# Higher. Functions and Graphs. Functions and Graphs 18

Save this PDF as:

Size: px
Start display at page:

## Transcription

1 hsn.uk.net Higher Mathematics UNIT UTCME Functions and Graphs Contents Functions and Graphs 8 Sets 8 Functions 9 Composite Functions 4 Inverse Functions 5 Eponential Functions 4 6 Introduction to Logarithms 5 7 Radians 6 8 Eact Values 6 9 Trigonometric Functions 7 0 Graph Transformations 7 HSN00 This document was produced speciall for the HSN.uk.net website, and we require that an copies or derivative works attribute the work to Higher Still Notes. For more details about the copright on these notes, please see

2 Unit Functions and Graphs UTCME Functions and Graphs Sets In order to stud functions and graphs, we use set theor. This requires some standard smbols and terms, which ou should become familiar with. A set is a collection of objects (usuall numbers). For eample, { 5,6,7,8} brackets). S = is a set (we just list the objects inside curl We refer to the objects in a set as its elements (or members), e.g. 7 is an element of S. We can write this smbolicall as 7 S. It is also clear that 4 is not an element of S; we can write 4 S. Given two sets A and B, we sa A is a subset of B if all elements of A are also elements of B. For eample, { 6,7,8 } is a subset of S. The empt set is the set with no elements. It is denoted b { } or. Standard Sets There are common sets of numbers which have their own smbols. Note that numbers can belong to more than one set. N natural numbers counting numbers, i.e. N = {,,, 4, 5, }. W whole numbers natural numbers including zero, i.e. W = { 0,,,, 4, }. Z integers positive and negative whole numbers, i.e. Z = {,,, 0,,, }. Q rational numbers can be written as a fraction of integers, e.g. 4,, 0 5,. R real numbers all points on the number line, e.g. 6,,,, 0 5. Page 8 HSN00

3 Unit Functions and Graphs Notice that N is a subset of W, which is a subset of Z, which is a subset of Q, which is a subset of R. These relationships between the standard sets are illustrated in the Venn diagram below. R Q Z W N EXAMPLE List all the numbers in the set P = { N :< < 5}. P contains natural numbers which are strictl greater than and strictl less than 5, so: P = {,, 4 }. Note In set notation, a colon ( : ) means such that. Functions A function relates a set of inputs to a set of outputs, with each input related to eactl one output. The set of inputs is called the domain and the resulting set of outputs is called the range. f f ( ) domain range A function is usuall denoted b a lower case letter (e.g. f or g ) and is defined using a formula of the form f ( ) =. This specifies what the output of the function is when is the input. For eample, if f ( ) = + then f squares the input and adds. Page 9 HSN00

4 Unit Functions and Graphs Restrictions on the Domain The domain is the set of all possible inputs to a function, so it must be possible to evaluate the function for an element of the domain. We are free to choose the domain, provided that the function is defined for all elements in it. If no domain is specified then we assume that it is as large as possible. Division b Zero It is impossible to divide b zero. So in functions involving fractions, the domain must eclude numbers which would give a denominator (bottom line) of zero. For eample, the function defined b: f ( ) = 5 cannot have 5 in its domain, since this would make the denominator equal to zero. R. This is read as all belonging to the real set such that does not equal five. The domain of f ma be epressed formall as { : 5} Even Roots Using real numbers, we cannot evaluate an even root (i.e. square root, fourth root etc.) of a negative number. So the domain of an function involving even roots must eclude numbers which would give a negative number under the root. For eample, the function defined b: f ( ) = 7 must have 7 0. Solving for gives 7, so the domain of f can be epressed formall as { : } EXAMPLE R A function g is defined b g ( ) =. + 4 Define a suitable domain for g. We cannot divide b zero, so 4 R.. The domain is { : 4} Page 0 HSN00

5 Unit Functions and Graphs Identifing the Range Recall that the range is the set of possible outputs. Some functions cannot produce certain values so these are not in the range. For eample: f ( ) = does not produce negative values, since an number squared is either positive or zero. Looking at the graph of a function makes identifing its range more straightforward. If we consider the graph of = f ( ) (shown to the left) it is clear that there are no negative -values. The range can be stated as f ( ) 0. Note that the range also depends on the choice of domain. For eample, if the domain of f ( ) = is chosen to be { R : } then the range can be stated as f ( ) 9. EXAMPLE = f ( ). A function f is defined b f ( ) = sin for R. Identif its range. Sketching the graph of = f ( ) shows that sin onl produces values from to inclusive. = sin This can be written as f ( ). Page HSN00

