Genetics. PART I: Mitosis & Meiosis prerequisites for inheritance. A. Mitosis. Review: A closer look inside of the nucleus: DNA: chromatin:

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Genetics. PART I: Mitosis & Meiosis prerequisites for inheritance. A. Mitosis. Review: A closer look inside of the nucleus: DNA: chromatin:"

Transcription

1 Genetics PART I: Mitosis & Meiosis prerequisites for inheritance A. Mitosis Review: A closer look inside of the nucleus: DNA: chromatin: chromosome: parts: chromatid: centromere: telomere: 1

2 Mitosis & the cell cycle: STAGES OF MITOSIS & THE CELL CYCLE: Interphase: Prophase: 2

3 Metaphase: Anaphase: Telophase: Cytokinesis: RESULTS OF MITOSIS (& CELL CYCLE): 3

4 Q: How does mitosis differ between plant an animal cells? 2. Meiosis Some important information about chromosomes: somatic cells: homologous chromosomes: diploid cells: sketch: haploid cells: sketch: 4

5 Meiosis I: 1. Prophase I: EARLY: - a parent with a distinct nucleus, nucleolus, cytoplasm & centrioles is present - chromosomes replicate LATE: - each pair of chromosomes lines up with its homologous pair - each group of four chromosomes is called a tetrad - nuclear membrane disappears; spindle fibers form - sometimes crossing over occurs 2. Metaphase I: - tetrads line up at the middle & attach to fibers at the centromeres - the chromosomes that are attached to the same centromere are called sister chromatids 3. Anaphase I: - tetrads separate so that sister chromatids move to opposite poles (disjunction) - chromosomes haploid but double stranded 4. Telophase I: - cytoplasm divides, nuclear membranes reappear & two daughter cells result - Sometimes a short interphase exists between meiosis I and II RESULT AFTER MEIOSIS I: 5

6 Meiosis II: 1. Prophase II: - each daughter cell forms spindle fibers - the double stranded chromosomes begin to move to the centre 2. Metaphase II: - centromeres of the chromosomes attach to the spindle fibers at the centre of the cell 3. Anaphase II: - centromeres of chromosomes divide and sister chromatids separate, moving to opposite poles of the cell - there are now 4 individual chromosomes, one in each daughter cell 4. Telophase II: - both daughter cells divide to form 4 haploid cells - nuclear membranes reappear - in each cell, chromosomes return to the interphase stage RESULT AFTER MEIOSIS II (end of meiosis): 6

7 7 BIO 30 - REGIER

8 PART II An Introduction to Inheritance 1. Mendelian Genetics What is genetics? Gregor Mendel - - Mendel s Experimental Design Q: Why did Mendel use peas? Q: What did Mendel do in his experiments? (3 main points) 8

9 Mendel s conclusions: : When an organism is hybrid for a pair of contrasting traits (ie: carries a copy of each trait), only the dominant trait can be seen in the hybrid. ex: when only yellow-seeded plants turned up after a cross between a pure-breeding yellow and a pure-breeding green plant, Mendel concluded that the characteristic for yellow seeds was dominant - Factors (genes) that occur in pairs are separated from one another during gamete formation (ie: sperm & egg production) and are recombined at fertilization (ie: when sperm and egg meet during sexual reprod n). : During meiosis, factors (genes) for different traits will be separated & distributed to gametes (sperm or egg) independent of one another. * this is not always true because of. Learning the terms.. 1. gene: 2. allele: 3. locus: 4. homozygous: 5. heterozygous: 9

10 6. dominant: 7. recessive: 8. genotype: 9. phenotype: Genetics Problem Solving Using the Punnett Square Q: What is a punnett square? a) Monohybrid Cross: Ex #1: 10

11 ex #2: What are the results (in terms of plant height) after crossing two offspring of the previous parent plants? ex #3: In peas, yellow seed color is dominant over green seed color. The genotypes of the parents are both Yy. State the genotypic and phenotypic ratios of the offspring. 11

12 Q: When not given the genotypes, how does one know if an individual showing a dominant trait is pure for the trait (homozygous) or hybrid (heterozygous)? 12

13 b) Dihybrid Cross: ex #1: Mendel considered both seed color & shape when crossing pea plants. He started with plants that were homozygous for these traits. Perform the following cross: YYRR x yyrr P 1 alleles Y = yellow y = green R = round r = wrinkled 13

14 ex #2: Perform an F1 cross. State the genotypic & phenotypic ratios of the offspring. 14

15 ex #3: Brown hair is dominant over red hair. Green eyes are dominant over blue. Describe the phenotypes of the F1 generation knowing that both parents are heterozygous for both traits. (Note: Hair color & eye color are governed by multiple genes..this question simplifies the inheritance!) Ex #4: Find the results of a cross between a homozygous tall, heterozygous yellow-seeded plant & a short, heterozygous yellow-seeded plant. 15

16 2. Other Concepts in Genetics A. Incomplete Dominance ex #1: snapdragon plant trait flower color alleles R red W white RW pink cross red flower x white flower RR WW ex #2: Try pink flower x pink flower 16

17 B. Codominance ex#1: trait coat color in horses (C) alleles cross homozygous red-coated horse x homozygous white-coated ex #2: Students try this one. Two roan colored horses mate. What is the probability that their foal will be white in color? 17

18 C. Multiple Alleles Ex of inherited trait with multiple alleles: ABO blood typing system GENOTYPES PHENOTYPES (blood type) Ex #1: Billy, type O blood, and Betty, heterozygous for type A blood, have a daughter, Betsy. What is the probability that Betsy will have type A blood? 18

19 ex #2: Johnny is curious as to whether or not he is adopted. His mother has type A blood and his father has type B blood. Johnny has type O blood. Could he be their child? ex #3: Gerald (heterozygous type A blood) and Georgetta (heterozygous type B blood) plan to have 3 children. What is the probability that all three children will have type O blood? 19

