RDF y SPARQL: Dos componentes básicos para la Web de datos
|
|
|
- Ashley Simmons
- 10 years ago
- Views:
Transcription
1 RDF y SPARQL: Dos componentes básicos para la Web de datos Marcelo Arenas PUC Chile & University of Oxford M. Arenas RDF y SPARQL: Dos componentes básicos para la Web de datos Valladolid / 61
2 Semantic Web The Semantic Web is an extension of the current web in which information is given well-defined meaning, better enabling computers and people to work in cooperation. [Tim Berners-Lee et al ] Specific goals: Build a description language with standard semantics Make semantics machine-processable and understandable Incorporate logical infrastructure to reason about resources W3C proposals: Resource Description Framework (RDF) and SPARQL M. Arenas RDF y SPARQL: Dos componentes básicos para la Web de datos Valladolid / 61
3 RDF in a nutshell RDF is the framework proposed by the W3C to represent information in the Web: URI vocabulary A URI is an atomic piece of data, and it identifies an abstract resource Syntax based on directed labeled graphs URIs are used as node labels and edge labels Schema definition language (RDFS): Define new vocabulary Typing, inheritance of classes and properties,... Formal semantics M. Arenas RDF y SPARQL: Dos componentes básicos para la Web de datos Valladolid / 61
4 An example of an RDF graph: DBLP : < conf: < inpods: < swrc: < dc: < dct: < conf:pods "Optimal Aggregation..." swrc:series inpods:2001 dct:partof dc:title inpods:faginln01 dc:creator dc:creator dc:creator :Amnon Lotem :Moni Naor :Ronald Fagin M. Arenas RDF y SPARQL: Dos componentes básicos para la Web de datos Valladolid / 61
5 An example of a URI M. Arenas RDF y SPARQL: Dos componentes básicos para la Web de datos Valladolid / 61
6 URI can be used for any abstract resource Fagin M. Arenas RDF y SPARQL: Dos componentes básicos para la Web de datos Valladolid / 61
7 Querying RDF Why is this an interesting problem? Why is it challenging? RDF graphs can be interconnected URIs should be dereferenceable Semantics of RDF is open world RDF graphs are inherently incomplete The possibility of adding optional information if present is an important feature Vocabulary with predefined semantics... M. Arenas RDF y SPARQL: Dos componentes básicos para la Web de datos Valladolid / 61
8 Querying RDF: SPARQL SPARQL is the W3C recommendation query language for RDF (January 2008). SPARQL is a recursive acronym that stands for SPARQL Protocol and RDF Query Language SPARQL is a graph-matching query language. A SPARQL query consists of three parts: Pattern matching: optional, union, filtering,... Solution modifiers: projection, distinct, order, limit, offset,... Output part: construction of new triples,... M. Arenas RDF y SPARQL: Dos componentes básicos para la Web de datos Valladolid / 61
9 SPARQL in a nutshell SELECT?Author WHERE {?Paper dc:creator?author.?paper dct:partof?conf.?conf swrc:series conf:pods. } M. Arenas RDF y SPARQL: Dos componentes básicos para la Web de datos Valladolid / 61
10 SPARQL in a nutshell SELECT?Author WHERE {?Paper dc:creator?author.?paper dct:partof?conf.?conf swrc:series conf:pods. } M. Arenas RDF y SPARQL: Dos componentes básicos para la Web de datos Valladolid / 61
11 SPARQL in a nutshell SELECT?Author WHERE {?Paper dc:creator?author.?paper dct:partof?conf.?conf swrc:series conf:pods. } M. Arenas RDF y SPARQL: Dos componentes básicos para la Web de datos Valladolid / 61
12 SPARQL in a nutshell SELECT?Author WHERE {?Paper dc:creator?author.?paper dct:partof?conf.?conf swrc:series conf:pods. } M. Arenas RDF y SPARQL: Dos componentes básicos para la Web de datos Valladolid / 61
13 SPARQL in a nutshell SELECT?Author WHERE {?Paper dc:creator?author.?paper dct:partof?conf.?conf swrc:series conf:pods. } M. Arenas RDF y SPARQL: Dos componentes básicos para la Web de datos Valladolid / 61