6 Unit Functions and Graphs Composite Functions Two functions can be composed to form a new composite function. For eample, if we have a squaring function and a halving function, we can compose them to form a new function. We take the output from one and use it as the input for the other. The order is important, as we get a different result in this case: Using function notation we have, sa, f ( ) = and g ( ) =. The diagrams above show the composite functions: g ( f ( )) = g ( ) f ( g ( )) = f ( ) = ( ) = =. 4 EXAMPLES. Functions f and g are defined b f ( ) = and g ( ) =. Find: (a) f ( ) (b) f g ( ) (c) g f ( ) (a) f ( ) = ( ) = 4. ( ) ( ) = ( ) (b) f g ( ) f = ( ). ( ) ( ) = ( ) (c) g f ( ) g =.. Functions f and g are defined on suitable domains b f ( ) = + and g ( ) =. ( ) ( ) ( ) ( ) Find formulae for h ( ) = f g ( ) and k ( ) = g f ( ). ( ) h ( ) = f g ( ) = f ( ) ( ) = +. square halve halve square k ( ) = g f ( ) = g + =. + 4 Page HSN00

7 Unit Functions and Graphs 4 Inverse Functions The idea of an inverse function is to reverse the effect of the original function. It is the opposite function. You should alread be familiar with this idea for eample, doubling a number can be reversed b halving the result. That is, multipling b two and dividing b two are inverse functions. The inverse of the function f is usuall denoted f (read as f inverse ). ( ) ( ( )) The functions f and g are said to be inverses if f g ( ) = g f =. This means that when a number is worked through a function f then its inverse f, the result is the same as the input. f f ( ) For eample, f ( ) = 4 and g ( ) + f ( g ( )) = f 4 + = 4 4 = + = f + = are inverse functions since: 4 g ( f ( )) = g ( 4 ) ( 4 ) + = 4 4 = 4 =. Page HSN00

8 Unit Functions and Graphs Graphs of Inverses If we have the graph of a function, then we can find the graph of its inverse b reflecting in the line =. For eample, the diagrams below show the graphs of two functions and their inverses. = = = f ( ) = g ( ) = f ( ) = g ( ) 5 Eponential Functions A function of the form f ( ) = a where a, R and a > 0 is known as an eponential function to the base a. We refer to as the power, inde or eponent. 0 Notice that when = 0, f ( ) = a =. Also when =, f ( ) = a = a. Hence the graph of an eponential alwas passes through ( 0, ) and (,a ) : = a, a > = a, 0 < a < (, a) (, a) EXAMPLE Sketch the curve with equation = 6. The curve passes through ( 0, ) and (, 6 ). = 6 (, 6) Page 4 HSN00

9 Unit Functions and Graphs 6 Introduction to Logarithms Until now, we have onl been able to solve problems involving eponentials when we know the inde, and have to find the base. For eample, we can 6 solve p = 5 b taking sith roots to get p = 6 5. But what if we know the base and have to find the inde? To solve 6 q = 5 for q, we need to find the power of 6 which gives 5. To save writing this each time, we use the notation q = log65, read as log to the base 6 of 5. In general: log a is the power of a which gives. The properties of logarithms will be covered in Unit utcome. Logarithmic Functions A logarithmic function is one in the form f ( ) = log a where a, > 0. Logarithmic functions are inverses of eponentials, so to find the graph of = log a, we can reflect the graph of = a in the line =. = log a ( a,) The graph of a logarithmic function alwas passes through (, 0 ) and ( a,). EXAMPLE Sketch the curve with equation = log6. The curve passes through (, 0 ) and ( 6, ). = log 6 ( 6,) Page 5 HSN00

11 Unit Functions and Graphs 9 Trigonometric Functions A function which has a repeating pattern in its graph is called periodic. The length of the smallest repeating pattern in the -direction is called the period. If the repeating pattern has a minimum and maimum value, then half of the difference between these values is called the amplitude. period ma. value amplitude min. value The three basic trigonometric functions (sine, cosine, and tangent) are periodic, and have graphs as shown below. = sin = cos = tan Period = 60 = π radians Amplitude = Period = 60 = π radians Amplitude = Period = 80 =π radians Amplitude is undefined 0 Graph Transformations The graphs below represent two functions. ne is a cubic and the other is a sine wave, focusing on the region between 0 and 60. ( p, q) = g ( ) In the following pages we will see the effects of three different transformations on these graphs: translation, reflection and scaling = sin Page 7 HSN00