20 D. Polygenic Inheritance Examples include: 3. Chromosomal Inheritance Thomas Hunt Morgan a) Sex Chromosomes autosomes: sex chromosomes: During the fertilization of the egg. 20

21 sex-linked traits: examples of x-linked: examples of y-linked: ex #1: trait red-green color blindness (X-linked recessive) allele C color blind gene (found on X) * write in superscript* cross normal father x carrier mother ex #2: A father with hemophilia marries a woman who is a carrier of hemophilia. What is the probability that a son of theirs will have hemophilia? What is the probability that a daughter of theirs will have hemophilia? 21

22 b) Gene linkage c) Crossing Over & Recombination A LOOK BACK AT PART II: An Intro to Inheritance. 1. Mendelian genetics - Mendel s experimental design, experiment & conclusions - learning genetics terms - genetic crosses involving the punnett square a) monohybrid b) dihybrid 2. Other concepts in genetics A. Incomplete dominance B. Codominance C. Multiple Alleles D. Polygenic Inheritance 3. Chromosomal Inheritance a) Sex chromosomes & sex-linked traits b) Gene linkage c) Crossing over & recombination 22

23 PART III: A Closer Look At Genetics 4. The Genetic Material - A review of DNA.. nucleotide: base pairing rules (bonding): - Hershey & Chase (1952) - - Watson & Crick (& Rosalind Franklin) (1953) - 23

24 DNA Replication (How it Copies Itself ) The Ingredients: The process: STEP 1: STEP 2: STEP 3: 24

25 FINAL RESULT: From Gene to Protein STEP A Transcription The purpose: The ingredients: The process (4 steps): 25

26 The product: STEP B Translation The ingredients: The process: STEP #1: trna (transfer RNA) carries amino acids from the cytoplasm to the ribosomes by binding with them. Each trna combines with only one type of amino acid (aa). The trna is in the shape of a cloverleaf with an aa attachment site at one end and an anticodon (made of three bases) at the other end. Each trna has a different anticodon (see #4 in diagram). STEP #2: When protein synthesis is about to begin, a ribosome moves along an mrna. At the same time, a trna approaches with its amino acid. The anticodon of the trna recognizes and joins with only a particular codon of the mrna. ex: an anticodon CGC must join with a GCG mrna codon The trna with its aa remains temporarily attached to the mrna 26

27 STEP #3: The ribosome moves to the next triplet codon; the appropriate trna comes with its aa and joins the mrna. The new aa is attached to the previous aa by a peptide bond and the first trna can leave. STEP #4: This process continues until the ribosome reads a terminating codon (see #2 in diagram) which instructs the trna to stop. The aa chain (polypeptide chain) (see #5 in diagram) that has been created detaches & moves away. The mrna may be read again or it will go back to the nucleus & dismantle. The products: Q: What is the overall significance of DNA replication, transcription & translation? 27

28 5. Variation & Mutations Q: Why are variations among individuals important? 28

29 Q: What are the sources of these variations? Mutation a) chromosomal mutation: nondisjunction polyploidy b) gene mutation: 29

30 6. Some Human Genetic Disorders see handout Q: How can genetic disorders be detected? a) : cell undergoing mitosis is photographed, chromosomes in photograph are cut out and arranged in pairs. Anomalies are detected through a study of the appearance of the chromosomes. b) : used for genetic testing of growing fetus - sample of amniotic fluid, which contains cells of the fetus, is tested - tests may include an examination of the appearance of chromosomes or testing for an enzyme c) : : cells of part of the placenta in a pregnant mother are tested for genetic disorders of fetus 30

31 2. Pedigree Charts Example: The pedigree below is studying the incidence of blonde hair in a family. In humans, dark hair (B) is dominant to blonde hair (b). In this case, individuals who are shaded in are homozygous recessive. Individuals who have clear circles and squares have at least one dominant gene. What are the genotypes of persons A through F below? 31

32 8. Selective Breeding, Genetic Engineering & Recombinant DNA Selective breeding: list some examples: Genetic engineering: Q: What is the purpose of producing recombinant DNA? How genetic engineering is done.. Genetic engineering can be done for many purposes. Often, it is used to make more of a desired protein in drug production. This would be done as follows: 1. DNA is cut up into fragments by using enzymes (often isolated from bacteria) that recognize specific sequences of nucleotides & cut the DNA there. 32

33 2. The fragments of DNA are then combined with another DNA molecule to make the recombinant DNA. Often the fragments of DNA are combined with small, ring-shaped DNA called plasmids. These are found outside of the main chromosome set of many bacteria, some viruses & some yeasts. 3. The altered plasmids are exposed to a host cell (usually a bacterium or virus) which takes them in. The host cell then produces the protein specified by the inserted gene. The host cell is cloned so that more of the desired protein will be produced. Ethical concerns? 33

34 9. Population Genetics The genes of an individual.. The genes of a population. gene pool: population genetics: Hardy-Weinberg Law: Conditions of the law (4): 34

35 Q: Why is a law that can never be fulfilled important to study? genetic drift: Founder effect: LOOKING BACK I: Mitosis & Meiosis II: An Introduction to Inheritance 1. Mendelian Genetics - Mendel s experiments; terminology; punnett squares (mono & dihybrid crosses) 2. Other Concepts in Genetics A. Incomplete dominance C. Multiple Alleles B. Codominance D. Polygenic Inheritance 3. Chromosomal Inheritance a) sex chromosomes b) gene linkage c) crossing over & recombination III: A Closer Look at Genetics 4. The Genetic Material - history & structure; DNA replication, transcription, translation 5. Variation & Mutations - chromosomal & gene mutations 6. Human Genetic Disorders 7. Pedigree Charts 8. Selective Breeding, Genetic Engineering & Recombinant DNA 9. Population Genetics 35

Bio EOC Topics for Cell Reproduction: Bio EOC Questions for Cell Reproduction:

Bio EOC Topics for Cell Reproduction: Bio EOC Questions for Cell Reproduction: Bio EOC Topics for Cell Reproduction: Asexual vs. sexual reproduction Mitosis steps, diagrams, purpose o Interphase, Prophase, Metaphase, Anaphase, Telophase, Cytokinesis Meiosis steps, diagrams, purpose

More information

Cell Division. Use Target Reading Skills. This section explains how cells grow and divide.