14 SPARQL in a nutshell SELECT?Author WHERE {?Paper dc:creator?author.?paper dct:partof?conf.?conf swrc:series conf:pods. } M. Arenas RDF y SPARQL: Dos componentes básicos para la Web de datos Valladolid / 61
15 SPARQL in a nutshell SELECT?Author WHERE {?Paper dc:creator?author.?paper dct:partof?conf.?conf swrc:series conf:pods. } A SPARQL query consists of a: M. Arenas RDF y SPARQL: Dos componentes básicos para la Web de datos Valladolid / 61
16 SPARQL in a nutshell SELECT?Author WHERE {?Paper dc:creator?author.?paper dct:partof?conf.?conf swrc:series conf:pods. } A SPARQL query consists of a: Body: Pattern matching expression M. Arenas RDF y SPARQL: Dos componentes básicos para la Web de datos Valladolid / 61
17 SPARQL in a nutshell SELECT?Author WHERE {?Paper dc:creator?author.?paper dct:partof?conf.?conf swrc:series conf:pods. } A SPARQL query consists of a: Body: Pattern matching expression Head: Processing of the variables M. Arenas RDF y SPARQL: Dos componentes básicos para la Web de datos Valladolid / 61
18 What are the challenges in implementing SPARQL? SPARQL has to take into account the distinctive features of RDF: Should be able to extract information from interconnected RDF graphs Should be consistent with the open-world semantics of RDF Should offer the possibility of adding optional information if present Should be able to properly interpret RDF graphs with a vocabulary with predefined semantics M. Arenas RDF y SPARQL: Dos componentes básicos para la Web de datos Valladolid / 61
19 Extracting information from interconnected RDF graphs : < dbpedia: < rdf: < rdfs: < owl: < yago: < dbo: < inpods:faginln01 dc:creator DBLP DBpedia dbpedia:ronald Fagin rdf:type yago:databaseresearchers owl:sameas :Ronald Fagin dbo:birthplace dbpedia:oklahoma rdfs:subclassof yago:researchworker M. Arenas RDF y SPARQL: Dos componentes básicos para la Web de datos Valladolid / 61
20 Dereferenceable URIs are the glue Fagin M. Arenas RDF y SPARQL: Dos componentes básicos para la Web de datos Valladolid / 61
21 Querying interconnected RDF graphs Retrieve the authors that have published in PODS and were born in Oklahoma: SELECT?Author WHERE {?Paper dc:creator?author.?paper dct:partof?conf.?conf swrc:series conf:pods.?person owl:sameas?author.?person dbo:birthplace dbpedia:oklahoma. } M. Arenas RDF y SPARQL: Dos componentes básicos para la Web de datos Valladolid / 61
22 Retrieving optional information Retrieve the authors that have published in PODS, and their Web pages if this information is available: SELECT?Author?WebPage WHERE {?Paper dc:creator?author.?paper dct:partof?conf.?conf swrc:series conf:pods. OPTIONAL {?Author foaf:homepage?webpage. } } M. Arenas RDF y SPARQL: Dos componentes básicos para la Web de datos Valladolid / 61
23 Taking into account vocabularies with predefined semantics Retrieve the scientists that were born in Oklahoma and that have published in PODS: SELECT?Author WHERE {?Author rdf:type yago:scientist.?author dbo:birthplace dbpedia:oklahoma.?paper dc:creator?author.?paper dct:partof?conf.?conf swrc:series conf:pods. } M. Arenas RDF y SPARQL: Dos componentes básicos para la Web de datos Valladolid / 61
24 Taking into account vocabularies with predefined semantics Retrieve the scientists that were born in Oklahoma and that have published in PODS: dbpedia:ronald Fagin rdf:type yago:databaseresearchers dbo:birthplace rdfs:subclassof dbpedia:oklahoma yago:researchworker rdfs:subclassof yago:scientist M. Arenas RDF y SPARQL: Dos componentes básicos para la Web de datos Valladolid / 61
25 Outline of the talk RDF SPARQL: Syntax and semantics RDFS: RDF Schema Some new features in SPARQL 1.1 Concluding remarks M. Arenas RDF y SPARQL: Dos componentes básicos para la Web de datos Valladolid / 61