12 Unit Functions and Graphs Translation A translation moves ever point on a graph a fied distance in the same direction. The shape of the graph does not change. Translation parallel to the -ais f ( ) + a moves the graph of f ( ) up or down. The graph is moved up if a is positive, and down if a is negative. (,) a is positive = g ( ) + ( p, q + ) a is negative = g ( ) Translation parallel to the -ais f ( + a) moves the graph of f ( ) left or right. The graph is moved left if a is positive, and right if a is negative. a is positive a is negative = g ( + ) = g ( ) ( p, q) (,) = sin + (, ) ( p, q ) ( p +, q) (, ) = sin 5 = sin( + 90 ) = sin( 90 ) Page 8 HSN00

13 Unit Functions and Graphs Reflection A reflection flips the graph about one of the aes. When reflecting, the graph is flipped about one of the aes. It is important to appl this transformation before an translation. Reflection in the -ais f ( ) reflects the graph of f ( ) in the -ais. = g ( ) ( p, q) = sin Reflection in the -ais f ( ) reflects the graph of f ( ) in the -ais. ( p, q) = g ( ) = sin( ) From the graphs, sin( ) = sin Page 9 HSN00

14 Unit Functions and Graphs Scaling A scaling stretches or compresses the graph along one of the aes. Scaling verticall kf ( ) scales the graph of f ( ) in the vertical direction. The -coordinate of each point on the graph is multiplied b k, roots are unaffected. These eamples consider positive k. k > stretches 0 < k < compresses ( p, q) = g ( ) ( p, q) = g ( ) = sin = sin Negative k causes the same scaling, but the graph must then be reflected in the -ais: = g ( ) ( p, q) Page 0 HSN00

15 Unit Functions and Graphs Scaling horizontall f ( k ) scales the graph of f ( ) in the horizontal direction. The coordinates of the -ais intercept sta the same. The eamples below consider positive k. k > 0 < k < = g ( ) = g ( p, q ) ( p, q) ( ) 6 = sin = sin Negative k causes the same scaling, but the graph must then be reflected in the -ais: = g ( ) p, q ( ) Page HSN00

16 Unit Functions and Graphs EXAMPLES. The graph of = f ( ) is shown below. = f ( ) 0 (, 4) Sketch the graph of = f ( ). 5 Reflect in the -ais, then shift down b : = f ( ) ( 5, ) 0 (, 6). Sketch the graph of = 5cos( ) where = 5cos( ) Remember The graph of = cos : 60 Page HSN00

### Exponential and Logarithmic Functions

Chapter 6 Eponential and Logarithmic Functions Section summaries Section 6.1 Composite Functions Some functions are constructed in several steps, where each of the individual steps is a function. For eample,

### Algebra. Exponents. Absolute Value. Simplify each of the following as much as possible. 2x y x + y y. xxx 3. x x x xx x. 1. Evaluate 5 and 123

Algebra Eponents Simplify each of the following as much as possible. 1 4 9 4 y + y y. 1 5. 1 5 4. y + y 4 5 6 5. + 1 4 9 10 1 7 9 0 Absolute Value Evaluate 5 and 1. Eliminate the absolute value bars from

### Core Maths C3. Revision Notes

Core Maths C Revision Notes October 0 Core Maths C Algebraic fractions... Cancelling common factors... Multipling and dividing fractions... Adding and subtracting fractions... Equations... 4 Functions...

### Core Maths C2. Revision Notes

Core Maths C Revision Notes November 0 Core Maths C Algebra... Polnomials: +,,,.... Factorising... Long division... Remainder theorem... Factor theorem... 4 Choosing a suitable factor... 5 Cubic equations...

### Higher. Polynomials and Quadratics 64

hsn.uk.net Higher Mathematics UNIT OUTCOME 1 Polnomials and Quadratics Contents Polnomials and Quadratics 64 1 Quadratics 64 The Discriminant 66 3 Completing the Square 67 4 Sketching Parabolas 70 5 Determining

### C3: Functions. Learning objectives

CHAPTER C3: Functions Learning objectives After studing this chapter ou should: be familiar with the terms one-one and man-one mappings understand the terms domain and range for a mapping understand the

### Translating Points. Subtract 2 from the y-coordinates

CONDENSED L E S S O N 9. Translating Points In this lesson ou will translate figures on the coordinate plane define a translation b describing how it affects a general point (, ) A mathematical rule that

### D.3. Angles and Degree Measure. Review of Trigonometric Functions

APPENDIX D Precalculus Review D7 SECTION D. Review of Trigonometric Functions Angles and Degree Measure Radian Measure The Trigonometric Functions Evaluating Trigonometric Functions Solving Trigonometric

### Functions and their Graphs

Functions and their Graphs Functions All of the functions you will see in this course will be real-valued functions in a single variable. A function is real-valued if the input and output are real numbers

### Section V.2: Magnitudes, Directions, and Components of Vectors

Section V.: Magnitudes, Directions, and Components of Vectors Vectors in the plane If we graph a vector in the coordinate plane instead of just a grid, there are a few things to note. Firstl, directions