Cell Division. Use Target Reading Skills. This section explains how cells grow and divide. Cell Processes and Energy Name Date Class Cell Processes and Energy Guided Reading and Study Cell Division This section explains how cells grow and divide. Use Target Reading Skills As you read, make a

More information

11.1 The Work of Gregor Mendel

11.1 The Work of Gregor Mendel 11.1 The Work of Gregor Mendel Lesson Objectives Describe Mendel s studies and conclusions about inheritance. Describe what happens during segregation. Lesson Summary The Experiments of Gregor Mendel The

More information

Biology Final Exam Study Guide: Semester 2

Biology Final Exam Study Guide: Semester 2 Biology Final Exam Study Guide: Semester 2 Questions 1. Scientific method: What does each of these entail? Investigation and Experimentation Problem Hypothesis Methods Results/Data Discussion/Conclusion

More information

HEREDITY (B) In domestic cats, the gene for Tabby stripes (T) is dominant over the gene for no stripes (t)

HEREDITY (B) In domestic cats, the gene for Tabby stripes (T) is dominant over the gene for no stripes (t) GENETIC CROSSES In minks, a single gene controls coat color. The allele for a brown (B) coat is dominant to the allele for silver-blue (b) coats. 1. A homozygous brown mink was crossed with a silverblue

More information

Honors Biology Practice Questions #1. Name. 6. Seastars have a diploid number of 24 chromosomes. The haploid number would be

Honors Biology Practice Questions #1. Name. 6. Seastars have a diploid number of 24 chromosomes. The haploid number would be Honors Biology Practice Questions #1 1. Donkeys have 68 chromosomes in each body cell. If a donkey cell undergoes meiosis, how many chromosomes should be in each gamete? A. 18 B. 34 C. 68 D. 132 2. A sperm

More information

Meiosis Worksheet. Do you have ALL your parents' chromosomes? Introduction to Meiosis. Haploid vs. Diploid. Overview of Meiosis NAME - PERIOD

Meiosis Worksheet. Do you have ALL your parents' chromosomes? Introduction to Meiosis. Haploid vs. Diploid. Overview of Meiosis NAME - PERIOD Meiosis Worksheet NAME - PERIOD Do you have ALL your parents' chromosomes? No, you only received half of your mother's chromosomes and half of your father's chromosomes. If you inherited them all, you

More information

Biology 1406 Exam 4 Notes Cell Division and Genetics Ch. 8, 9

Biology 1406 Exam 4 Notes Cell Division and Genetics Ch. 8, 9 Biology 1406 Exam 4 Notes Cell Division and Genetics Ch. 8, 9 Ch. 8 Cell Division Cells divide to produce new cells must pass genetic information to new cells - What process of DNA allows this? Two types

More information

Name Date. Meiosis Worksheet

Name Date. Meiosis Worksheet Name Date Meiosis Worksheet Identifying Processes On the lines provided, order the different stages of meiosis I THROUGH meiosis II, including interphase in the proper sequence. 1. homologous chromosome

More information

Test Two Study Guide

Test Two Study Guide Test Two Study Guide 1. Describe what is happening inside a cell during the following phases (pictures may help but try to use words): Interphase: : Consists of G1 / S / G2. Growing stage, cell doubles

More information

STUDENT ID NUMBER, LAST NAME,

STUDENT ID NUMBER, LAST NAME, EBIO 1210: General Biology 1 Name Exam 3 June 25, 2013 To receive credit for this exam, you MUST bubble in your STUDENT ID NUMBER, LAST NAME, and FIRST NAME No. 2 pencils only You may keep this exam to

More information

Heredity. Sarah crosses a homozygous white flower and a homozygous purple flower. The cross results in all purple flowers.

Heredity. Sarah crosses a homozygous white flower and a homozygous purple flower. The cross results in all purple flowers. Heredity 1. Sarah is doing an experiment on pea plants. She is studying the color of the pea plants. Sarah has noticed that many pea plants have purple flowers and many have white flowers. Sarah crosses

More information

Chapter 8 Cell division. Review

Chapter 8 Cell division. Review Chapter 8 Cell division Mitosis/Meiosis Review This spot that holds the 2 chromatid copies together is called a centromere The phase of the cell cycle in which cells stop dividing all together. G 0 Cell

More information

somatic cell egg genotype gamete polar body phenotype homologous chromosome trait dominant autosome genetics recessive

somatic cell egg genotype gamete polar body phenotype homologous chromosome trait dominant autosome genetics recessive CHAPTER 6 MEIOSIS AND MENDEL Vocabulary Practice somatic cell egg genotype gamete polar body phenotype homologous chromosome trait dominant autosome genetics recessive CHAPTER 6 Meiosis and Mendel sex

More information

Genetics Module B, Anchor 3

Genetics Module B, Anchor 3 Genetics Module B, Anchor 3 Key Concepts: - An individual s characteristics are determines by factors that are passed from one parental generation to the next. - During gamete formation, the alleles for

More information

Biology 160 Lab Module 10 Meiosis Activity & Mendelian Genetics

Biology 160 Lab Module 10 Meiosis Activity & Mendelian Genetics Name Biology 160 Lab Module 10 Meiosis Activity & Mendelian Genetics Introduction During your lifetime you have grown from a single celled zygote into an organism made up of trillions of cells. The vast

More information

Heredity - Patterns of Inheritance

Heredity - Patterns of Inheritance Heredity - Patterns of Inheritance Genes and Alleles A. Genes 1. A sequence of nucleotides that codes for a special functional product a. Transfer RNA b. Enzyme c. Structural protein d. Pigments 2. Genes

