Exponential Functions. This information was covered in a previous section of the workbook, but it won t hurt to go over it again.

Size: px
Start display at page:

Download "Exponential Functions. This information was covered in a previous section of the workbook, but it won t hurt to go over it again."

Transcription

1 Eponential Functions This inormation was covered in a previous section o the workbook, but it won t hurt to go over it again. Standard eponential unction = ca + k The c term is a constant that can make to graph relect about a horizontal ais or change to scale o the graph o the unction proportionately. I c is a positive value, then you will have a standard looking growth or decay curve. I c is negative, the growth or decay curve will lip upside down. We will get into the eects dierent values o h and k have on this unction shortly. What we will concentrate on here is identiying an eponential unction as being growth or decay, and inding the range, domain and key point o the unction. Eponential Growth Eponential Decay = ca + k = ca + k I a>1 I 0<a<1 Obviously i a= 1, we are raising 1 to various powers, and we wind up getting a horizontal line because no matter what you do, raising one to any power still yields a result o one. Pay special attention to the eponential decay unction. The statement 0< a< 1 is saying that the value o a is a raction whose value is between zero and one. Do not make the mistake o just looking or a raction to determine whether or not the unction is decay. Make sure the value o the raction is between zero and one. The values or variables,, h k and c act to make the graph shit let/right, up/down, change the scale or will relect the unction about a horizontal ais.

2 Notice the key point or each o these unctions is the point ( 0,1 ). This inormation is vital. This key point will shit depending on the values o h, k and c. To ind the value o the key point, evaluate h = 0. In other words, ind the value o that would create a problem such as 3 to the zero power. This number is the value o the key point. To ind the y value, substitute the value back in. Reer to the ollowing eample. 3 5 to ind the key point evaluate 3 = 0 3 = 0 = 3 this is the value o the key point now substitute 3 back into the problem or = 1+ 5 = 6 so the key point is ( 3,6) = ca + k As we work to translate these unctions, use ( 0,1 ), as the deault key point to any eponential growth or decay curve that is above the horizontal asymptote where the value o c is 1. In 0,1 to assist you in shiting the other words, i the value o c is positive one, use the point unction. I the graph o the unction is below the horizontal asymptote, and the c value is 0, 1 as the key point. I the value o c is any other number, you must -1, you will use ind the key point algebraically. Consider the eample above. 3 5 The irst thing I did was notice that the graph o this unction shits right 3 and up 5. Pay special attention to the value o k. That tells you where your new horizontal asymptote is going to be, in this case, at y= 5. Since the value o c is positive one, begin at the key point ( 0,1 ). Since the graph will shit right 3 and up 5, simply add 3 to the value, and 5 to the y value o the key point. This produces a new key point o ( 3,6 ). Observe how this inormation matches the work above. The key point in these unctions acts as the verte in a parabola. It gives you a point o reerence with which to shit the unction. Make sure the correct key point is used rom the beginning, either ( 0,1 ) or ( 0, 1) number. For eample, the unction = 3 has a key point o ( 0,3 ), not ( 0,1 ).. Remember, i the c term is a number other that 1 or -1, the key point is actually multiplied by that

3 Here we will look at how to graph these unctions by means o translation. Eponential Growth = ca + k = 3 4 = 3 + = 3 5 Notice that the horizontal asymptote is at y=. Since the graph o this unction is going to be above the ais, begin with the key point (0,1). This unction shits right 4 and up. The dots have been let on the graph so it would be easier to see. Adding 4 to the value o the key point, and to the y value, the new key point is at (4,3). Just remember where to begin, and do not cross the horizontal asymptote. In this unction, the value o k is -5. This tells you the new horizontal asymptote will be at y = -5. Since the value o the constant c is a positive one, begin with the key point (0,1). This unction will only shit down 5 spaces. Thereore, subtract 5 rom the y value o the key point which is 1. This results in: (1 5 = -4) thereore, the new key point is at (0,-4). Graphing eponential unctions by translation is relatively simple. The most diicult part will be inding the and y intercepts as the -intercept will involve the use o logarithms.

4 Eponential Growth = ca + k = 3 = Since the value o c in the equation o this unction is -1, we must begin with the key point o (0,-1). This is the key point, because that value o c caused the graph to relect about the horizontal asymptote. The entire unction will shit up 4, so the new horizontal asymptote is y = 4. The curve is going to shit right and up 4. By adding to the value o the key point, and 4 to the y value, the new point can be ound at (,3). Notice the graph runs right though that point. Here we have something that looks like decay. The value o a in this unction is greater that one, so it should be growth. What really happened here, is the 3 laws o eponents went to work. Is the same thing as. The power o a power rule says this 3 1 can be seen as ( 3 ). This simpliies to 3 decay curve. OK, so we begin with a decay curve that has a key point o (0,1). Add to the value, and 1 to the y value o the key point, and the new key point is (,), with a horizontal asymptote o y = 1. 1, a

5 Eponential Decay = ca + k 1 = = 4 1 = + 3 This is an eponential decay curve. The original graph will lie above the ais. Thereore, begin with the key point (0,1). The key point will shit to the let 3, and down, so subtract 3 rom the value and rom the y value o the key point, and the coordinates o the new point will be at (-3,-1). The graph o this unction shits down, so the horizontal asymptote o this unction is y = -. This is an eponential decay unction that is relected and lies below the horizontal asymptote. The initial key point here is (0,-1). Since this graph will shit right 4 and up 3, add 4 to the value o the key point and 3 to the y value. This yields a result o (4,). Since the entire graph shited upwards 3 spaces, the horizontal asymptote is y = 3. Once again, when graphing, do not cross the horizontal asymptote. The translations o these unctions are very similar to that o other unctions we have seen. A point o reerence with which to shit is all that is needed. Most important is to make sure to always use the appropriate key point to start with. Draw the horizontal asymptote irst, that way the graph o the unction does not accidentally cross it.