### Graphing Trigonometric Skills

Name Period Date Show all work neatly on separate paper. (You may use both sides of your paper.) Problems should be labeled clearly. If I can t find a problem, I ll assume it s not there, so USE THE TEMPLATE

### Polynomial and Rational Functions

Chapter 5 Polnomial and Rational Functions Section 5.1 Polnomial Functions Section summaries The general form of a polnomial function is f() = a n n + a n 1 n 1 + +a 1 + a 0. The degree of f() is the largest

### Connecting Transformational Geometry and Transformations of Functions

Connecting Transformational Geometr and Transformations of Functions Introductor Statements and Assumptions Isometries are rigid transformations that preserve distance and angles and therefore shapes.

### LINEAR FUNCTIONS. Form Equation Note Standard Ax + By = C A and B are not 0. A > 0

LINEAR FUNCTIONS As previousl described, a linear equation can be defined as an equation in which the highest eponent of the equation variable is one. A linear function is a function of the form f ( )

PRE-CALCULUS GRADE 12 [C] Communication Trigonometry General Outcome: Develop trigonometric reasoning. A1. Demonstrate an understanding of angles in standard position, expressed in degrees and radians.

### Trigonometry Review Workshop 1

Trigonometr Review Workshop Definitions: Let P(,) be an point (not the origin) on the terminal side of an angle with measure θ and let r be the distance from the origin to P. Then the si trig functions

### Colegio del mundo IB. Programa Diploma REPASO 2. 1. The mass m kg of a radio-active substance at time t hours is given by. m = 4e 0.2t.

REPASO. The mass m kg of a radio-active substance at time t hours is given b m = 4e 0.t. Write down the initial mass. The mass is reduced to.5 kg. How long does this take?. The function f is given b f()

### Downloaded from www.heinemann.co.uk/ib. equations. 2.4 The reciprocal function x 1 x

Functions and equations Assessment statements. Concept of function f : f (); domain, range, image (value). Composite functions (f g); identit function. Inverse function f.. The graph of a function; its

### a > 0 parabola opens a < 0 parabola opens

Objective 8 Quadratic Functions The simplest quadratic function is f() = 2. Objective 8b Quadratic Functions in (h, k) form Appling all of Obj 4 (reflections and translations) to the function. f() = a(

### To Be or Not To Be a Linear Equation: That Is the Question

To Be or Not To Be a Linear Equation: That Is the Question Linear Equation in Two Variables A linear equation in two variables is an equation that can be written in the form A + B C where A and B are not

### Prentice Hall Mathematics: Algebra 2 2007 Correlated to: Utah Core Curriculum for Math, Intermediate Algebra (Secondary)

Core Standards of the Course Standard 1 Students will acquire number sense and perform operations with real and complex numbers. Objective 1.1 Compute fluently and make reasonable estimates. 1. Simplify

### Algebra and Geometry Review (61 topics, no due date)

Course Name: Math 112 Credit Exam LA Tech University Course Code: ALEKS Course: Trigonometry Instructor: Course Dates: Course Content: 159 topics Algebra and Geometry Review (61 topics, no due date) Properties

### 6.3 Polar Coordinates

6 Polar Coordinates Section 6 Notes Page 1 In this section we will learn a new coordinate sstem In this sstem we plot a point in the form r, As shown in the picture below ou first draw angle in standard

### How to Graph Trigonometric Functions

How to Graph Trigonometric Functions This handout includes instructions for graphing processes of basic, amplitude shifts, horizontal shifts, and vertical shifts of trigonometric functions. The Unit Circle

### SL Calculus Practice Problems

Alei - Desert Academ SL Calculus Practice Problems. The point P (, ) lies on the graph of the curve of = sin ( ). Find the gradient of the tangent to the curve at P. Working:... (Total marks). The diagram

### Students Currently in Algebra 2 Maine East Math Placement Exam Review Problems

Students Currently in Algebra Maine East Math Placement Eam Review Problems The actual placement eam has 100 questions 3 hours. The placement eam is free response students must solve questions and write

### In this this review we turn our attention to the square root function, the function defined by the equation. f(x) = x. (5.1)

Section 5.2 The Square Root 1 5.2 The Square Root In this this review we turn our attention to the square root function, the function defined b the equation f() =. (5.1) We can determine the domain and

### UNIVERSITY OF WISCONSIN SYSTEM

Name UNIVERSITY OF WISCONSIN SYSTEM MATHEMATICS PRACTICE EXAM Check us out at our website: http://www.testing.wisc.edu/center.html GENERAL INSTRUCTIONS: You will have 90 minutes to complete the mathematics