More information

5. The cells of a multicellular organism, other than gametes and the germ cells from which it develops, are known as

5. The cells of a multicellular organism, other than gametes and the germ cells from which it develops, are known as 1. True or false? The chi square statistical test is used to determine how well the observed genetic data agree with the expectations derived from a hypothesis. True 2. True or false? Chromosomes in prokaryotic

More information

11.4 Meiosis. Lesson Objectives. Lesson Summary

11.4 Meiosis. Lesson Objectives. Lesson Summary 11.4 Meiosis Lesson Objectives Contrast the number of chromosomes in body cells and in gametes. Summarize the events of meiosis. Contrast meiosis and mitosis. Describe how alleles from different genes

More information

Meiosis. The form of cell division by which gametes, with half the number of chromosomes, are produced. Diploid (2n) haploid (n)

Meiosis. The form of cell division by which gametes, with half the number of chromosomes, are produced. Diploid (2n) haploid (n) MEIOSIS Meiosis The form of cell division by which gametes, with half the number of chromosomes, are produced. Diploid (2n) haploid (n) Meiosis is sexual reproduction. Two divisions (meiosis I and meiosis

More information

From DNA to Protein

From DNA to Protein Nucleus Control center of the cell contains the genetic library encoded in the sequences of nucleotides in molecules of DNA code for the amino acid sequences of all proteins determines which specific proteins

More information

Name: 4. A typical phenotypic ratio for a dihybrid cross is a) 9:1 b) 3:4 c) 9:3:3:1 d) 1:2:1:2:1 e) 6:3:3:6

Name: 4. A typical phenotypic ratio for a dihybrid cross is a) 9:1 b) 3:4 c) 9:3:3:1 d) 1:2:1:2:1 e) 6:3:3:6 Name: Multiple-choice section Choose the answer which best completes each of the following statements or answers the following questions and so make your tutor happy! 1. Which of the following conclusions

More information

Exercise 1: Q: B.1. Answer Cell A: 2 Q: B.3. Answer (a) Somatic (body). CELL CYCLE, CELL DIVISION AND STRUCTURE OF CHROMOSOME. Cell B: 4 Q: B.

Exercise 1: Q: B.1. Answer Cell A: 2 Q: B.3. Answer (a) Somatic (body). CELL CYCLE, CELL DIVISION AND STRUCTURE OF CHROMOSOME. Cell B: 4 Q: B. CELL CYCLE, CELL DIVISION AND STRUCTURE OF CHROMOSOME Exercise 1: Q: B.1 Cell A: 2 Cell B: 4 Q: B.2 (a) - Metaphase. (b) - Telophase. (c) - Prophase. (d) - Anaphase. Q: B.3 (a) Somatic (body). (b) Four.

More information

Chapter 9 Patterns of Inheritance

Chapter 9 Patterns of Inheritance Bio 100 Patterns of Inheritance 1 Chapter 9 Patterns of Inheritance Modern genetics began with Gregor Mendel s quantitative experiments with pea plants History of Heredity Blending theory of heredity -

More information

7A The Origin of Modern Genetics

7A The Origin of Modern Genetics Life Science Chapter 7 Genetics of Organisms 7A The Origin of Modern Genetics Genetics the study of inheritance (the study of how traits are inherited through the interactions of alleles) Heredity: the

More information

SELF-PREPARATION FOR THE BIOLOGY ASSESSMENT TEST MODULE 5: MITOSIS AND MEIOSIS

SELF-PREPARATION FOR THE BIOLOGY ASSESSMENT TEST MODULE 5: MITOSIS AND MEIOSIS SELF-PREPARATION FOR THE BIOLOGY ASSESSMENT TEST MODULE 5: MITOSIS AND MEIOSIS Mitosis and meiosis: Two types of eukaryotic cell division According to the Cell Theory, new cells are created by the division

More information

Eukaryotic Cells and the Cell Cycle

Eukaryotic Cells and the Cell Cycle Eukaryotic Cells and the Cell Cycle Mitosis, Meiosis, & Fertilization Learning Goals: After completing this laboratory exercise you will be able to: 1. Identify the stages of the cell cycle. 2. Follow

More information

CHROMOSOME STRUCTURE CHROMOSOME NUMBERS

CHROMOSOME STRUCTURE CHROMOSOME NUMBERS CHROMOSOME STRUCTURE 1. During nuclear division, the DNA (as chromatin) in a Eukaryotic cell's nucleus is coiled into very tight compact structures called chromosomes. These are rod-shaped structures made

More information

Chapter 8: The Cellular Basis of Reproduction and Inheritance

Chapter 8: The Cellular Basis of Reproduction and Inheritance Chapter 8: The Cellular Basis of Reproduction and Inheritance Introduction Stages of an Organism s Life Cycle: Development: All changes that occur from a fertilized egg or an initial cell to an adult organism.

More information

Part II: Process of Meiosis

Part II: Process of Meiosis Part II: Process of Meiosis The process of eukaryotic cell division during which the number of chromosomes is cut in half. Involves Karyokinesis Sequence of two divisions Start with one nucleus End up

More information

List, describe, diagram, and identify the stages of meiosis.

List, describe, diagram, and identify the stages of meiosis. Meiosis and Sexual Life Cycles In this topic we will examine a second type of cell division used by eukaryotic cells: meiosis. In addition, we will see how the 2 types of eukaryotic cell division, mitosis

More information

Name: Class: Date: ID: A

Name: Class: Date: ID: A Name: Class: _ Date: _ Meiosis Quiz 1. (1 point) A kidney cell is an example of which type of cell? a. sex cell b. germ cell c. somatic cell d. haploid cell 2. (1 point) How many chromosomes are in a human

More information

Cell Growth and Reproduction Module B, Anchor 1

Cell Growth and Reproduction Module B, Anchor 1 Cell Growth and Reproduction Module B, Anchor 1 Key Concepts: - The larger a cell becomes, the more demands the cell places on its DNA. In addition, a larger cell is less efficient in moving nutrients

More information

Meiosis is a special form of cell division.