6 = ca + k The domain o any eponential unction is (, ). The values o c and k terms will determine the range o the unction. Since the horizontal asymptote o an eponential unction is given by y=k, the value o k will determine where the horizontal asymptote o the unction lies, whereas the value o c will determine i the unction is above or below that asymptote. Be careul not to use brackets when describing the range o an eponential unction. The horizontal asymptote must not be touched, so only parenthesis may be used to describe the range in interval notation. Here is an eample o inding the and y intercept o an eponential unction. Finding the intercept. = Finding the y intercept. Begin by substituting 0 or Begin by substituting 0 or. + 0 = = 3 + log 4 = log 3 ( ) + log 4 log 3 log 4 = log 3 + log 3 log 4 log 3 = log 3 = = 3 4 = 9 4 = 5 Now divide both sides by log 3. log 4 log 3 log 3 = log 3 log 3 log 4 log 3 = log As you can see, this unction has an intercept o approimately (-0.74,0), and a y intercept o (0,5).

Power functions: f(x) = x n, n is a natural number The graphs of some power functions are given below. n- even n- odd

Power functions: f(x) = x n, n is a natural number The graphs of some power functions are given below. n- even n- odd 5.1 Polynomial Functions A polynomial unctions is a unction o the orm = a n n + a n-1 n-1 + + a 1 + a 0 Eample: = 3 3 + 5 - The domain o a polynomial unction is the set o all real numbers. The -intercepts

More information

Objectives. By the time the student is finished with this section of the workbook, he/she should be able

Objectives. By the time the student is finished with this section of the workbook, he/she should be able QUADRATIC FUNCTIONS Completing the Square..95 The Quadratic Formula....99 The Discriminant... 0 Equations in Quadratic Form.. 04 The Standard Form of a Parabola...06 Working with the Standard Form of a

More information

Exponential Functions

Exponential Functions Eponential Functions Deinition: An Eponential Function is an unction that has the orm ( a, where a > 0. The number a is called the base. Eample:Let For eample (0, (, ( It is clear what the unction means

More information

Division of Polynomials and Slant Asymptotes

Division of Polynomials and Slant Asymptotes Division o Polynomials and Slant Asymptotes Here is more detail about lon run behavior o rational unctions when the deree o the numerator is reater than the deree o the denominator. As the book points

More information

Exponential and Logarithmic Functions

Exponential and Logarithmic Functions Chapter 6 Eponential and Logarithmic Functions Section summaries Section 6.1 Composite Functions Some functions are constructed in several steps, where each of the individual steps is a function. For eample,

More information

Math Rational Functions

Math Rational Functions Rational Functions Math 3 Rational Functions A rational function is the algebraic equivalent of a rational number. Recall that a rational number is one that can be epressed as a ratio of integers: p/q.

More information

Section 4.4 Rational Functions and Their Graphs

Section 4.4 Rational Functions and Their Graphs Section 4.4 Rational Functions and Their Graphs p( ) A rational function can be epressed as where p() and q() are q( ) 3 polynomial functions and q() is not equal to 0. For eample, is a 16 rational function.

More information

Algebra 2 Unit 8 (Chapter 7) CALCULATORS ARE NOT ALLOWED

Algebra 2 Unit 8 (Chapter 7) CALCULATORS ARE NOT ALLOWED Algebra Unit 8 (Chapter 7) CALCULATORS ARE NOT ALLOWED. Graph eponential functions. (Sections 7., 7.) Worksheet 6. Solve eponential growth and eponential decay problems. (Sections 7., 7.) Worksheet 8.

More information

2.3 Domain and Range of a Function

2.3 Domain and Range of a Function Section Domain and Range o a Function 1 2.3 Domain and Range o a Function Functions Recall the deinition o a unction. Deinition 1 A relation is a unction i and onl i each object in its domain is paired

More information

4.4 Concavity and Curve Sketching

4.4 Concavity and Curve Sketching Concavity and Curve Sketching Section Notes Page We can use the second derivative to tell us if a graph is concave up or concave down To see if something is concave down or concave up we need to look at

More information

LINEAR INEQUALITIES. less than, < 2x + 5 x 3 less than or equal to, greater than, > 3x 2 x 6 greater than or equal to,

LINEAR INEQUALITIES. less than, < 2x + 5 x 3 less than or equal to, greater than, > 3x 2 x 6 greater than or equal to, LINEAR INEQUALITIES When we use the equal sign in an equation we are stating that both sides of the equation are equal to each other. In an inequality, we are stating that both sides of the equation are

More information

10.1. Solving Quadratic Equations. Investigation: Rocket Science CONDENSED

10.1. Solving Quadratic Equations. Investigation: Rocket Science CONDENSED CONDENSED L E S S O N 10.1 Solving Quadratic Equations In this lesson you will look at quadratic functions that model projectile motion use tables and graphs to approimate solutions to quadratic equations

More information

Core Maths C3. Revision Notes

Core Maths C3. Revision Notes Core Maths C Revision Notes October 0 Core Maths C Algebraic fractions... Cancelling common factors... Multipling and dividing fractions... Adding and subtracting fractions... Equations... 4 Functions...