### SOLVING TRIGONOMETRIC EQUATIONS

Mathematics Revision Guides Solving Trigonometric Equations Page 1 of 17 M.K. HOME TUITION Mathematics Revision Guides Level: AS / A Level AQA : C2 Edexcel: C2 OCR: C2 OCR MEI: C2 SOLVING TRIGONOMETRIC

### Biggar High School Mathematics Department. National 5 Learning Intentions & Success Criteria: Assessing My Progress

Biggar High School Mathematics Department National 5 Learning Intentions & Success Criteria: Assessing My Progress Expressions & Formulae Topic Learning Intention Success Criteria I understand this Approximation

### Pre Calculus Math 40S: Explained!

Pre Calculus Math 0S: Eplained! www.math0s.com 0 Logarithms Lesson PART I: Eponential Functions Eponential functions: These are functions where the variable is an eponent. The first tpe of eponential graph

### 4.1 Radian and Degree Measure

Date: 4.1 Radian and Degree Measure Syllabus Objective: 3.1 The student will solve problems using the unit circle. Trigonometry means the measure of triangles. Terminal side Initial side Standard Position

### Section 5-9 Inverse Trigonometric Functions

46 5 TRIGONOMETRIC FUNCTIONS Section 5-9 Inverse Trigonometric Functions Inverse Sine Function Inverse Cosine Function Inverse Tangent Function Summar Inverse Cotangent, Secant, and Cosecant Functions

### Higher Education Math Placement

Higher Education Math Placement Placement Assessment Problem Types 1. Whole Numbers, Fractions, and Decimals 1.1 Operations with Whole Numbers Addition with carry Subtraction with borrowing Multiplication

### Reteaching Masters. To jump to a location in this book. 1. Click a bookmark on the left. To print a part of the book. 1. Click the Print button.

Reteaching Masters To jump to a location in this book. Click a bookmark on the left. To print a part of the book. Click the Print button.. When the Print window opens, tpe in a range of pages to print.

### Core Maths C1. Revision Notes

Core Maths C Revision Notes November 0 Core Maths C Algebra... Indices... Rules of indices... Surds... 4 Simplifying surds... 4 Rationalising the denominator... 4 Quadratic functions... 4 Completing the

### Thnkwell s Homeschool Precalculus Course Lesson Plan: 36 weeks

Thnkwell s Homeschool Precalculus Course Lesson Plan: 36 weeks Welcome to Thinkwell s Homeschool Precalculus! We re thrilled that you ve decided to make us part of your homeschool curriculum. This lesson

### Polynomial Degree and Finite Differences

CONDENSED LESSON 7.1 Polynomial Degree and Finite Differences In this lesson you will learn the terminology associated with polynomials use the finite differences method to determine the degree of a polynomial

### Polynomials Past Papers Unit 2 Outcome 1

PSf Polnomials Past Papers Unit 2 utcome 1 Multiple Choice Questions Each correct answer in this section is worth two marks. 1. Given p() = 2 + 6, which of the following are true? I. ( + 3) is a factor

### INVESTIGATIONS AND FUNCTIONS 1.1.1 1.1.4. Example 1

Chapter 1 INVESTIGATIONS AND FUNCTIONS 1.1.1 1.1.4 This opening section introduces the students to man of the big ideas of Algebra 2, as well as different was of thinking and various problem solving strategies.

### 4.1 Piecewise-Defined Functions

Section 4.1 Piecewise-Defined Functions 335 4.1 Piecewise-Defined Functions In preparation for the definition of the absolute value function, it is etremel important to have a good grasp of the concept

### SECTION 2.2. Distance and Midpoint Formulas; Circles

SECTION. Objectives. Find the distance between two points.. Find the midpoint of a line segment.. Write the standard form of a circle s equation.. Give the center and radius of a circle whose equation

### Pre-Calculus II. where 1 is the radius of the circle and t is the radian measure of the central angle.

Pre-Calculus II 4.2 Trigonometric Functions: The Unit Circle The unit circle is a circle of radius 1, with its center at the origin of a rectangular coordinate system. The equation of this unit circle

### Contents. 6 Graph Sketching 87. 6.1 Increasing Functions and Decreasing Functions... 87. 6.2 Intervals Monotonically Increasing or Decreasing...