26 Outline of the talk RDF SPARQL: Syntax and semantics RDFS: RDF Schema Some new features in SPARQL 1.1 Concluding remarks M. Arenas RDF y SPARQL: Dos componentes básicos para la Web de datos Valladolid / 61
27 RDF formal model U Subject Predicate Object U : set of URIs B : set of blank nodes U B U B L L : set of literals M. Arenas RDF y SPARQL: Dos componentes básicos para la Web de datos Valladolid / 61
28 RDF formal model U Subject Predicate Object U : set of URIs B : set of blank nodes U B U B L L : set of literals (s,p,o) (U B) U (U B L) is called an RDF triple M. Arenas RDF y SPARQL: Dos componentes básicos para la Web de datos Valladolid / 61
29 RDF formal model U Subject Predicate Object U : set of URIs B : set of blank nodes U B U B L L : set of literals (s,p,o) (U B) U (U B L) is called an RDF triple A set of RDF triples is called an RDF graph M. Arenas RDF y SPARQL: Dos componentes básicos para la Web de datos Valladolid / 61
30 RDF formal model Proviso In this talk, we do not consider blank nodes (s,p,o) U U (U L) is called an RDF triple M. Arenas RDF y SPARQL: Dos componentes básicos para la Web de datos Valladolid / 61
31 Outline of the talk RDF SPARQL: Syntax and semantics RDFS: RDF Schema Some new features in SPARQL 1.1 Concluding remarks M. Arenas RDF y SPARQL: Dos componentes básicos para la Web de datos Valladolid / 61
32 SPARQL queries can be complex Interesting features: Grouping Optional parts Nesting Union of patterns Filtering { P1 P2 } M. Arenas RDF y SPARQL: Dos componentes básicos para la Web de datos Valladolid / 61
33 SPARQL queries can be complex Interesting features: Grouping Optional parts Nesting Union of patterns Filtering { { P1 P2 } } { P3 P4 } M. Arenas RDF y SPARQL: Dos componentes básicos para la Web de datos Valladolid / 61
34 SPARQL queries can be complex Interesting features: Grouping Optional parts Nesting Union of patterns Filtering { { P1 P2 OPTIONAL { P5 } } } { P3 P4 OPTIONAL { P7 } } M. Arenas RDF y SPARQL: Dos componentes básicos para la Web de datos Valladolid / 61
35 SPARQL queries can be complex Interesting features: Grouping Optional parts Nesting Union of patterns Filtering { { P1 P2 OPTIONAL { P5 } } } { P3 P4 OPTIONAL { P7 OPTIONAL { P8 } } } M. Arenas RDF y SPARQL: Dos componentes básicos para la Web de datos Valladolid / 61
36 SPARQL queries can be complex Interesting features: Grouping Optional parts Nesting Union of patterns Filtering { { P1 P2 OPTIONAL { P5 } } { P3 P4 OPTIONAL { P7 OPTIONAL { P8 } } } } UNION { P9 } M. Arenas RDF y SPARQL: Dos componentes básicos para la Web de datos Valladolid / 61
37 SPARQL queries can be complex Interesting features: Grouping Optional parts Nesting Union of patterns Filtering { { P1 P2 OPTIONAL { P5 } } { P3 P4 OPTIONAL { P7 OPTIONAL { P8 } } } } UNION { P9 FILTER ( R ) } M. Arenas RDF y SPARQL: Dos componentes básicos para la Web de datos Valladolid / 61
38 SPARQL: An algebraic syntax Graph pattern:?x name?y (?X, name,?y) { P1. P2 } (P 1 AND P 2 ) { P1 OPTIONAL { P2 }} (P 1 OPT P 2 ) { P1 } UNION { P2 } (P 1 UNION P 2 ) { P1 FILTER ( R ) } (P 1 FILTER R ) SPARQL query: SELECT?X?Y... { P } (SELECT {?X,?Y,...} P) M. Arenas RDF y SPARQL: Dos componentes básicos para la Web de datos Valladolid / 61
39 SPARQL: An algebraic syntax (cont d) Explicit precedence/association Example { t1 t2 OPTIONAL { t3 } OPTIONAL { t4 } t5 } ((((t 1 AND t 2 ) OPT t 3 ) OPT t 4 ) AND t 5 ) M. Arenas RDF y SPARQL: Dos componentes básicos para la Web de datos Valladolid / 61
40 Mappings: building block for the semantics Definition A mapping is a partial function: µ : V (U L) The evaluation of a graph pattern results in a set of mappings. M. Arenas RDF y SPARQL: Dos componentes básicos para la Web de datos Valladolid / 61