More information

3.4 Limits at Infinity - Asymptotes

3.4 Limits at Infinity - Asymptotes 3.4 Limits at Infinity - Asymptotes Definition 3.3. If f is a function defined on some interval (a, ), then f(x) = L means that values of f(x) are very close to L (keep getting closer to L) as x. The line

More information

Students Currently in Algebra 2 Maine East Math Placement Exam Review Problems

Students Currently in Algebra 2 Maine East Math Placement Exam Review Problems Students Currently in Algebra Maine East Math Placement Eam Review Problems The actual placement eam has 100 questions 3 hours. The placement eam is free response students must solve questions and write

More information

POLYNOMIAL FUNCTIONS

POLYNOMIAL FUNCTIONS POLYNOMIAL FUNCTIONS Polynomial Division.. 314 The Rational Zero Test.....317 Descarte s Rule of Signs... 319 The Remainder Theorem.....31 Finding all Zeros of a Polynomial Function.......33 Writing a

More information

Core Maths C1. Revision Notes

Core Maths C1. Revision Notes Core Maths C Revision Notes November 0 Core Maths C Algebra... Indices... Rules of indices... Surds... 4 Simplifying surds... 4 Rationalising the denominator... 4 Quadratic functions... 4 Completing the

More information

The numerical values that you find are called the solutions of the equation.

The numerical values that you find are called the solutions of the equation. Appendi F: Solving Equations The goal of solving equations When you are trying to solve an equation like: = 4, you are trying to determine all of the numerical values of that you could plug into that equation.

More information

Quadratic Functions and Parabolas

Quadratic Functions and Parabolas MATH 11 Quadratic Functions and Parabolas A quadratic function has the form Dr. Neal, Fall 2008 f () = a 2 + b + c where a 0. The graph of the function is a parabola that opens upward if a > 0, and opens

More information

Exponential Functions. Exponential Functions and Their Graphs. Example 2. Example 1. Example 3. Graphs of Exponential Functions 9/17/2014

Exponential Functions. Exponential Functions and Their Graphs. Example 2. Example 1. Example 3. Graphs of Exponential Functions 9/17/2014 Eponential Functions Eponential Functions and Their Graphs Precalculus.1 Eample 1 Use a calculator to evaluate each function at the indicated value of. a) f ( ) 8 = Eample In the same coordinate place,

More information

Chapter 4. Polynomial and Rational Functions. 4.1 Polynomial Functions and Their Graphs

Chapter 4. Polynomial and Rational Functions. 4.1 Polynomial Functions and Their Graphs Chapter 4. Polynomial and Rational Functions 4.1 Polynomial Functions and Their Graphs A polynomial function of degree n is a function of the form P = a n n + a n 1 n 1 + + a 2 2 + a 1 + a 0 Where a s

More information

Curve Sketching. MATH 1310 Lecture 26 1 of 14 Ronald Brent 2016 All rights reserved.

Curve Sketching. MATH 1310 Lecture 26 1 of 14 Ronald Brent 2016 All rights reserved. Curve Sketching 1. Domain. Intercepts. Symmetry. Asymptotes 5. Intervals of Increase or Decrease 6. Local Maimum and Minimum Values 7. Concavity and Points of Inflection 8. Sketch the curve MATH 110 Lecture

More information

Algebra. Exponents. Absolute Value. Simplify each of the following as much as possible. 2x y x + y y. xxx 3. x x x xx x. 1. Evaluate 5 and 123

Algebra. Exponents. Absolute Value. Simplify each of the following as much as possible. 2x y x + y y. xxx 3. x x x xx x. 1. Evaluate 5 and 123 Algebra Eponents Simplify each of the following as much as possible. 1 4 9 4 y + y y. 1 5. 1 5 4. y + y 4 5 6 5. + 1 4 9 10 1 7 9 0 Absolute Value Evaluate 5 and 1. Eliminate the absolute value bars from

More information

Logarithmic Functions and the Log Laws

Logarithmic Functions and the Log Laws Mathematics Learning Centre Logarithmic Functions and the Log Laws Christopher Thomas c 998 University of Sydney Mathematics Learning Centre, University of Sydney Logarithms. Introduction Taking logarithms

More information

Review of Intermediate Algebra Content

Review of Intermediate Algebra Content Review of Intermediate Algebra Content Table of Contents Page Factoring GCF and Trinomials of the Form + b + c... Factoring Trinomials of the Form a + b + c... Factoring Perfect Square Trinomials... 6

