TEACHERS ONLY. The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Friday, June 19, 2015 1:15 to 4:15 p.m.

FOR TEACHERS ONLY. The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Friday, June 19, 2015 1:15 to 4:15 p.m. FOR TEACHERS ONLY The University of the State of New Yk REGENTS HIGH SCHOOL EXAMINATION GEOMETRY Friday, June 19, 2015 1:15 to 4:15 p.m., only SCORING KEY AND RATING GUIDE Mechanics of Rating The following

More information

FOR TEACHERS ONLY. The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION. Monday, January 26, 2015 1:15 to 4:15 p.m.

FOR TEACHERS ONLY. The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION. Monday, January 26, 2015 1:15 to 4:15 p.m. FOR TEACHERS ONLY The University of the State of New Yk REGENTS HIGH SCHOOL EXAMINATION ALGEBRA I (Common Ce) Monday, January 26, 2015 1:15 to 4:15 p.m., only SCORING KEY AND RATING GUIDE Mechanics of

More information

5 Systems of Equations

5 Systems of Equations Systems of Equations Concepts: Solutions to Systems of Equations-Graphically and Algebraically Solving Systems - Substitution Method Solving Systems - Elimination Method Using -Dimensional Graphs to Approximate

More information

Constrained Optimisation

Constrained Optimisation CHAPTER 9 Constrained Optimisation Rational economic agents are assumed to make choices that maximise their utility or profit But their choices are usually constrained for example the consumer s choice

More information

Linear Programming Notes VII Sensitivity Analysis

Linear Programming Notes VII Sensitivity Analysis Linear Programming Notes VII Sensitivity Analysis 1 Introduction When you use a mathematical model to describe reality you must make approximations. The world is more complicated than the kinds of optimization

More information

Homework # 3 Solutions

Homework # 3 Solutions Homework # 3 Solutions February, 200 Solution (2.3.5). Noting that and ( + 3 x) x 8 = + 3 x) by Equation (2.3.) x 8 x 8 = + 3 8 by Equations (2.3.7) and (2.3.0) =3 x 8 6x2 + x 3 ) = 2 + 6x 2 + x 3 x 8

More information

Solving Linear Programs

Solving Linear Programs Solving Linear Programs 2 In this chapter, we present a systematic procedure for solving linear programs. This procedure, called the simplex method, proceeds by moving from one feasible solution to another,

More information

Envelope Theorem. Kevin Wainwright. Mar 22, 2004

Envelope Theorem. Kevin Wainwright. Mar 22, 2004 Envelope Theorem Kevin Wainwright Mar 22, 2004 1 Maximum Value Functions A maximum (or minimum) value function is an objective function where the choice variables have been assigned their optimal values.

More information

Solving Systems of Two Equations Algebraically

Solving Systems of Two Equations Algebraically 8 MODULE 3. EQUATIONS 3b Solving Systems of Two Equations Algebraically Solving Systems by Substitution In this section we introduce an algebraic technique for solving systems of two equations in two unknowns

More information

56:171 Operations Research Midterm Exam Solutions Fall 2001

56:171 Operations Research Midterm Exam Solutions Fall 2001 56:171 Operations Research Midterm Exam Solutions Fall 2001 True/False: Indicate by "+" or "o" whether each statement is "true" or "false", respectively: o_ 1. If a primal LP constraint is slack at the

More information

Lecture 5 Principal Minors and the Hessian

Lecture 5 Principal Minors and the Hessian Lecture 5 Principal Minors and the Hessian Eivind Eriksen BI Norwegian School of Management Department of Economics October 01, 2010 Eivind Eriksen (BI Dept of Economics) Lecture 5 Principal Minors and

More information

Further Study on Strong Lagrangian Duality Property for Invex Programs via Penalty Functions 1

Further Study on Strong Lagrangian Duality Property for Invex Programs via Penalty Functions 1 Further Study on Strong Lagrangian Duality Property for Invex Programs via Penalty Functions 1 J. Zhang Institute of Applied Mathematics, Chongqing University of Posts and Telecommunications, Chongqing

More information

Lecture 2: August 29. Linear Programming (part I)

Lecture 2: August 29. Linear Programming (part I) 10-725: Convex Optimization Fall 2013 Lecture 2: August 29 Lecturer: Barnabás Póczos Scribes: Samrachana Adhikari, Mattia Ciollaro, Fabrizio Lecci Note: LaTeX template courtesy of UC Berkeley EECS dept.