41 Mappings: building block for the semantics Definition A mapping is a partial function: µ : V (U L) The evaluation of a graph pattern results in a set of mappings. M. Arenas RDF y SPARQL: Dos componentes básicos para la Web de datos Valladolid / 61
42 The semantics of triple patterns Given an RDF graph G and a triple pattern t. Definition The evaluation of t over G is the set of mappings µ such that: µ has as domain the variables in t: dom(µ) = var(t) µ makes t to match the graph: µ(t) G M. Arenas RDF y SPARQL: Dos componentes básicos para la Web de datos Valladolid / 61
43 The semantics of triple patterns Given an RDF graph G and a triple pattern t. Definition The evaluation of t over G is the set of mappings µ such that: µ has as domain the variables in t: dom(µ) = var(t) µ makes t to match the graph: µ(t) G Example graph triple evaluation (R 1, name, john)?x?y (R 1, , [email protected]) (?X, name,?y) µ 1 : R 1 john (R 2, name, paul) µ 2 : R 2 paul M. Arenas RDF y SPARQL: Dos componentes básicos para la Web de datos Valladolid / 61
44 The semantics of triple patterns Given an RDF graph G and a triple pattern t. Definition The evaluation of t over G is the set of mappings µ such that: µ has as domain the variables in t: dom(µ) = var(t) µ makes t to match the graph: µ(t) G Example graph triple evaluation (R 1, name, john)?x?y (R 1, , [email protected]) (?X, name,?y) µ 1 : R 1 john (R 2, name, paul) µ 2 : R 2 paul M. Arenas RDF y SPARQL: Dos componentes básicos para la Web de datos Valladolid / 61
45 The semantics of triple patterns Given an RDF graph G and a triple pattern t. Definition The evaluation of t over G is the set of mappings µ such that: µ has as domain the variables in t: dom(µ) = var(t) µ makes t to match the graph: µ(t) G Example graph triple evaluation (R 1, name, john)?x?y (R 1, , [email protected]) (?X, name,?y) µ 1 : R 1 john (R 2, name, paul) µ 2 : R 2 paul M. Arenas RDF y SPARQL: Dos componentes básicos para la Web de datos Valladolid / 61
46 Compatible mappings Definition Mappings µ 1 and µ 2 are compatible if they agree in their common variables: If?X dom(µ 1 ) dom(µ 2 ), then µ 1 (?X) = µ 2 (?X). Example?X?Y?Z?V µ 1 : R 1 john µ 2 : R 1 [email protected] µ 3 : [email protected] R 2 M. Arenas RDF y SPARQL: Dos componentes básicos para la Web de datos Valladolid / 61
47 Compatible mappings Definition Mappings µ 1 and µ 2 are compatible if they agree in their common variables: If?X dom(µ 1 ) dom(µ 2 ), then µ 1 (?X) = µ 2 (?X). Example?X?Y?Z?V µ 1 : R 1 john µ 2 : R 1 [email protected] µ 3 : [email protected] R 2 M. Arenas RDF y SPARQL: Dos componentes básicos para la Web de datos Valladolid / 61
48 Compatible mappings Definition Mappings µ 1 and µ 2 are compatible if they agree in their common variables: If?X dom(µ 1 ) dom(µ 2 ), then µ 1 (?X) = µ 2 (?X). Example?X?Y?Z?V µ 1 : R 1 john µ 2 : R 1 [email protected] µ 3 : [email protected] R 2 µ 1 µ 2 : R 1 john [email protected] M. Arenas RDF y SPARQL: Dos componentes básicos para la Web de datos Valladolid / 61
49 Compatible mappings Definition Mappings µ 1 and µ 2 are compatible if they agree in their common variables: If?X dom(µ 1 ) dom(µ 2 ), then µ 1 (?X) = µ 2 (?X). Example?X?Y?Z?V µ 1 : R 1 john µ 2 : R 1 [email protected] µ 3 : [email protected] R 2 µ 1 µ 2 : R 1 john [email protected] M. Arenas RDF y SPARQL: Dos componentes básicos para la Web de datos Valladolid / 61
50 Compatible mappings Definition Mappings µ 1 and µ 2 are compatible if they agree in their common variables: If?X dom(µ 1 ) dom(µ 2 ), then µ 1 (?X) = µ 2 (?X). Example?X?Y?Z?V µ 1 : R 1 john µ 2 : R 1 [email protected] µ 3 : [email protected] R 2 µ 1 µ 2 : R 1 john [email protected] µ 1 µ 3 : R 1 john [email protected] R 2 M. Arenas RDF y SPARQL: Dos componentes básicos para la Web de datos Valladolid / 61