Meiosis is a special form of cell division. Page 1 of 6 KEY CONCEPT Meiosis is a special form of cell division. BEFORE, you learned Mitosis produces two genetically identical cells In sexual reproduction, offspring inherit traits from both parents

More information

Exam 1. CSS/Hort 430. 2008 All questions worth 2 points

Exam 1. CSS/Hort 430. 2008 All questions worth 2 points Exam 1. CSS/Hort 430. 2008 All questions worth 2 points 1. A general definition of plants is they are eukaryotic, multi-cellular organisms and are usually photosynthetic. In this definition, eukaryotic

More information

A. Homologous chromosomes divide in Meiosis l and sister. B. Homologous chromosomes divide in Meiosis ll and sister

A. Homologous chromosomes divide in Meiosis l and sister. B. Homologous chromosomes divide in Meiosis ll and sister SC.912.L.16.17 1) Somatic cells undergo mitosis whereas gamete cells undergo meiosis. Mitosis takes place throughout the lifetime of an organism. What is the biggest difference between these processes?

More information

Chapter 13: Meiosis and Sexual Life Cycles

Chapter 13: Meiosis and Sexual Life Cycles Name Period Concept 13.1 Offspring acquire genes from parents by inheriting chromosomes 1. Let s begin with a review of several terms that you may already know. Define: gene locus gamete male gamete female

More information

Cell Division Mitosis and Meiosis

Cell Division Mitosis and Meiosis Cell Division Mitosis and Meiosis students will describe the processes of mitosis and meiosis o define and explain the significance of chromosome number in somatic and sex cells o explain the events of

More information

Asexual - in this case, chromosomes come from a single parent. The text makes the point that you are not exact copies of your parents.

Asexual - in this case, chromosomes come from a single parent. The text makes the point that you are not exact copies of your parents. Meiosis The main reason we have meiosis is for sexual reproduction. It mixes up our genes (more on that later). But before we start to investigate this, let's talk a bit about reproduction in general:

More information

Complex Inheritance. Mendel observed monogenic traits and no linked genes It s not usually that simple.

Complex Inheritance. Mendel observed monogenic traits and no linked genes It s not usually that simple. Complex Inheritance Mendel observed monogenic traits and no linked genes It s not usually that simple. Other Types of Inheritance Incomplete Dominance The phenotype of the heterozygote is intermediate

More information

Worksheet for Morgan/Carter Laboratory #7 Mitosis and Meiosis

Worksheet for Morgan/Carter Laboratory #7 Mitosis and Meiosis Worksheet for Morgan/Carter Laboratory #7 Mitosis and Meiosis Ex. 7-1: MODELING THE CELL CYCLE AND MITOSIS IN AN ANIMAL CELL Lab Study A: Interphase How many pairs of homologous chromosomes are present

More information

Cell Cycle and Mitosis Review

Cell Cycle and Mitosis Review Cell Cycle and Mitosis Review This spot that holds the 2 chromatid copies together is called a The phase of the cell cycle in which cells stop dividing all together. Cell division in bacteria cells is

More information

BIOL100 Laboratory Assignment 4: Mitosis and Meiosis. Name:

BIOL100 Laboratory Assignment 4: Mitosis and Meiosis. Name: BIOL100 Laboratory Assignment 4: Mitosis and Meiosis Name: Laboratory Objectives After completing this lab topic, you should be able to: 1. Describe the activities of chromosomes and microtubules in the

More information

CHROMOSOMES AND INHERITANCE

CHROMOSOMES AND INHERITANCE SECTION 12-1 REVIEW CHROMOSOMES AND INHERITANCE VOCABULARY REVIEW Distinguish between the terms in each of the following pairs of terms. 1. sex chromosome, autosome 2. germ-cell mutation, somatic-cell

More information

LAB EXERCISE: Mitosis and Meiosis

LAB EXERCISE: Mitosis and Meiosis LAB EXERCISE: Mitosis and Meiosis Laboratory Objectives After completing this lab topic, you should be able to: 1. Describe the activities of chromosomes and microtubules in the cell cycle, including all

More information

c. Law of Independent Assortment: Alleles separate and do not have an effect on another allele.

c. Law of Independent Assortment: Alleles separate and do not have an effect on another allele. Level Genetics Review KEY Describe the 3 laws that Gregor Mendel established after working with pea plants. a. Law of Dominance: states that the effect of a recessive allele is not observed when a dominant

More information

4.1 Cell Division and Genetic Material pg The Cell Theory is a central idea to Biology and it evolved in the 1800 s. The Cell Theory States:

4.1 Cell Division and Genetic Material pg The Cell Theory is a central idea to Biology and it evolved in the 1800 s. The Cell Theory States: 4.1 Cell Division and Genetic Material pg. 160 The Cell Theory is a central idea to Biology and it evolved in the 1800 s. The Cell Theory States: 1. All living things are composed of one or more cells.

More information

BioBoot Camp Genetics

BioBoot Camp Genetics BioBoot Camp Genetics BIO.B.1.2.1 Describe how the process of DNA replication results in the transmission and/or conservation of genetic information DNA Replication is the process of DNA being copied before

More information

2. Discrete units of hereditary information consisting of duplicated DNA are called.

2. Discrete units of hereditary information consisting of duplicated DNA are called. LAB TOPIC 7 BSC 2010L (Principles of Biology 1 Laboratory, Professor Chiappone) MITOSIS AND MEIOSIS (Investigating Biology, 7 th edition) PRACTICE QUIZ QUESTIONS 1. DNA is found in structures called. (a)

More information

GENETIC CROSSES. Monohybrid Crosses

GENETIC CROSSES. Monohybrid Crosses GENETIC CROSSES Monohybrid Crosses Objectives Explain the difference between genotype and phenotype Explain the difference between homozygous and heterozygous Explain how probability is used to predict

More information

A trait is a variation of a particular character (e.g. color, height). Traits are passed from parents to offspring through genes.