More information

(a) We have x = 3 + 2t, y = 2 t, z = 6 so solving for t we get the symmetric equations. x 3 2. = 2 y, z = 6. t 2 2t + 1 = 0,

(a) We have x = 3 + 2t, y = 2 t, z = 6 so solving for t we get the symmetric equations. x 3 2. = 2 y, z = 6. t 2 2t + 1 = 0, Name: Solutions to Practice Final. Consider the line r(t) = 3 + t, t, 6. (a) Find symmetric equations for this line. (b) Find the point where the first line r(t) intersects the surface z = x + y. (a) We

More information

Final. Mark Scheme. Mathematics/Statistics MS/SS1B. (Specification 6360/6380) Statistics 1B. General Certificate of Education (A-level) June 2013

Final. Mark Scheme. Mathematics/Statistics MS/SS1B. (Specification 6360/6380) Statistics 1B. General Certificate of Education (A-level) June 2013 Version 1.0 General Certificate of Education (A-level) June 2013 Mathematics/Statistics MS/SS1B (Specification 6360/6380) Statistics 1B Final Mark Scheme Mark schemes are prepared by the Principal Examiner

More information

Section 9.5: Equations of Lines and Planes

Section 9.5: Equations of Lines and Planes Lines in 3D Space Section 9.5: Equations of Lines and Planes Practice HW from Stewart Textbook (not to hand in) p. 673 # 3-5 odd, 2-37 odd, 4, 47 Consider the line L through the point P = ( x, y, ) that

More information

Recovery of primal solutions from dual subgradient methods for mixed binary linear programming; a branch-and-bound approach

Recovery of primal solutions from dual subgradient methods for mixed binary linear programming; a branch-and-bound approach MASTER S THESIS Recovery of primal solutions from dual subgradient methods for mixed binary linear programming; a branch-and-bound approach PAULINE ALDENVIK MIRJAM SCHIERSCHER Department of Mathematical

More information

Linear Programming. March 14, 2014

Linear Programming. March 14, 2014 Linear Programming March 1, 01 Parts of this introduction to linear programming were adapted from Chapter 9 of Introduction to Algorithms, Second Edition, by Cormen, Leiserson, Rivest and Stein [1]. 1

More information

Integrating Benders decomposition within Constraint Programming

Integrating Benders decomposition within Constraint Programming Integrating Benders decomposition within Constraint Programming Hadrien Cambazard, Narendra Jussien email: {hcambaza,jussien}@emn.fr École des Mines de Nantes, LINA CNRS FRE 2729 4 rue Alfred Kastler BP

More information

Module1. x 1000. y 800.

Module1. x 1000. y 800. Module1 1 Welcome to the first module of the course. It is indeed an exciting event to share with you the subject that has lot to offer both from theoretical side and practical aspects. To begin with,

More information

Alternative proof for claim in [1]

Alternative proof for claim in [1] Alternative proof for claim in [1] Ritesh Kolte and Ayfer Özgür Aydin The problem addressed in [1] is described in Section 1 and the solution is given in Section. In the proof in [1], it seems that obtaining

More information

Optimization Theory for Large Systems

Optimization Theory for Large Systems Optimization Theory for Large Systems LEON S. LASDON CASE WESTERN RESERVE UNIVERSITY THE MACMILLAN COMPANY COLLIER-MACMILLAN LIMITED, LONDON Contents 1. Linear and Nonlinear Programming 1 1.1 Unconstrained

More information

SYSTEM ANALOGIES. Mechanical Analogy I: Intuitive

SYSTEM ANALOGIES. Mechanical Analogy I: Intuitive Engs Systems SYSTEM ANALOGIES There are simple and straightfward analogies between electrical, thermal, and fluid systems that we have been using as we study thermal and fluid systems. They are detailed

More information

FOR TEACHERS ONLY. The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY (COMMON CORE)

FOR TEACHERS ONLY. The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY (COMMON CORE) FOR TEACHERS ONLY The University of the State of New Yk REGENTS HIGH SCHOOL EXAMINATION GEOMETRY (COMMON CORE) Wednesday, August 12, 2015 8:30 to 11:30 a.m., only SCORING KEY AND RATING GUIDE Mechanics

More information

Summer course on Convex Optimization. Fifth Lecture Interior-Point Methods (1) Michel Baes, K.U.Leuven Bharath Rangarajan, U.