Contents 6 Graph Sketching 87 6.1 Increasing Functions and Decreasing Functions.......................... 87 6.2 Intervals Monotonically Increasing or Decreasing....................... 88 6.3 Etrema Maima

### Roots and Coefficients of a Quadratic Equation Summary

Roots and Coefficients of a Quadratic Equation Summary For a quadratic equation with roots α and β: Sum of roots = α + β = and Product of roots = αβ = Symmetrical functions of α and β include: x = and

### 3.4 The Point-Slope Form of a Line

Section 3.4 The Point-Slope Form of a Line 293 3.4 The Point-Slope Form of a Line In the last section, we developed the slope-intercept form of a line ( = m + b). The slope-intercept form of a line is

### 15.1. Exact Differential Equations. Exact First-Order Equations. Exact Differential Equations Integrating Factors

SECTION 5. Eact First-Order Equations 09 SECTION 5. Eact First-Order Equations Eact Differential Equations Integrating Factors Eact Differential Equations In Section 5.6, ou studied applications of differential

### 3 Unit Circle Trigonometry

0606_CH0_-78.QXP //0 :6 AM Page Unit Circle Trigonometr In This Chapter. The Circular Functions. Graphs of Sine and Cosine Functions. Graphs of Other Trigonometric Functions. Special Identities.5 Inverse

### SUNY ECC. ACCUPLACER Preparation Workshop. Algebra Skills

SUNY ECC ACCUPLACER Preparation Workshop Algebra Skills Gail A. Butler Ph.D. Evaluating Algebraic Epressions Substitute the value (#) in place of the letter (variable). Follow order of operations!!! E)

### 10.1. Solving Quadratic Equations. Investigation: Rocket Science CONDENSED

CONDENSED L E S S O N 10.1 Solving Quadratic Equations In this lesson you will look at quadratic functions that model projectile motion use tables and graphs to approimate solutions to quadratic equations

### 1.6. Piecewise Functions. LEARN ABOUT the Math. Representing the problem using a graphical model

. Piecewise Functions YOU WILL NEED graph paper graphing calculator GOAL Understand, interpret, and graph situations that are described b piecewise functions. LEARN ABOUT the Math A cit parking lot uses

### Alex and Morgan were asked to graph the equation y = 2x + 1

Which is better? Ale and Morgan were asked to graph the equation = 2 + 1 Ale s make a table of values wa Morgan s use the slope and -intercept wa First, I made a table. I chose some -values, then plugged

### MPE Review Section III: Logarithmic & Exponential Functions

MPE Review Section III: Logarithmic & Eponential Functions FUNCTIONS AND GRAPHS To specify a function y f (, one must give a collection of numbers D, called the domain of the function, and a procedure

### ACT Math Vocabulary. Altitude The height of a triangle that makes a 90-degree angle with the base of the triangle. Altitude

ACT Math Vocabular Acute When referring to an angle acute means less than 90 degrees. When referring to a triangle, acute means that all angles are less than 90 degrees. For eample: Altitude The height

### 7.3 Graphing Rational Functions

Section 7.3 Graphing Rational Functions 639 7.3 Graphing Rational Functions We ve seen that the denominator of a rational function is never allowed to equal zero; division b zero is not defined. So, with

### A Quick Algebra Review

1. Simplifying Epressions. Solving Equations 3. Problem Solving 4. Inequalities 5. Absolute Values 6. Linear Equations 7. Systems of Equations 8. Laws of Eponents 9. Quadratics 10. Rationals 11. Radicals

### Dr. Foote s Algebra & Calculus Tips or How to make life easier for yourself, make fewer errors, and get more points

Dr. Foote s Algebra & Calculus Tips or How to make life easier for yourself, make fewer errors, and get more points This handout includes several tips that will help you streamline your computations. Most

### I think that starting

. Graphs of Functions 69. GRAPHS OF FUNCTIONS One can envisage that mathematical theor will go on being elaborated and etended indefinitel. How strange that the results of just the first few centuries

### Math Rational Functions

Rational Functions Math 3 Rational Functions A rational function is the algebraic equivalent of a rational number. Recall that a rational number is one that can be epressed as a ratio of integers: p/q.

### Filling in Coordinate Grid Planes

Filling in Coordinate Grid Planes A coordinate grid is a sstem that can be used to write an address for an point within the grid. The grid is formed b two number lines called and that intersect at the

### LESSON EIII.E EXPONENTS AND LOGARITHMS

LESSON EIII.E EXPONENTS AND LOGARITHMS LESSON EIII.E EXPONENTS AND LOGARITHMS OVERVIEW Here s what ou ll learn in this lesson: Eponential Functions a. Graphing eponential functions b. Applications of eponential

### More Equations and Inequalities

Section. Sets of Numbers and Interval Notation 9 More Equations and Inequalities 9 9. Compound Inequalities 9. Polnomial and Rational Inequalities 9. Absolute Value Equations 9. Absolute Value Inequalities