More information

1.2 Linear Equations and Rational Equations

1.2 Linear Equations and Rational Equations Linear Equations and Rational Equations Section Notes Page In this section, you will learn how to solve various linear and rational equations A linear equation will have an variable raised to a power of

More information

LINEAR FUNCTIONS. Form Equation Note Standard Ax + By = C A and B are not 0. A > 0

LINEAR FUNCTIONS. Form Equation Note Standard Ax + By = C A and B are not 0. A > 0 LINEAR FUNCTIONS As previousl described, a linear equation can be defined as an equation in which the highest eponent of the equation variable is one. A linear function is a function of the form f ( )

More information

7. Solving Linear Inequalities and Compound Inequalities

7. Solving Linear Inequalities and Compound Inequalities 7. Solving Linear Inequalities and Compound Inequalities Steps for solving linear inequalities are very similar to the steps for solving linear equations. The big differences are multiplying and dividing

More information

Midterm 2 Review Problems (the first 7 pages) Math 123-5116 Intermediate Algebra Online Spring 2013

Midterm 2 Review Problems (the first 7 pages) Math 123-5116 Intermediate Algebra Online Spring 2013 Midterm Review Problems (the first 7 pages) Math 1-5116 Intermediate Algebra Online Spring 01 Please note that these review problems are due on the day of the midterm, Friday, April 1, 01 at 6 p.m. in

More information

a > 0 parabola opens a < 0 parabola opens

a > 0 parabola opens a < 0 parabola opens Objective 8 Quadratic Functions The simplest quadratic function is f() = 2. Objective 8b Quadratic Functions in (h, k) form Appling all of Obj 4 (reflections and translations) to the function. f() = a(

More information

Packet 1 for Unit 2 Intercept Form of a Quadratic Function. M2 Alg 2

Packet 1 for Unit 2 Intercept Form of a Quadratic Function. M2 Alg 2 Packet 1 for Unit Intercept Form of a Quadratic Function M Alg 1 Assignment A: Graphs of Quadratic Functions in Intercept Form (Section 4.) In this lesson, you will: Determine whether a function is linear

More information

5.4 The Quadratic Formula

5.4 The Quadratic Formula Section 5.4 The Quadratic Formula 481 5.4 The Quadratic Formula Consider the general quadratic function f(x) = ax + bx + c. In the previous section, we learned that we can find the zeros of this function

More information

2.4 Solving Equations and Inequalities by Graphing

2.4 Solving Equations and Inequalities by Graphing Section 2.4 Solvin Equations and Inequalities b Graphin 139 2.4 Solvin Equations and Inequalities b Graphin Our emphasis in the chapter has been on unctions and the interpretation o their raphs. In this

More information

Methods to Solve Quadratic Equations

Methods to Solve Quadratic Equations Methods to Solve Quadratic Equations We have been learning how to factor epressions. Now we will apply factoring to another skill you must learn solving quadratic equations. a b c 0 is a second-degree

More information

Translating Points. Subtract 2 from the y-coordinates

Translating Points. Subtract 2 from the y-coordinates CONDENSED L E S S O N 9. Translating Points In this lesson ou will translate figures on the coordinate plane define a translation b describing how it affects a general point (, ) A mathematical rule that

More information

Graphing Quadratic Equations

Graphing Quadratic Equations .4 Graphing Quadratic Equations.4 OBJECTIVE. Graph a quadratic equation b plotting points In Section 6.3 ou learned to graph first-degree equations. Similar methods will allow ou to graph quadratic equations

More information

Midterm 1. Solutions

Midterm 1. Solutions Stony Brook University Introduction to Calculus Mathematics Department MAT 13, Fall 01 J. Viro October 17th, 01 Midterm 1. Solutions 1 (6pt). Under each picture state whether it is the graph of a function

More information

Review of Fundamental Mathematics

Review of Fundamental Mathematics Review of Fundamental Mathematics As explained in the Preface and in Chapter 1 of your textbook, managerial economics applies microeconomic theory to business decision making. The decision-making tools

More information

Polynomial Degree and Finite Differences

Polynomial Degree and Finite Differences CONDENSED LESSON 7.1 Polynomial Degree and Finite Differences In this lesson you will learn the terminology associated with polynomials use the finite differences method to determine the degree of a polynomial

More information

SUNY ECC. ACCUPLACER Preparation Workshop. Algebra Skills

SUNY ECC. ACCUPLACER Preparation Workshop. Algebra Skills SUNY ECC ACCUPLACER Preparation Workshop Algebra Skills Gail A. Butler Ph.D. Evaluating Algebraic Epressions Substitute the value (#) in place of the letter (variable). Follow order of operations!!! E)

More information

The slope m of the line passes through the points (x 1,y 1 ) and (x 2,y 2 ) e) (1, 3) and (4, 6) = 1 2. f) (3, 6) and (1, 6) m= 6 6

The slope m of the line passes through the points (x 1,y 1 ) and (x 2,y 2 ) e) (1, 3) and (4, 6) = 1 2. f) (3, 6) and (1, 6) m= 6 6 Lines and Linear Equations Slopes Consider walking on a line from left to right. The slope of a line is a measure of its steepness. A positive slope rises and a negative slope falls. A slope of zero means

More information

To Be or Not To Be a Linear Equation: That Is the Question

To Be or Not To Be a Linear Equation: That Is the Question To Be or Not To Be a Linear Equation: That Is the Question Linear Equation in Two Variables A linear equation in two variables is an equation that can be written in the form A + B C where A and B are not

More information

Pre Calculus Math 40S: Explained!