Summer course on Convex Optimization. Fifth Lecture Interior-Point Methods (1) Michel Baes, K.U.Leuven Bharath Rangarajan, U. Summer course on Convex Optimization Fifth Lecture Interior-Point Methods (1) Michel Baes, K.U.Leuven Bharath Rangarajan, U.Minnesota Interior-Point Methods: the rebirth of an old idea Suppose that f is

More information

Practical Guide to the Simplex Method of Linear Programming

Practical Guide to the Simplex Method of Linear Programming Practical Guide to the Simplex Method of Linear Programming Marcel Oliver Revised: April, 0 The basic steps of the simplex algorithm Step : Write the linear programming problem in standard form Linear

More information

Some representability and duality results for convex mixed-integer programs.

Some representability and duality results for convex mixed-integer programs. Some representability and duality results for convex mixed-integer programs. Santanu S. Dey Joint work with Diego Morán and Juan Pablo Vielma December 17, 2012. Introduction About Motivation Mixed integer

More information

Interior Point Methods and Linear Programming

Interior Point Methods and Linear Programming Interior Point Methods and Linear Programming Robert Robere University of Toronto December 13, 2012 Abstract The linear programming problem is usually solved through the use of one of two algorithms: either

More information

International Doctoral School Algorithmic Decision Theory: MCDA and MOO

International Doctoral School Algorithmic Decision Theory: MCDA and MOO International Doctoral School Algorithmic Decision Theory: MCDA and MOO Lecture 2: Multiobjective Linear Programming Department of Engineering Science, The University of Auckland, New Zealand Laboratoire

More information

Constrained optimization.

Constrained optimization. ams/econ 11b supplementary notes ucsc Constrained optimization. c 2010, Yonatan Katznelson 1. Constraints In many of the optimization problems that arise in economics, there are restrictions on the values

More information

Big Data - Lecture 1 Optimization reminders

Big Data - Lecture 1 Optimization reminders Big Data - Lecture 1 Optimization reminders S. Gadat Toulouse, Octobre 2014 Big Data - Lecture 1 Optimization reminders S. Gadat Toulouse, Octobre 2014 Schedule Introduction Major issues Examples Mathematics

More information

Seminar 4: CHARGED PARTICLE IN ELECTROMAGNETIC FIELD. q j

Seminar 4: CHARGED PARTICLE IN ELECTROMAGNETIC FIELD. q j Seminar 4: CHARGED PARTICLE IN ELECTROMAGNETIC FIELD Introduction Let take Lagrange s equations in the form that follows from D Alembert s principle, ) d T T = Q j, 1) dt q j q j suppose that the generalized

More information

In this section, we will consider techniques for solving problems of this type.

In this section, we will consider techniques for solving problems of this type. Constrained optimisation roblems in economics typically involve maximising some quantity, such as utility or profit, subject to a constraint for example income. We shall therefore need techniques for solving

More information

c 2008 Je rey A. Miron We have described the constraints that a consumer faces, i.e., discussed the budget constraint.

c 2008 Je rey A. Miron We have described the constraints that a consumer faces, i.e., discussed the budget constraint. Lecture 2b: Utility c 2008 Je rey A. Miron Outline: 1. Introduction 2. Utility: A De nition 3. Monotonic Transformations 4. Cardinal Utility 5. Constructing a Utility Function 6. Examples of Utility Functions

More information

1 Norms and Vector Spaces

1 Norms and Vector Spaces 008.10.07.01 1 Norms and Vector Spaces Suppose we have a complex vector space V. A norm is a function f : V R which satisfies (i) f(x) 0 for all x V (ii) f(x + y) f(x) + f(y) for all x,y V (iii) f(λx)

More information

Proximal mapping via network optimization

Proximal mapping via network optimization L. Vandenberghe EE236C (Spring 23-4) Proximal mapping via network optimization minimum cut and maximum flow problems parametric minimum cut problem application to proximal mapping Introduction this lecture:

More information

Study Guide 2 Solutions MATH 111

Study Guide 2 Solutions MATH 111 Study Guide 2 Solutions MATH 111 Having read through the sample test, I wanted to warn everyone, that I might consider asking questions involving inequalities, the absolute value function (as in the suggested

More information

Linear and quadratic Taylor polynomials for functions of several variables.