A trait is a variation of a particular character (e.g. color, height). Traits are passed from parents to offspring through genes. 1 Biology Chapter 10 Study Guide Trait A trait is a variation of a particular character (e.g. color, height). Traits are passed from parents to offspring through genes. Genes Genes are located on chromosomes

More information

Cell Cycle and Mitosis

Cell Cycle and Mitosis Cell Cycle and Mitosis THE CELL CYCLE The cell cycle, or cell-division cycle, is the series of events that take place in a eukaryotic cell between its formation and the moment it replicates itself. These

More information

12.1 The Role of DNA in Heredity

12.1 The Role of DNA in Heredity 12.1 The Role of DNA in Heredity Only in the last 50 years have scientists understood the role of DNA in heredity. That understanding began with the discovery of DNA s structure. In 1952, Rosalind Franklin

More information

Chapter 13: Meiosis and Sexual Life Cycles

Chapter 13: Meiosis and Sexual Life Cycles Name Period Chapter 13: Meiosis and Sexual Life Cycles Concept 13.1 Offspring acquire genes from parents by inheriting chromosomes 1. Let s begin with a review of several terms that you may already know.

More information

Cell Cycle and Mitosis

Cell Cycle and Mitosis Cell Cycle and Mitosis THE CELL CYCLE The cell cycle, or cell-division cycle, is the series of events that take place in a eukaryotic cell between its formation and the moment it replicates itself. These

More information

Mitosis & Meiosis. Bio 103 Lecture Dr. Largen

Mitosis & Meiosis. Bio 103 Lecture Dr. Largen 1 Mitosis & Meiosis Bio 103 Lecture Dr. Largen 2 Cells arise only from preexisting cells all cells come from cells perpetuation of life based on reproduction of cells referred to as cell division 3 Cells

More information

Biology. Chapter 10/11

Biology. Chapter 10/11 Biology Chapter 10/11 Interest grabber NOTEBOOK #1 Getting Through Materials move through cells by diffusion. Oxygen and food move into cells, while waste products move out of cells. How does the size

More information

Multiple Choice Review Mitosis & Meiosis

Multiple Choice Review Mitosis & Meiosis Multiple Choice Review Mitosis & Meiosis 1. Which of the following accurately describes the one of the major divisions of mitosis? a. During the mitotic phase, cells are performing their primary function

More information

LAB 8 EUKARYOTIC CELL DIVISION: MITOSIS AND MEIOSIS

LAB 8 EUKARYOTIC CELL DIVISION: MITOSIS AND MEIOSIS LAB 8 EUKARYOTIC CELL DIVISION: MITOSIS AND MEIOSIS Los Angeles Mission College Biology 3 Name: Date: INTRODUCTION BINARY FISSION: Prokaryotic cells (bacteria) reproduce asexually by binary fission. Bacterial

More information

1. When new cells are formed through the process of mitosis, the number of chromosomes in the new cells

1. When new cells are formed through the process of mitosis, the number of chromosomes in the new cells Cell Growth and Reproduction 1. When new cells are formed through the process of mitosis, the number of chromosomes in the new cells A. is half of that of the parent cell. B. remains the same as in the

More information

MANDELIAN GENETICS. Crosses that deviate from Mandelian inherintance

MANDELIAN GENETICS. Crosses that deviate from Mandelian inherintance MANDELIAN GENETICS Crosses that deviate from Mandelian inherintance Explain codominant alleles. TO THE STUDENTS Calculate the genotypic and phenotypic ratio (1:2:1). Explain incomplete dominant alleles.

More information

Mitosis and Meiosis BRING YOUR TEXT TO LAB!

Mitosis and Meiosis BRING YOUR TEXT TO LAB! Mitosis and Meiosis BRING YOUR TEXT TO LAB! Objectives: 1. To begin to understand the mechanics of cellular Reproduction/Life Cycles and how the process underlies inheritance. 2. To simulate the movement

More information

Mitosis. Asexual Reproduction. identical to each other and to the parent cell

Mitosis. Asexual Reproduction. identical to each other and to the parent cell Mitosis & Meiosis Mitosis Asexual Reproduction The end result is 2 cells that are genetically identical to each other and to the parent cell from which they formed Occurs in somatic cells (non-gametes)

More information

The Process of Cell Division. Lesson Overview. Lesson Overview. Cell Growth and Development

The Process of Cell Division. Lesson Overview. Lesson Overview. Cell Growth and Development Lesson Overview Cell Growth and Development Chromosomes The genetic information that is passed on from one generation of cells to the next is carried by chromosomes. Every cell must copy its genetic information

More information

This phase of mitosis is? This phase of mitosis is? - This phase of mitosis is? This phase of mitosis is? Graphic source:

This phase of mitosis is? This phase of mitosis is? - This phase of mitosis is? This phase of mitosis is? Graphic source: 1 2 This phase of mitosis is? This phase of mitosis is? - 3 4 This phase of mitosis is? This phase of mitosis is? 5 6 What are the stages of mitosis in chronological order? This phase of mitosis is? -Anaphase,

More information

Lab: Mitosis & Meiosis

Lab: Mitosis & Meiosis Bio 101 Name Lab: Mitosis & Meiosis OBJECTIVES To observe the stages of mitosis in prepared slides of whitefish blastula and onion root tips. To gain a better understanding of the process of mitosis in

More information

Mendelian and Non-Mendelian Heredity Grade Ten

Mendelian and Non-Mendelian Heredity Grade Ten Ohio Standards Connection: Life Sciences Benchmark C Explain the genetic mechanisms and molecular basis of inheritance. Indicator 6 Explain that a unit of hereditary information is called a gene, and genes

More information

Cell Division CELL DIVISION. Mitosis. Designation of Number of Chromosomes. Homologous Chromosomes. Meiosis

Cell Division CELL DIVISION. Mitosis. Designation of Number of Chromosomes. Homologous Chromosomes. Meiosis Cell Division CELL DIVISION Anatomy and Physiology Text and Laboratory Workbook, Stephen G. Davenport, Copyright 2006, All Rights Reserved, no part of this publication can be used for any commercial purpose.