Pre Calculus Math 40S: Explained! Pre Calculus Math 0S: Eplained! www.math0s.com 0 Logarithms Lesson PART I: Eponential Functions Eponential functions: These are functions where the variable is an eponent. The first tpe of eponential graph

More information

Domain of a Composition

Domain of a Composition Domain of a Composition Definition Given the function f and g, the composition of f with g is a function defined as (f g)() f(g()). The domain of f g is the set of all real numbers in the domain of g such

More information

7.7 Solving Rational Equations

7.7 Solving Rational Equations Section 7.7 Solving Rational Equations 7 7.7 Solving Rational Equations When simplifying comple fractions in the previous section, we saw that multiplying both numerator and denominator by the appropriate

More information

Polynomial and Rational Functions

Polynomial and Rational Functions Chapter 5 Polnomial and Rational Functions Section 5.1 Polnomial Functions Section summaries The general form of a polnomial function is f() = a n n + a n 1 n 1 + +a 1 + a 0. The degree of f() is the largest

More information

MPE Review Section III: Logarithmic & Exponential Functions

MPE Review Section III: Logarithmic & Exponential Functions MPE Review Section III: Logarithmic & Eponential Functions FUNCTIONS AND GRAPHS To specify a function y f (, one must give a collection of numbers D, called the domain of the function, and a procedure

More information

Quadratics - Graphs of Quadratics

Quadratics - Graphs of Quadratics 9.11 Quadratics - Graphs of Quadratics Objective: Graph quadratic equations using the vertex, x-intercepts, and y-intercept. Just as we drew pictures of the solutions for lines or linear equations, we

More information

The Graph of a Linear Equation

The Graph of a Linear Equation 4.1 The Graph of a Linear Equation 4.1 OBJECTIVES 1. Find three ordered pairs for an equation in two variables 2. Graph a line from three points 3. Graph a line b the intercept method 4. Graph a line that

More information

A positive exponent means repeated multiplication. A negative exponent means the opposite of repeated multiplication, which is repeated

A positive exponent means repeated multiplication. A negative exponent means the opposite of repeated multiplication, which is repeated Eponents Dealing with positive and negative eponents and simplifying epressions dealing with them is simply a matter of remembering what the definition of an eponent is. division. A positive eponent means

More information

Exponent Law Review 3 + 3 0. 12 13 b. 1 d. 0. x 5 d. x 11. a 5 b. b 8 a 8. b 2 a 2 d. 81u 8 v 10 81. u 8 v 20 81. Name: Class: Date:

Exponent Law Review 3 + 3 0. 12 13 b. 1 d. 0. x 5 d. x 11. a 5 b. b 8 a 8. b 2 a 2 d. 81u 8 v 10 81. u 8 v 20 81. Name: Class: Date: Name: Class: Date: Eponent Law Review Multiple Choice Identify the choice that best completes the statement or answers the question The epression + 0 is equal to 0 Simplify 6 6 8 6 6 6 0 Simplify ( ) (

More information

Lesson 9.1 Solving Quadratic Equations

Lesson 9.1 Solving Quadratic Equations Lesson 9.1 Solving Quadratic Equations 1. Sketch the graph of a quadratic equation with a. One -intercept and all nonnegative y-values. b. The verte in the third quadrant and no -intercepts. c. The verte

More information

!!! Technical Notes : The One-click Installation & The AXIS Internet Dynamic DNS Service. Table of contents

!!! Technical Notes : The One-click Installation & The AXIS Internet Dynamic DNS Service. Table of contents Technical Notes: One-click Installation & The AXIS Internet Dynamic DNS Service Rev: 1.1. Updated 2004-06-01 1 Table o contents The main objective o the One-click Installation...3 Technical description

More information

Algebra 2 Notes AII.7 Functions: Review, Domain/Range. Function: Domain: Range:

Algebra 2 Notes AII.7 Functions: Review, Domain/Range. Function: Domain: Range: Name: Date: Block: Functions: Review What is a.? Relation: Function: Domain: Range: Draw a graph of a : a) relation that is a function b) relation that is NOT a function Function Notation f(x): Names the

More information

Section 1.1 Linear Equations: Slope and Equations of Lines

Section 1.1 Linear Equations: Slope and Equations of Lines Section. Linear Equations: Slope and Equations of Lines Slope The measure of the steepness of a line is called the slope of the line. It is the amount of change in y, the rise, divided by the amount of

More information

Alex and Morgan were asked to graph the equation y = 2x + 1

Alex and Morgan were asked to graph the equation y = 2x + 1 Which is better? Ale and Morgan were asked to graph the equation = 2 + 1 Ale s make a table of values wa Morgan s use the slope and -intercept wa First, I made a table. I chose some -values, then plugged