Linear and quadratic Taylor polynomials for functions of several variables. ams/econ 11b supplementary notes ucsc Linear quadratic Taylor polynomials for functions of several variables. c 010, Yonatan Katznelson Finding the extreme (minimum or maximum) values of a function, is

More information

Examples on Monopoly and Third Degree Price Discrimination

Examples on Monopoly and Third Degree Price Discrimination 1 Examples on Monopoly and Third Degree Price Discrimination This hand out contains two different parts. In the first, there are examples concerning the profit maximizing strategy for a firm with market

More information

A NEW LOOK AT CONVEX ANALYSIS AND OPTIMIZATION

A NEW LOOK AT CONVEX ANALYSIS AND OPTIMIZATION 1 A NEW LOOK AT CONVEX ANALYSIS AND OPTIMIZATION Dimitri Bertsekas M.I.T. FEBRUARY 2003 2 OUTLINE Convexity issues in optimization Historical remarks Our treatment of the subject Three unifying lines of

More information

Slope-Intercept Equation. Example

Slope-Intercept Equation. Example 1.4 Equations of Lines and Modeling Find the slope and the y intercept of a line given the equation y = mx + b, or f(x) = mx + b. Graph a linear equation using the slope and the y-intercept. Determine

More information

EdExcel Decision Mathematics 1

EdExcel Decision Mathematics 1 EdExcel Decision Mathematics 1 Linear Programming Section 1: Formulating and solving graphically Notes and Examples These notes contain subsections on: Formulating LP problems Solving LP problems Minimisation

More information

3.3. Solving Polynomial Equations. Introduction. Prerequisites. Learning Outcomes

3.3. Solving Polynomial Equations. Introduction. Prerequisites. Learning Outcomes Solving Polynomial Equations 3.3 Introduction Linear and quadratic equations, dealt within Sections 3.1 and 3.2, are members of a class of equations, called polynomial equations. These have the general

More information

3.2. Solving quadratic equations. Introduction. Prerequisites. Learning Outcomes. Learning Style

3.2. Solving quadratic equations. Introduction. Prerequisites. Learning Outcomes. Learning Style Solving quadratic equations 3.2 Introduction A quadratic equation is one which can be written in the form ax 2 + bx + c = 0 where a, b and c are numbers and x is the unknown whose value(s) we wish to find.

More information

SOLVING EQUATIONS WITH EXCEL

SOLVING EQUATIONS WITH EXCEL SOLVING EQUATIONS WITH EXCEL Excel and Lotus software are equipped with functions that allow the user to identify the root of an equation. By root, we mean the values of x such that a given equation cancels

More information

Lecture 5/6. Enrico Bini

Lecture 5/6. Enrico Bini Advanced Lecture 5/6 November 8, 212 Outline 1 2 3 Theorem (Lemma 3 in [?]) Space of feasible C i N is EDF-schedulable if and only if i U i 1 and: t D n i=1 { max, t + Ti D i T i } C i t with D = {d i,k

More information

Section 2.7 One-to-One Functions and Their Inverses

Section 2.7 One-to-One Functions and Their Inverses Section. One-to-One Functions and Their Inverses One-to-One Functions HORIZONTAL LINE TEST: A function is one-to-one if and only if no horizontal line intersects its graph more than once. EXAMPLES: 1.

More information

Linear Programming: Chapter 11 Game Theory

Linear Programming: Chapter 11 Game Theory Linear Programming: Chapter 11 Game Theory Robert J. Vanderbei October 17, 2007 Operations Research and Financial Engineering Princeton University Princeton, NJ 08544 http://www.princeton.edu/ rvdb Rock-Paper-Scissors

More information

Partial Fractions. (x 1)(x 2 + 1)

Partial Fractions. (x 1)(x 2 + 1) Partial Fractions Adding rational functions involves finding a common denominator, rewriting each fraction so that it has that denominator, then adding. For example, 3x x 1 3x(x 1) (x + 1)(x 1) + 1(x +

More information

Solutions Of Some Non-Linear Programming Problems BIJAN KUMAR PATEL. Master of Science in Mathematics. Prof. ANIL KUMAR