More information

BioSci 2200 General Genetics Problem Set 1 Answer Key Introduction and Mitosis/ Meiosis

BioSci 2200 General Genetics Problem Set 1 Answer Key Introduction and Mitosis/ Meiosis BioSci 2200 General Genetics Problem Set 1 Answer Key Introduction and Mitosis/ Meiosis Introduction - Fields of Genetics To answer the following question, review the three traditional subdivisions of

More information

1. Which of the following correctly organizes genetic material from the broadest category to the most specific category?

1. Which of the following correctly organizes genetic material from the broadest category to the most specific category? DNA and Genetics 1. Which of the following correctly organizes genetic material from the broadest category to the most specific category? A. genome chromosome gene DNA molecule B. genome chromosome DNA

More information

Mitosis and Cytokinesis

Mitosis and Cytokinesis B-2.6 Summarize the characteristics of the cell cycle: interphase (called G1, S, G2); the phases of mitosis (called prophase, metaphase, anaphase, and telophase); and plant and animal cytokinesis. The

More information

The correct answer is c A. Answer a is incorrect. The white-eye gene must be recessive since heterozygous females have red eyes.

The correct answer is c A. Answer a is incorrect. The white-eye gene must be recessive since heterozygous females have red eyes. 1. Why is the white-eye phenotype always observed in males carrying the white-eye allele? a. Because the trait is dominant b. Because the trait is recessive c. Because the allele is located on the X chromosome

More information

1.1.1 Which of the following is NOT part of a deoxyribonucleic acid (DNA) molecule?

1.1.1 Which of the following is NOT part of a deoxyribonucleic acid (DNA) molecule? MATRIC LIFE SCIENCES PAPER 1 2009 1 Tissues, cells & molecular studies; Life systems SECTION A QUESTION 1 1.1 Various possible options are provided as answers to the following questions. Choose the correct

More information

1. Why is mitosis alone insufficient for the life cycle of sexually reproducing eukaryotes?

1. Why is mitosis alone insufficient for the life cycle of sexually reproducing eukaryotes? Chapter 13: Meiosis and Sexual Life Cycles 1. Why is mitosis alone insufficient for the life cycle of sexually reproducing eukaryotes? 2. Define: gamete zygote meiosis homologous chromosomes diploid haploid

More information

General Biology 1004 Chapter 8 Lecture Handout, Summer 2005 Dr. Frisby

General Biology 1004 Chapter 8 Lecture Handout, Summer 2005 Dr. Frisby Slide 1 CHAPTER 8 The Cellular Basis of Reproduction and Inheritance PowerPoint Lecture Slides for Essential Biology, Second Edition & Essential Biology with Physiology Presentation prepared by Chris C.

More information

MCAS Biology. Review Packet

MCAS Biology. Review Packet MCAS Biology Review Packet 1 Name Class Date 1. Define organic. THE CHEMISTRY OF LIFE 2. All living things are made up of 6 essential elements: SPONCH. Name the six elements of life. S N P C O H 3. Elements

More information

Meiosis and Sexual Life Cycles

Meiosis and Sexual Life Cycles Meiosis and Sexual Life Cycles Chapter 13 1 Ojectives Distinguish between the following terms: somatic cell and gamete; autosome and sex chromosomes; haploid and diploid. List the phases of meiosis I and

More information

4.2 Meiosis. Meiosis is a reduction division. Assessment statements. The process of meiosis

4.2 Meiosis. Meiosis is a reduction division. Assessment statements. The process of meiosis 4.2 Meiosis Assessment statements State that meiosis is a reduction division of a diploid nucleus to form haploid nuclei. Define homologous chromosomes. Outline the process of meiosis, including pairing

More information

CCR Biology - Chapter 7 Practice Test - Summer 2012

CCR Biology - Chapter 7 Practice Test - Summer 2012 Name: Class: Date: CCR Biology - Chapter 7 Practice Test - Summer 2012 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. A person who has a disorder caused

More information

Figure S1 Clicker questions and their associated learning objectives and Bloom s level

Figure S1 Clicker questions and their associated learning objectives and Bloom s level Figure S1 Clicker questions and their associated learning objectives and Bloom s level Mitosis and Meiosis questions Q1: Which of the following events does not occur during mitosis? A.Breakdown of the

More information

Lab 8 Mitosis and Meiosis

Lab 8 Mitosis and Meiosis Lab 8 Mitosis and Meiosis Introduction: All new cells come from previously existing cells. New cells are formed by karyokinesis (the process in cell division that involves replication of the cell s nucleus)

More information

2. is a process of nuclear division in which the number of chromosomes in certain cells is halved during gamete formation.

2. is a process of nuclear division in which the number of chromosomes in certain cells is halved during gamete formation. Meiosis 1. P. J. van Beneden proposed that an egg and a sperm, each containing half the complement of chromosomes found in somatic cells, fuse to produce a single cell called a. 2. is a process of nuclear

More information

Biology Behind the Crime Scene Week 4: Lab #4 Genetics Exercise (Meiosis) and RFLP Analysis of DNA

Biology Behind the Crime Scene Week 4: Lab #4 Genetics Exercise (Meiosis) and RFLP Analysis of DNA Page 1 of 5 Biology Behind the Crime Scene Week 4: Lab #4 Genetics Exercise (Meiosis) and RFLP Analysis of DNA Genetics Exercise: Understanding how meiosis affects genetic inheritance and DNA patterns