More information

FIXED INCOME ATTRIBUTION

FIXED INCOME ATTRIBUTION Sotware Requirement Speciication FIXED INCOME ATTRIBUTION Authors Risto Lehtinen Version Date Comment 0.1 2007/02/20 First Drat Table o Contents 1 Introduction... 3 1.1 Purpose o Document... 3 1.2 Glossary,

More information

Why should we learn this? One real-world connection is to find the rate of change in an airplane s altitude. The Slope of a Line VOCABULARY

Why should we learn this? One real-world connection is to find the rate of change in an airplane s altitude. The Slope of a Line VOCABULARY Wh should we learn this? The Slope of a Line Objectives: To find slope of a line given two points, and to graph a line using the slope and the -intercept. One real-world connection is to find the rate

More information

Variable. 1.1 Order of Operations. August 17, evaluating expressions ink.notebook. Standards. letter or symbol used to represent a number

Variable. 1.1 Order of Operations. August 17, evaluating expressions ink.notebook. Standards. letter or symbol used to represent a number 1.1 evaluating expressions ink.notebook page 8 Unit 1 Basic Equations and Inequalities 1.1 Order of Operations page 9 Square Cube Variable Variable Expression Exponent page 10 page 11 1 Lesson Objectives

More information

Determine If An Equation Represents a Function

Determine If An Equation Represents a Function Question : What is a linear function? The term linear function consists of two parts: linear and function. To understand what these terms mean together, we must first understand what a function is. The

More information

Substitute 4 for x in the function, Simplify.

Substitute 4 for x in the function, Simplify. Page 1 of 19 Review of Eponential and Logarithmic Functions An eponential function is a function in the form of f ( ) = for a fied ase, where > 0 and 1. is called the ase of the eponential function. The

More information

Horizontal and Vertical Asymptotes of Graphs of Rational Functions

Horizontal and Vertical Asymptotes of Graphs of Rational Functions PRECALCULUS AND ADVANCED OPICS Horizontal and Vertical Asymptotes of Graphs of Rational Functions Student Outcomes Students identify vertical and horizontal asymptotes of rational functions. Lesson Notes

More information

Polynomial and Rational Functions

Polynomial and Rational Functions Polynomial and Rational Functions Quadratic Functions Overview of Objectives, students should be able to: 1. Recognize the characteristics of parabolas. 2. Find the intercepts a. x intercepts by solving

More information

LESSON EIII.E EXPONENTS AND LOGARITHMS

LESSON EIII.E EXPONENTS AND LOGARITHMS LESSON EIII.E EXPONENTS AND LOGARITHMS LESSON EIII.E EXPONENTS AND LOGARITHMS OVERVIEW Here s what ou ll learn in this lesson: Eponential Functions a. Graphing eponential functions b. Applications of eponential

More information

Solving Quadratic Equations by Graphing. Consider an equation of the form. y ax 2 bx c a 0. In an equation of the form

Solving Quadratic Equations by Graphing. Consider an equation of the form. y ax 2 bx c a 0. In an equation of the form SECTION 11.3 Solving Quadratic Equations b Graphing 11.3 OBJECTIVES 1. Find an ais of smmetr 2. Find a verte 3. Graph a parabola 4. Solve quadratic equations b graphing 5. Solve an application involving

More information

Unit 3 - Lesson 3. MM3A2 - Logarithmic Functions and Inverses of exponential functions

Unit 3 - Lesson 3. MM3A2 - Logarithmic Functions and Inverses of exponential functions Math Instructional Framework Time Frame Unit Name Learning Task/Topics/ Themes Standards and Elements Lesson Essential Questions Activator Unit 3 - Lesson 3 MM3A2 - Logarithmic Functions and Inverses of

More information

Exponential Functions

Exponential Functions MathsStart (NOTE Feb 2013: This is the old version of MathsStart. New books will be created during 2013 and 2014) Topic 7 Eponential Functions e 20 1 e 10 (0, 1) 4 2 0 2 4 MATHS LEARNING CENTRE Level 3,

More information

This is a square root. The number under the radical is 9. (An asterisk * means multiply.)

This is a square root. The number under the radical is 9. (An asterisk * means multiply.) Page of Review of Radical Expressions and Equations Skills involving radicals can be divided into the following groups: Evaluate square roots or higher order roots. Simplify radical expressions. Rationalize

More information

Notes on Curve Sketching. B. Intercepts: Find the y-intercept (f(0)) and any x-intercepts. Skip finding x-intercepts if f(x) is very complicated.