Solutions Of Some Non-Linear Programming Problems BIJAN KUMAR PATEL. Master of Science in Mathematics. Prof. ANIL KUMAR Solutions Of Some Non-Linear Programming Problems A PROJECT REPORT submitted by BIJAN KUMAR PATEL for the partial fulfilment for the award of the degree of Master of Science in Mathematics under the supervision

More information

Methods of Solution of Selected Differential Equations Carol A. Edwards Chandler-Gilbert Community College

Methods of Solution of Selected Differential Equations Carol A. Edwards Chandler-Gilbert Community College Methods of Solution of Selected Differential Equations Carol A. Edwards Chandler-Gilbert Community College Equations of Order One: Mdx + Ndy = 0 1. Separate variables. 2. M, N homogeneous of same degree:

More information

DERIVATIVES AS MATRICES; CHAIN RULE

DERIVATIVES AS MATRICES; CHAIN RULE DERIVATIVES AS MATRICES; CHAIN RULE 1. Derivatives of Real-valued Functions Let s first consider functions f : R 2 R. Recall that if the partial derivatives of f exist at the point (x 0, y 0 ), then we

More information

Click on the links below to jump directly to the relevant section

Click on the links below to jump directly to the relevant section Click on the links below to jump directly to the relevant section What is algebra? Operations with algebraic terms Mathematical properties of real numbers Order of operations What is Algebra? Algebra is

More information

Math 265 (Butler) Practice Midterm II B (Solutions)

Math 265 (Butler) Practice Midterm II B (Solutions) Math 265 (Butler) Practice Midterm II B (Solutions) 1. Find (x 0, y 0 ) so that the plane tangent to the surface z f(x, y) x 2 + 3xy y 2 at ( x 0, y 0, f(x 0, y 0 ) ) is parallel to the plane 16x 2y 2z

More information

CHAPTER 9. Integer Programming

CHAPTER 9. Integer Programming CHAPTER 9 Integer Programming An integer linear program (ILP) is, by definition, a linear program with the additional constraint that all variables take integer values: (9.1) max c T x s t Ax b and x integral

More information

Determine If An Equation Represents a Function

Determine If An Equation Represents a Function Question : What is a linear function? The term linear function consists of two parts: linear and function. To understand what these terms mean together, we must first understand what a function is. The

More information

Practice with Proofs

Practice with Proofs Practice with Proofs October 6, 2014 Recall the following Definition 0.1. A function f is increasing if for every x, y in the domain of f, x < y = f(x) < f(y) 1. Prove that h(x) = x 3 is increasing, using

More information

7.2 Calculus of Variations

7.2 Calculus of Variations 7 CALCULUS OF VARIATIONS 006 c Gilbert Strang 7 Calculus of Variations One theme of this book is the relation of equations to minimum principles To minimize P is to solve P = 0 There may be more to it,

More information

6 Further differentiation and integration techniques

6 Further differentiation and integration techniques 56 6 Further differentiation and integration techniques Here are three more rules for differentiation and two more integration techniques. 6.1 The product rule for differentiation Textbook: Section 2.7

More information

( 1)2 + 2 2 + 2 2 = 9 = 3 We would like to make the length 6. The only vectors in the same direction as v are those

( 1)2 + 2 2 + 2 2 = 9 = 3 We would like to make the length 6. The only vectors in the same direction as v are those 1.(6pts) Which of the following vectors has the same direction as v 1,, but has length 6? (a), 4, 4 (b),, (c) 4,, 4 (d), 4, 4 (e) 0, 6, 0 The length of v is given by ( 1) + + 9 3 We would like to make

More information

An interval linear programming contractor

An interval linear programming contractor An interval linear programming contractor Introduction Milan Hladík Abstract. We consider linear programming with interval data. One of the most challenging problems in this topic is to determine or tight

More information

FOR TEACHERS ONLY. The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION. GEOMETRY (Common Core)

FOR TEACHERS ONLY. The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION. GEOMETRY (Common Core) FOR TEACHERS ONLY The University of the State of New Yk REGENTS HIGH SCHOOL EXAMINATION GEOMETRY (Common Ce) Thursday, January 28, 2016 9:15 a.m. to 12:15 p.m., only SCORING KEY AND RATING GUIDE Mechanics

More information