51 Compatible mappings Definition Mappings µ 1 and µ 2 are compatible if they agree in their common variables: If?X dom(µ 1 ) dom(µ 2 ), then µ 1 (?X) = µ 2 (?X). Example?X?Y?Z?V µ 1 : R 1 john µ 2 : R 1 [email protected] µ 3 : [email protected] R 2 µ 1 µ 2 : R 1 john [email protected] µ 1 µ 3 : R 1 john [email protected] R 2 µ 2 and µ 3 are not compatible M. Arenas RDF y SPARQL: Dos componentes básicos para la Web de datos Valladolid / 61
52 Sets of mappings and operations Let Ω 1 and Ω 2 be sets of mappings. Definition Join: extends mappings in Ω 1 with compatible mappings in Ω 2 Ω 2 = {µ 1 µ 2 µ 1 Ω 1, µ 2 Ω 2 and µ 1, µ 2 are compatible} Ω 1 Difference: selects mappings in Ω 1 that cannot be extended with mappings in Ω 2 Ω 1 Ω 2 = {µ 1 Ω 1 there is no mapping in Ω 2 compatible with µ 1 } M. Arenas RDF y SPARQL: Dos componentes básicos para la Web de datos Valladolid / 61
53 Sets of mappings and operations Definition Union: includes mappings in Ω 1 and in Ω 2 Ω 1 Ω 2 = {µ µ Ω 1 or µ Ω 2 } Left Outer Join: extends mappings in Ω 1 with compatible mappings in Ω 2 if possible Ω 1 Ω 2 = (Ω 1 Ω 2 ) (Ω 1 Ω 2 ) M. Arenas RDF y SPARQL: Dos componentes básicos para la Web de datos Valladolid / 61
54 Semantics of SPARQL Given an RDF graph G. Definition t G = (P 1 AND P 2 ) G = (P 1 UNION P 2 ) G = (P 1 OPT P 2 ) G = (SELECT W P) G = M. Arenas RDF y SPARQL: Dos componentes básicos para la Web de datos Valladolid / 61
55 Semantics of SPARQL Given an RDF graph G. Definition t G = {µ dom(µ) = var(t) and µ(t) G} (P 1 AND P 2 ) G = P 1 G P 2 G (P 1 UNION P 2 ) G = P 1 G P 2 G (P 1 OPT P 2 ) G = P 1 G P 2 G (SELECT W P) G = {µ W µ P G } M. Arenas RDF y SPARQL: Dos componentes básicos para la Web de datos Valladolid / 61
56 Semantics of SPARQL Given an RDF graph G. Definition t G = {µ dom(µ) = var(t) and µ(t) G} (P 1 AND P 2 ) G = P 1 G P 2 G (P 1 UNION P 2 ) G = P 1 G P 2 G (P 1 OPT P 2 ) G = P 1 G P 2 G (SELECT W P) G = {µ W µ P G } dom(µ W ) = dom(µ) W and µ W (?X) = µ(?x) for every?x dom(µ W ) M. Arenas RDF y SPARQL: Dos componentes básicos para la Web de datos Valladolid / 61
57 Semantics of SPARQL: An example Example (R 1, name, john) (R 1, , (R 2, name, paul) ((?X, name,?y) OPT (?X, ,?e)) M. Arenas RDF y SPARQL: Dos componentes básicos para la Web de datos Valladolid / 61
58 Semantics of SPARQL: An example Example (R 1, name, john) (R 1, , (R 2, name, paul) ((?X, name,?y) OPT (?X, ,?e)) M. Arenas RDF y SPARQL: Dos componentes básicos para la Web de datos Valladolid / 61
59 Semantics of SPARQL: An example Example (R 1, name, john) (R 1, , (R 2, name, paul) ((?X, name,?y) OPT (?X, ,?e))?x?y R 1 john paul R 2 M. Arenas RDF y SPARQL: Dos componentes básicos para la Web de datos Valladolid / 61
60 Semantics of SPARQL: An example Example (R 1, name, john) (R 1, , (R 2, name, paul) ((?X, name,?y) OPT (?X, ,?e))?x?y R 1 john paul R 2 M. Arenas RDF y SPARQL: Dos componentes básicos para la Web de datos Valladolid / 61
61 Semantics of SPARQL: An example Example (R 1, name, john) (R 1, , (R 2, name, paul) ((?X, name,?y) OPT (?X, ,?e))?x?y R 1 john paul R 2?X?E R 1 [email protected] M. Arenas RDF y SPARQL: Dos componentes básicos para la Web de datos Valladolid / 61
62 Semantics of SPARQL: An example Example (R 1, name, john) (R 1, , (R 2, name, paul) ((?X, name,?y) OPT (?X, ,?e))?x?y R 1 john paul R 2?X?E R 1 [email protected] M. Arenas RDF y SPARQL: Dos componentes básicos para la Web de datos Valladolid / 61
63 Semantics of SPARQL: An example Example (R 1, name, john) (R 1, , (R 2, name, paul) ((?X, name,?y) OPT (?X, ,?e))?x?y R 1 john paul R 2?X?Y?E R 1 john [email protected] paul R 2?X?E R 1 [email protected] M. Arenas RDF y SPARQL: Dos componentes básicos para la Web de datos Valladolid / 61
64 Semantics of SPARQL: An example Example (R 1, name, john) (R 1, , (R 2, name, paul) ((?X, name,?y) OPT (?X, ,?e))?x?y R 1 john paul R 2?X?Y?E R 1 john [email protected] paul R 2?X?E R 1 [email protected] from the Join M. Arenas RDF y SPARQL: Dos componentes básicos para la Web de datos Valladolid / 61