Notes on Curve Sketching. B. Intercepts: Find the y-intercept (f(0)) and any x-intercepts. Skip finding x-intercepts if f(x) is very complicated. Notes on Curve Sketching The following checklist is a guide to sketching the curve y = f(). A. Domain: Find the domain of f. B. Intercepts: Find the y-intercept (f(0)) and any -intercepts. Skip finding

More information

PRINCIPLES OF VIEW CAMERA FOCUS

PRINCIPLES OF VIEW CAMERA FOCUS PRINCIPLES OF VIEW CAMERA FOCUS by Harold M. Merklinger View camera ocus may be considered to be governed by just two basic rules: the Scheimplug Rule and the Hinge Rule. While the standard "lens equation"

More information

Graphing Linear Equations

Graphing Linear Equations Graphing Linear Equations I. Graphing Linear Equations a. The graphs of first degree (linear) equations will always be straight lines. b. Graphs of lines can have Positive Slope Negative Slope Zero slope

More information

5.3 Graphing Cubic Functions

5.3 Graphing Cubic Functions Name Class Date 5.3 Graphing Cubic Functions Essential Question: How are the graphs of f () = a ( - h) 3 + k and f () = ( 1_ related to the graph of f () = 3? b ( - h) 3 ) + k Resource Locker Eplore 1

More information

Review for Calculus Rational Functions, Logarithms & Exponentials

Review for Calculus Rational Functions, Logarithms & Exponentials Definition and Domain of Rational Functions A rational function is defined as the quotient of two polynomial functions. F(x) = P(x) / Q(x) The domain of F is the set of all real numbers except those for

More information

Guide to SRW Section 1.7: Solving inequalities

Guide to SRW Section 1.7: Solving inequalities Guide to SRW Section 1.7: Solving inequalities When you solve the equation x 2 = 9, the answer is written as two very simple equations: x = 3 (or) x = 3 The diagram of the solution is -6-5 -4-3 -2-1 0

More information

Inequalities - Solve and Graph Inequalities

Inequalities - Solve and Graph Inequalities 3.1 Inequalities - Solve and Graph Inequalities Objective: Solve, graph, and give interval notation for the solution to linear inequalities. When we have an equation such as x = 4 we have a specific value

More information

Review D: Potential Energy and the Conservation of Mechanical Energy

Review D: Potential Energy and the Conservation of Mechanical Energy MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department o Physics 8. Review D: Potential Energy and the Conservation o Mechanical Energy D.1 Conservative and Non-conservative Force... D.1.1 Introduction... D.1.

More information

Solutions of Linear Equations in One Variable

Solutions of Linear Equations in One Variable 2. Solutions of Linear Equations in One Variable 2. OBJECTIVES. Identify a linear equation 2. Combine like terms to solve an equation We begin this chapter by considering one of the most important tools

More information

Year 9 set 1 Mathematics notes, to accompany the 9H book.

Year 9 set 1 Mathematics notes, to accompany the 9H book. Part 1: Year 9 set 1 Mathematics notes, to accompany the 9H book. equations 1. (p.1), 1.6 (p. 44), 4.6 (p.196) sequences 3. (p.115) Pupils use the Elmwood Press Essential Maths book by David Raymer (9H

More information

GRE MATH REVIEW #5. 1. Variable: A letter that represents an unknown number.

GRE MATH REVIEW #5. 1. Variable: A letter that represents an unknown number. GRE MATH REVIEW #5 Eponents and Radicals Many numbers can be epressed as the product of a number multiplied by itself a number of times. For eample, 16 can be epressed as. Another way to write this is

More information

2. Simplify. College Algebra Student Self-Assessment of Mathematics (SSAM) Answer Key. Use the distributive property to remove the parentheses

2. Simplify. College Algebra Student Self-Assessment of Mathematics (SSAM) Answer Key. Use the distributive property to remove the parentheses College Algebra Student Self-Assessment of Mathematics (SSAM) Answer Key 1. Multiply 2 3 5 1 Use the distributive property to remove the parentheses 2 3 5 1 2 25 21 3 35 31 2 10 2 3 15 3 2 13 2 15 3 2

More information

Pre Calculus Math 40S: Explained!

Pre Calculus Math 40S: Explained! www.math0s.com 97 Conics Lesson Part I The Double Napped Cone Conic Sections: There are main conic sections: circle, ellipse, parabola, and hyperbola. It is possible to create each of these shapes by passing

More information

Larson, R. and Boswell, L. (2016). Big Ideas Math, Algebra 2. Erie, PA: Big Ideas Learning, LLC. ISBN

Larson, R. and Boswell, L. (2016). Big Ideas Math, Algebra 2. Erie, PA: Big Ideas Learning, LLC. ISBN ALG B Algebra II, Second Semester #PR-0, BK-04 (v.4.0) To the Student: After your registration is complete and your proctor has been approved, you may take the Credit by Examination for ALG B. WHAT TO

More information

Using the data above Height range: 6 1to 74 inches Weight range: 95 to 205

Using the data above Height range: 6 1to 74 inches Weight range: 95 to 205 Plotting When plotting data, ou will normall be using two numbers, one for the coordinate, another for the coordinate. In some cases, like the first assignment, ou ma have onl one value. There, the second

More information

Section 1. Inequalities -5-4 -3-2 -1 0 1 2 3 4 5

Section 1. Inequalities -5-4 -3-2 -1 0 1 2 3 4 5 Worksheet 2.4 Introduction to Inequalities Section 1 Inequalities The sign < stands for less than. It was introduced so that we could write in shorthand things like 3 is less than 5. This becomes 3 < 5.