More information

Lecture 7 Mitosis & Meiosis

Lecture 7 Mitosis & Meiosis Lecture 7 Mitosis & Meiosis Cell Division Essential for body growth and tissue repair Interphase G 1 phase Primary cell growth phase S phase DNA replication G 2 phase Microtubule synthesis Mitosis Nuclear

More information

Part 1: Mitosis & Cytokinesis

Part 1: Mitosis & Cytokinesis Lab 5 - Bio 160 Name: Part 1: Mitosis & Cytokinesis OBJECTIVES Το observe the stages of mitosis in prepared slides of whitefish blastula and onion root tips. Το gain a better understanding of the process

More information

EXPERIMENT #8 CELL DIVISION: MITOSIS & MEIOSIS

EXPERIMENT #8 CELL DIVISION: MITOSIS & MEIOSIS Introduction Cells, the basic unit of life, undergo reproductive acts to maintain the flow of genetic information from parent to offspring. The processes of mitosis and meiosis are cellular events in which

More information

Lecture 3 Cell division: mitosis and meiosis

Lecture 3 Cell division: mitosis and meiosis Lecture 3 Cell division: mitosis and meiosis CAMPBELL BIOLOGY Chapter 8 1 The Cell Division Cycle Almost 90% of the cycle is taken up with Interphase during which DNA in the nucleus is replicated Mitosis

More information

Mendelian Genetics. I. Background

Mendelian Genetics. I. Background Mendelian Genetics Objectives 1. To understand the Principles of Segregation and Independent Assortment. 2. To understand how Mendel s principles can explain transmission of characters from one generation

More information

Mitosis & Meiosis Web Quest

Mitosis & Meiosis Web Quest Part 1 Mitosis Interactive Mitosis Tutorial Go to http://www.sci.sdsu.edu/multimedia/mitosis/ 1. What is mitosis? 2. Cells that are non-reproductive undergo mitosis. Which are the reproductive cells? _

More information

Cells, Mitosis-Meiosis, Photosynthesis-Cellular Respiration Notes F

Cells, Mitosis-Meiosis, Photosynthesis-Cellular Respiration Notes F Cells, Mitosis-Meiosis, Photosynthesis-Cellular Respiration Notes F Chromosomes and Mitosis Vocabulary anaphase centromere chromatid chromatin chromosome gene homologous chromosomes metaphase prophase

More information

Pre-lab Homework Lab 2: Mitosis and the Cell Cycle

Pre-lab Homework Lab 2: Mitosis and the Cell Cycle Pre-lab Homework Lab 2: Mitosis and the Cell Cycle Name: Date/Lab time: 1. Label the figure with the following phases of the cell cycle (note the position of interphase and mitosis): G 1 G 2 S Anaphase

More information

www.njctl.org PSI Biology Mitosis & Meiosis

www.njctl.org PSI Biology Mitosis & Meiosis Mitosis and Meiosis Mitosis Classwork 1. Identify two differences between meiosis and mitosis. 2. Provide an example of a type of cell in the human body that would undergo mitosis. 3. Does cell division

More information

1 Mutation and Genetic Change

1 Mutation and Genetic Change CHAPTER 14 1 Mutation and Genetic Change SECTION Genes in Action KEY IDEAS As you read this section, keep these questions in mind: What is the origin of genetic differences among organisms? What kinds

More information

Mitosis, Meiosis and Gametogenesis

Mitosis, Meiosis and Gametogenesis Mitosis, Meiosis and Gametogenesis Mitosis is the mechanism by which somatic (body) cells in higher organisms replicate & divide. each cell has 2 copies of each of each chromosome, one that is of paternal

More information

BCOR 011, Exam 3. Multiple Choice: Select the best possible answer. Name KEY Section

BCOR 011, Exam 3. Multiple Choice: Select the best possible answer. Name KEY Section BCOR 011, Exam 3 Name KEY Section Multiple Choice: Select the best possible answer. 1. A parent cell divides to form two genetically identical daughter cells in the nuclear process of mitosis. For mitosis

More information

Chapter 3. Cell Division. Laboratory Activities Activity 3.1: Mock Mitosis Activity 3.2: Mitosis in Onion Cells Activity 3.

Chapter 3. Cell Division. Laboratory Activities Activity 3.1: Mock Mitosis Activity 3.2: Mitosis in Onion Cells Activity 3. Chapter 3 Cell Division Laboratory Activities Activity 3.1: Mock Mitosis Activity 3.2: Mitosis in Onion Cells Activity 3.3: Mock Meiosis Goals Following this exercise students should be able to Recognize

More information

growth and tissue repair in multicellular organisms (mitosis)

growth and tissue repair in multicellular organisms (mitosis) Cell division: mitosis and meiosis I. Cell division -- introduction - roles for cell division: reproduction -- unicellular organisms (mitosis) growth and tissue repair in multicellular organisms (mitosis)

More information

Lab 6. Cellular Reproduction: Mitosis and Meiosis

Lab 6. Cellular Reproduction: Mitosis and Meiosis Lab 6. Cellular Reproduction: Mitosis and Meiosis Cell Division - Mitosis Sexually-reproducing, multicellular organisms begin life as a single cell, the fertilized egg. This cell, the zygote, through the

More information

Human Blood Types: Codominance and Multiple Alleles. Codominance: both alleles in the heterozygous genotype express themselves fully

Human Blood Types: Codominance and Multiple Alleles. Codominance: both alleles in the heterozygous genotype express themselves fully Human Blood Types: Codominance and Multiple Alleles Codominance: both alleles in the heterozygous genotype express themselves fully Multiple alleles: three or more alleles for a trait are found in the

More information

Chapter 12: The Cell Cycle (Mitosis) Cell division is an integral part of the cell cycle

Chapter 12: The Cell Cycle (Mitosis) Cell division is an integral part of the cell cycle Chapter 12: The Cell Cycle (Mitosis) Cell division is an integral part of the cell cycle Concept 12.1: Cell division results in genetically identical daughter cells Most cell division (mitosis) results

More information