65 Semantics of SPARQL: An example Example (R 1, name, john) (R 1, , (R 2, name, paul) ((?X, name,?y) OPT (?X, ,?e))?x?y R 1 john paul R 2?X?Y?E R 1 john [email protected] paul R 2?X?E R 1 [email protected] from the Difference M. Arenas RDF y SPARQL: Dos componentes básicos para la Web de datos Valladolid / 61
66 Semantics of SPARQL: An example Example (R 1, name, john) (R 1, , (R 2, name, paul) ((?X, name,?y) OPT (?X, ,?e))?x?y R 1 john paul R 2?X?Y?E R 1 john [email protected] paul R 2?X?E R 1 [email protected] from the Union M. Arenas RDF y SPARQL: Dos componentes básicos para la Web de datos Valladolid / 61
67 Filter expressions (value constraints) Filter expression: P FILTER R P is a graph pattern R is a built-in condition We consider in R: equality = among variables and RDF terms unary predicate bound boolean combinations (,, ) M. Arenas RDF y SPARQL: Dos componentes básicos para la Web de datos Valladolid / 61
68 Filter expressions (value constraints) Example Some filter expressions: (?X = conf:pods) (?X = conf:pods) (?X = conf:pods) (?Y = conf:sigmod) (?X = conf:pods) (?Y = conf:sigmod) M. Arenas RDF y SPARQL: Dos componentes básicos para la Web de datos Valladolid / 61
69 Satisfaction of value constraints A mapping µ satisfies a condition R (µ = R) if: M. Arenas RDF y SPARQL: Dos componentes básicos para la Web de datos Valladolid / 61
70 Satisfaction of value constraints A mapping µ satisfies a condition R (µ = R) if: R is?x = c,?x dom(µ) and µ(?x) = c R is?x =?Y,?X,?Y dom(µ) and µ(?x) = µ(?y) R is bound(?x) and?x dom(µ) M. Arenas RDF y SPARQL: Dos componentes básicos para la Web de datos Valladolid / 61
71 Satisfaction of value constraints A mapping µ satisfies a condition R (µ = R) if: R is?x = c,?x dom(µ) and µ(?x) = c R is?x =?Y,?X,?Y dom(µ) and µ(?x) = µ(?y) R is bound(?x) and?x dom(µ) R is R 1 and µ = R 1 does not hold R is (R 1 R 2 ), and µ = R 1 or µ = R 2 R is (R 1 R 2 ), µ = R 1 and µ = R 2 M. Arenas RDF y SPARQL: Dos componentes básicos para la Web de datos Valladolid / 61
72 Satisfaction of value constraints A mapping µ satisfies a condition R (µ = R) if: R is?x = c,?x dom(µ) and µ(?x) = c R is?x =?Y,?X,?Y dom(µ) and µ(?x) = µ(?y) R is bound(?x) and?x dom(µ) R is R 1 and µ = R 1 does not hold R is (R 1 R 2 ), and µ = R 1 or µ = R 2 R is (R 1 R 2 ), µ = R 1 and µ = R 2 Definition FILTER : selects mappings that satisfy a condition (P FILTER R) G = {µ P G µ = R} M. Arenas RDF y SPARQL: Dos componentes básicos para la Web de datos Valladolid / 61
73 Outline of the talk RDF SPARQL: Syntax and semantics RDFS: RDF Schema Some new features in SPARQL 1.1 Concluding remarks M. Arenas RDF y SPARQL: Dos componentes básicos para la Web de datos Valladolid / 61
74 Syntax of RDFS RDFS extends RDF with a schema vocabulary: subpropertyof (rdf:sp), subclassof (rdf:sc), domain (rdf:dom), range (rdf:range), type (rdf:type). M. Arenas RDF y SPARQL: Dos componentes básicos para la Web de datos Valladolid / 61
75 Syntax of RDFS RDFS extends RDF with a schema vocabulary: subpropertyof (rdf:sp), subclassof (rdf:sc), domain (rdf:dom), range (rdf:range), type (rdf:type). How can one query RDFS data? Evaluating queries which involve this vocabulary is challenging M. Arenas RDF y SPARQL: Dos componentes básicos para la Web de datos Valladolid / 61
76 A simple SPARQL query: (Messi, rdf:type, person) person rdf:dom works in rdf:range company rdf:sc sportman rdf:sp rdf:sc rdf:sc soccer player rdf:dom plays in rdf:range soccer team rdf:type rdf:type Messi Barcelona lives in Spain M. Arenas RDF y SPARQL: Dos componentes básicos para la Web de datos Valladolid / 61