More information

About the Gamma Function

About the Gamma Function About the Gamma Function Notes for Honors Calculus II, Originally Prepared in Spring 995 Basic Facts about the Gamma Function The Gamma function is defined by the improper integral Γ) = The integral is

More information

Sometimes it is easier to leave a number written as an exponent. For example, it is much easier to write

Sometimes it is easier to leave a number written as an exponent. For example, it is much easier to write 4.0 Exponent Property Review First let s start with a review of what exponents are. Recall that 3 means taking four 3 s and multiplying them together. So we know that 3 3 3 3 381. You might also recall

More information

Masters Music Theory Competency Exam Part Writing and Analysis

Masters Music Theory Competency Exam Part Writing and Analysis Page 1 Masters Music Theory Competency Exam Part Writing and Analysis I. PART WRITING In the key o G major and a 4/4 meter, notate the ollowing chord progression in our-voice chorale style (soprano and

More information

Items related to expected use of graphing technology appear in bold italics.

Items related to expected use of graphing technology appear in bold italics. - 1 - Items related to expected use of graphing technology appear in bold italics. Investigating the Graphs of Polynomial Functions determine, through investigation, using graphing calculators or graphing

More information

You might be surprised to know that the word T-shirt wasn t really used until

You might be surprised to know that the word T-shirt wasn t really used until Hot Shirts Using Tables, Graphs, and Equations, Part 2 Learning Goals In this lesson, you will: Use different methods to represent a problem situation. Estimate values of expressions that involve decimals.

More information

Graphing calculators Transparencies (optional)

Graphing calculators Transparencies (optional) What if it is in pieces? Piecewise Functions and an Intuitive Idea of Continuity Teacher Version Lesson Objective: Length of Activity: Students will: Recognize piecewise functions and the notation used

More information

Simplifying Exponential Expressions

Simplifying Exponential Expressions Simplifying Eponential Epressions Eponential Notation Base Eponent Base raised to an eponent Eample: What is the base and eponent of the following epression? 7 is the base 7 is the eponent Goal To write

More information

4.9 Graph and Solve Quadratic

4.9 Graph and Solve Quadratic 4.9 Graph and Solve Quadratic Inequalities Goal p Graph and solve quadratic inequalities. Your Notes VOCABULARY Quadratic inequalit in two variables Quadratic inequalit in one variable GRAPHING A QUADRATIC

More information

3.5 Summary of Curve Sketching

3.5 Summary of Curve Sketching 3.5 Summary of Curve Sketching Follow these steps to sketch the curve. 1. Domain of f() 2. and y intercepts (a) -intercepts occur when f() = 0 (b) y-intercept occurs when = 0 3. Symmetry: Is it even or

More information

A Quick Algebra Review

A Quick Algebra Review 1. Simplifying Epressions. Solving Equations 3. Problem Solving 4. Inequalities 5. Absolute Values 6. Linear Equations 7. Systems of Equations 8. Laws of Eponents 9. Quadratics 10. Rationals 11. Radicals

More information

HFCC Math Lab Beginning Algebra 13 TRANSLATING ENGLISH INTO ALGEBRA: WORDS, PHRASE, SENTENCES

HFCC Math Lab Beginning Algebra 13 TRANSLATING ENGLISH INTO ALGEBRA: WORDS, PHRASE, SENTENCES HFCC Math Lab Beginning Algebra 1 TRANSLATING ENGLISH INTO ALGEBRA: WORDS, PHRASE, SENTENCES Before being able to solve word problems in algebra, you must be able to change words, phrases, and sentences

More information

Section 5.0A Factoring Part 1

Section 5.0A Factoring Part 1 Section 5.0A Factoring Part 1 I. Work Together A. Multiply the following binomials into trinomials. (Write the final result in descending order, i.e., a + b + c ). ( 7)( + 5) ( + 7)( + ) ( + 7)( + 5) (

More information

Method To Solve Linear, Polynomial, or Absolute Value Inequalities:

Method To Solve Linear, Polynomial, or Absolute Value Inequalities: Solving Inequalities An inequality is the result of replacing the = sign in an equation with ,, or. For example, 3x 2 < 7 is a linear inequality. We call it linear because if the < were replaced with

More information

3.2. Solving quadratic equations. Introduction. Prerequisites. Learning Outcomes. Learning Style

3.2. Solving quadratic equations. Introduction. Prerequisites. Learning Outcomes. Learning Style Solving quadratic equations 3.2 Introduction A quadratic equation is one which can be written in the form ax 2 + bx + c = 0 where a, b and c are numbers and x is the unknown whose value(s) we wish to find.

More information

www.mathsbox.org.uk ab = c a If the coefficients a,b and c are real then either α and β are real or α and β are complex conjugates

www.mathsbox.org.uk ab = c a If the coefficients a,b and c are real then either α and β are real or α and β are complex conjugates Further Pure Summary Notes. Roots of Quadratic Equations For a quadratic equation ax + bx + c = 0 with roots α and β Sum of the roots Product of roots a + b = b a ab = c a If the coefficients a,b and c

More information

9.3 OPERATIONS WITH RADICALS

9.3 OPERATIONS WITH RADICALS 9. Operations with Radicals (9 1) 87 9. OPERATIONS WITH RADICALS In this section Adding and Subtracting Radicals Multiplying Radicals Conjugates In this section we will use the ideas of Section 9.1 in

More information