### 10.2 The Unit Circle: Cosine and Sine

0. The Unit Circle: Cosine and Sine 77 0. The Unit Circle: Cosine and Sine In Section 0.., we introduced circular motion and derived a formula which describes the linear velocit of an object moving on

### COMPONENTS OF VECTORS

COMPONENTS OF VECTORS To describe motion in two dimensions we need a coordinate sstem with two perpendicular aes, and. In such a coordinate sstem, an vector A can be uniquel decomposed into a sum of two

### MEMORANDUM. All students taking the CLC Math Placement Exam PLACEMENT INTO CALCULUS AND ANALYTIC GEOMETRY I, MTH 145:

MEMORANDUM To: All students taking the CLC Math Placement Eam From: CLC Mathematics Department Subject: What to epect on the Placement Eam Date: April 0 Placement into MTH 45 Solutions This memo is an

### Some linear transformations on R 2 Math 130 Linear Algebra D Joyce, Fall 2015

Some linear transformations on R 2 Math 3 Linear Algebra D Joce, Fall 25 Let s look at some some linear transformations on the plane R 2. We ll look at several kinds of operators on R 2 including reflections,

### CALCULUS 1: LIMITS, AVERAGE GRADIENT AND FIRST PRINCIPLES DERIVATIVES

6 LESSON CALCULUS 1: LIMITS, AVERAGE GRADIENT AND FIRST PRINCIPLES DERIVATIVES Learning Outcome : Functions and Algebra Assessment Standard 1..7 (a) In this section: The limit concept and solving for limits

### Trigonometry Hard Problems

Solve the problem. This problem is very difficult to understand. Let s see if we can make sense of it. Note that there are multiple interpretations of the problem and that they are all unsatisfactory.

### C1: Coordinate geometry of straight lines

B_Chap0_08-05.qd 5/6/04 0:4 am Page 8 CHAPTER C: Coordinate geometr of straight lines Learning objectives After studing this chapter, ou should be able to: use the language of coordinate geometr find the

### Section 10-5 Parametric Equations

88 0 ADDITIONAL TOPICS IN ANALYTIC GEOMETRY. A hperbola with the following graph: (2, ) (0, 2) 6. A hperbola with the following graph: (, ) (2, 2) C In Problems 7 2, find the coordinates of an foci relative

### National 5 Mathematics Course Assessment Specification (C747 75)

National 5 Mathematics Course Assessment Specification (C747 75) Valid from August 013 First edition: April 01 Revised: June 013, version 1.1 This specification may be reproduced in whole or in part for

### 5.3 Graphing Cubic Functions

Name Class Date 5.3 Graphing Cubic Functions Essential Question: How are the graphs of f () = a ( - h) 3 + k and f () = ( 1_ related to the graph of f () = 3? b ( - h) 3 ) + k Resource Locker Eplore 1

### Section 0.2 Set notation and solving inequalities

Section 0.2 Set notation and solving inequalities (5/31/07) Overview: Inequalities are almost as important as equations in calculus. Man functions domains are intervals, which are defined b inequalities.

### Mathematics Placement Examination (MPE)

Practice Problems for Mathematics Placement Eamination (MPE) Revised August, 04 When you come to New Meico State University, you may be asked to take the Mathematics Placement Eamination (MPE) Your inital

### Exponential Functions

Eponential Functions Deinition: An Eponential Function is an unction that has the orm ( a, where a > 0. The number a is called the base. Eample:Let For eample (0, (, ( It is clear what the unction means

### Objectives. By the time the student is finished with this section of the workbook, he/she should be able

QUADRATIC FUNCTIONS Completing the Square..95 The Quadratic Formula....99 The Discriminant... 0 Equations in Quadratic Form.. 04 The Standard Form of a Parabola...06 Working with the Standard Form of a

### Analyzing the Graph of a Function

SECTION A Summar of Curve Sketching 09 0 00 Section 0 0 00 0 Different viewing windows for the graph of f 5 7 0 Figure 5 A Summar of Curve Sketching Analze and sketch the graph of a function Analzing the

### Slope-Intercept Form and Point-Slope Form

Slope-Intercept Form and Point-Slope Form In this section we will be discussing Slope-Intercept Form and the Point-Slope Form of a line. We will also discuss how to graph using the Slope-Intercept Form.