77 Semantics of RDFS Checking whether a triple t is in a graph G is the basic step when answering queries over RDF. For the case of RDFS, we need to check whether t is implied by G The notion of entailment in RDFS can be defined in terms of classical notions such as model, interpretation, etc. As for the case of first-order logic This notion can also be characterized by a set of inference rules. M. Arenas RDF y SPARQL: Dos componentes básicos para la Web de datos Valladolid / 61
78 An inference system for RDFS R Inference rule: R R and R are sequences of RDF triples including symbols A, X,..., to be replaced by elements from (U L) σ(r) Instantiation of a rule: σ(r ) σ : {A,X,...} (U L) Application of a rule R R to an RDF graph G: Select an assignment σ : {A,X,...} (U L) if σ(r) G, then obtain G σ(r ) M. Arenas RDF y SPARQL: Dos componentes básicos para la Web de datos Valladolid / 61
79 An inference system for RDFS (cont d) Sub-property : Subclass : Typing : (A, rdf:sp, B) (B, rdf:sp, C) (A, rdf:sp, C) (A, rdf:sp, B) (X, A, Y) (X, B, Y) (A, rdf:sc, B) (B, rdf:sc, C) (A, rdf:sc, C) (A, rdf:sc, B) (X, rdf:type, A) (X, rdf:type, B) (A, rdf:dom, B) (X, A, Y) (X, rdf:type, B) (A, rdf:range, B) (X, A, Y) (Y, rdf:type, B) M. Arenas RDF y SPARQL: Dos componentes básicos para la Web de datos Valladolid / 61
80 Entailment in RDFS The previous system of inference rules characterize the notion of entailment in RDFS (without blank nodes). Thus, a triple t can be deduced from an RDF graph G (G = t) if there exists an RDF G such that: t G G can be obtained from G by successively applying the rules in the previous system. M. Arenas RDF y SPARQL: Dos componentes básicos para la Web de datos Valladolid / 61
81 Entailment in RDFS: Closure of a graph Definition The closure of an RDFS graph G (cl(g)) is the graph obtained by adding to G all the triples that are implied by G. A basic property of the closure: G = t iff t cl(g) M. Arenas RDF y SPARQL: Dos componentes básicos para la Web de datos Valladolid / 61
82 Querying RDFS data Basic step for answering queries over RDFS: Checking whether a triple t is in cl(g) M. Arenas RDF y SPARQL: Dos componentes básicos para la Web de datos Valladolid / 61
83 Querying RDFS data Basic step for answering queries over RDFS: Checking whether a triple t is in cl(g) Definition The RDFS-evaluation of a graph pattern P over an RDFS graph G is defined as the evaluation of P over cl(g): P rdfs G = P cl(g) M. Arenas RDF y SPARQL: Dos componentes básicos para la Web de datos Valladolid / 61
84 Example: (Messi, rdf:type, person) over the closure person rdf:dom works in rdf:range company rdf:sc rdf:sc sportman rdf:sp rdf:sc rdf:sc rdf:type rdf:type soccer player rdf:dom plays in rdf:range soccer team rdf:type rdf:type Messi Barcelona lives in Spain M. Arenas RDF y SPARQL: Dos componentes básicos para la Web de datos Valladolid / 61
85 Answering SPARQL queries over RDFS A simple approach for answering a SPARQL query P over an RDF graph G: Compute cl(g), and then evaluate P over cl(g) as for RDF M. Arenas RDF y SPARQL: Dos componentes básicos para la Web de datos Valladolid / 61
86 Answering SPARQL queries over RDFS A simple approach for answering a SPARQL query P over an RDF graph G: Compute cl(g), and then evaluate P over cl(g) as for RDF This approach has some drawbacks: M. Arenas RDF y SPARQL: Dos componentes básicos para la Web de datos Valladolid / 61
87 Answering SPARQL queries over RDFS A simple approach for answering a SPARQL query P over an RDF graph G: Compute cl(g), and then evaluate P over cl(g) as for RDF This approach has some drawbacks: The size of the closure of G can be quadratic in the size of G M. Arenas RDF y SPARQL: Dos componentes básicos para la Web de datos Valladolid / 61