### Volume and Surface Area of a Sphere

Volume and Surface rea of a Sphere Reteaching 111 Math ourse, Lesson 111 The relationship between the volume of a cylinder, the volume of a cone, and the volume of a sphere is a special one. If the heights

### When I was 3.1 POLYNOMIAL FUNCTIONS

146 Chapter 3 Polnomial and Rational Functions Section 3.1 begins with basic definitions and graphical concepts and gives an overview of ke properties of polnomial functions. In Sections 3.2 and 3.3 we

9. Operations with Radicals (9 1) 87 9. OPERATIONS WITH RADICALS In this section Adding and Subtracting Radicals Multiplying Radicals Conjugates In this section we will use the ideas of Section 9.1 in

### Review of Intermediate Algebra Content

Review of Intermediate Algebra Content Table of Contents Page Factoring GCF and Trinomials of the Form + b + c... Factoring Trinomials of the Form a + b + c... Factoring Perfect Square Trinomials... 6

### TSI College Level Math Practice Test

TSI College Level Math Practice Test Tutorial Services Mission del Paso Campus. Factor the Following Polynomials 4 a. 6 8 b. c. 7 d. ab + a + b + 6 e. 9 f. 6 9. Perform the indicated operation a. ( +7y)

### G. GRAPHING FUNCTIONS

G. GRAPHING FUNCTIONS To get a quick insight int o how the graph of a function looks, it is very helpful to know how certain simple operations on the graph are related to the way the function epression

### 135 Final Review. Determine whether the graph is symmetric with respect to the x-axis, the y-axis, and/or the origin.

13 Final Review Find the distance d(p1, P2) between the points P1 and P2. 1) P1 = (, -6); P2 = (7, -2) 2 12 2 12 3 Determine whether the graph is smmetric with respect to the -ais, the -ais, and/or the

### Q (x 1, y 1 ) m = y 1 y 0

. Linear Functions We now begin the stud of families of functions. Our first famil, linear functions, are old friends as we shall soon see. Recall from Geometr that two distinct points in the plane determine

### Functions and Graphs CHAPTER INTRODUCTION. The function concept is one of the most important ideas in mathematics. The study

Functions and Graphs CHAPTER 2 INTRODUCTION The function concept is one of the most important ideas in mathematics. The stud 2-1 Functions 2-2 Elementar Functions: Graphs and Transformations 2-3 Quadratic

### EQUILIBRIUM STRESS SYSTEMS

EQUILIBRIUM STRESS SYSTEMS Definition of stress The general definition of stress is: Stress = Force Area where the area is the cross-sectional area on which the force is acting. Consider the rectangular

### Mathematical goals. Starting points. Materials required. Time needed

Level A7 of challenge: C A7 Interpreting functions, graphs and tables tables Mathematical goals Starting points Materials required Time needed To enable learners to understand: the relationship between

### Geometry Notes RIGHT TRIANGLE TRIGONOMETRY

Right Triangle Trigonometry Page 1 of 15 RIGHT TRIANGLE TRIGONOMETRY Objectives: After completing this section, you should be able to do the following: Calculate the lengths of sides and angles of a right

### Why should we learn this? One real-world connection is to find the rate of change in an airplane s altitude. The Slope of a Line VOCABULARY

Wh should we learn this? The Slope of a Line Objectives: To find slope of a line given two points, and to graph a line using the slope and the -intercept. One real-world connection is to find the rate

### Extra Credit Assignment Lesson plan. The following assignment is optional and can be completed to receive up to 5 points on a previously taken exam.

Extra Credit Assignment Lesson plan The following assignment is optional and can be completed to receive up to 5 points on a previously taken exam. The extra credit assignment is to create a typed up lesson

4.6 GRAPHS OF OTHER TRIGONOMETRIC FUNCTIONS Copyright Cengage Learning. All rights reserved. What You Should Learn Sketch the graphs of tangent functions. Sketch the graphs of cotangent functions. Sketch

### Midterm 1. Solutions

Stony Brook University Introduction to Calculus Mathematics Department MAT 13, Fall 01 J. Viro October 17th, 01 Midterm 1. Solutions 1 (6pt). Under each picture state whether it is the graph of a function

### Trigonometry Review with the Unit Circle: All the trig. you ll ever need to know in Calculus

Trigonometry Review with the Unit Circle: All the trig. you ll ever need to know in Calculus Objectives: This is your review of trigonometry: angles, six trig. functions, identities and formulas, graphs:

### Functions: Piecewise, Even and Odd.

Functions: Piecewise, Even and Odd. MA161/MA1161: Semester 1 Calculus. Prof. Götz Pfeiffer School of Mathematics, Statistics and Applied Mathematics NUI Galway September 21-22, 2015 Tutorials, Online Homework.

### Math, Trigonometry and Vectors. Geometry. Trig Definitions. sin(θ) = opp hyp. cos(θ) = adj hyp. tan(θ) = opp adj. Here's a familiar image.

Math, Trigonometr and Vectors Geometr Trig Definitions Here's a familiar image. To make predictive models of the phsical world, we'll need to make visualizations, which we can then turn into analtical