88 Answering SPARQL queries over RDFS A simple approach for answering a SPARQL query P over an RDF graph G: Compute cl(g), and then evaluate P over cl(g) as for RDF This approach has some drawbacks: The size of the closure of G can be quadratic in the size of G Once the closure has been computed, all the queries are evaluated over a graph which can be much larger than the original graph M. Arenas RDF y SPARQL: Dos componentes básicos para la Web de datos Valladolid / 61
89 Answering SPARQL queries over RDFS A simple approach for answering a SPARQL query P over an RDF graph G: Compute cl(g), and then evaluate P over cl(g) as for RDF This approach has some drawbacks: The size of the closure of G can be quadratic in the size of G Once the closure has been computed, all the queries are evaluated over a graph which can be much larger than the original graph The approach is not goal-oriented When evaluating (a, rdf:sc, b), a goal-oriented approach should not compute cl(g): It should just verify whether there exists a path from a to b in G where every edge has label rdf:sc M. Arenas RDF y SPARQL: Dos componentes básicos para la Web de datos Valladolid / 61
90 Extending SPARQL with navigational capabilities The example (a, rdf:sc, b) suggests that a query language with navigational capabilities could be appropriate for RDFS. M. Arenas RDF y SPARQL: Dos componentes básicos para la Web de datos Valladolid / 61
91 Extending SPARQL with navigational capabilities The example (a, rdf:sc, b) suggests that a query language with navigational capabilities could be appropriate for RDFS. Possible approach: Extend SPARQL with navigational capabilities. M. Arenas RDF y SPARQL: Dos componentes básicos para la Web de datos Valladolid / 61
92 Extending SPARQL with navigational capabilities The example (a, rdf:sc, b) suggests that a query language with navigational capabilities could be appropriate for RDFS. Possible approach: Extend SPARQL with navigational capabilities. A query P over an RDF graph G is answered by navigating G (cl(g) is not computed) M. Arenas RDF y SPARQL: Dos componentes básicos para la Web de datos Valladolid / 61
93 Extending SPARQL with navigational capabilities The example (a, rdf:sc, b) suggests that a query language with navigational capabilities could be appropriate for RDFS. Possible approach: Extend SPARQL with navigational capabilities. A query P over an RDF graph G is answered by navigating G (cl(g) is not computed) This approach has some advantages: M. Arenas RDF y SPARQL: Dos componentes básicos para la Web de datos Valladolid / 61
94 Extending SPARQL with navigational capabilities The example (a, rdf:sc, b) suggests that a query language with navigational capabilities could be appropriate for RDFS. Possible approach: Extend SPARQL with navigational capabilities. A query P over an RDF graph G is answered by navigating G (cl(g) is not computed) This approach has some advantages: It is goal-oriented M. Arenas RDF y SPARQL: Dos componentes básicos para la Web de datos Valladolid / 61
95 Extending SPARQL with navigational capabilities The example (a, rdf:sc, b) suggests that a query language with navigational capabilities could be appropriate for RDFS. Possible approach: Extend SPARQL with navigational capabilities. A query P over an RDF graph G is answered by navigating G (cl(g) is not computed) This approach has some advantages: It is goal-oriented It has been used to design query languages for XML (e.g., XPath and XQuery). The results for these languages can be used here M. Arenas RDF y SPARQL: Dos componentes básicos para la Web de datos Valladolid / 61
96 Extending SPARQL with navigational capabilities The example (a, rdf:sc, b) suggests that a query language with navigational capabilities could be appropriate for RDFS. Possible approach: Extend SPARQL with navigational capabilities. A query P over an RDF graph G is answered by navigating G (cl(g) is not computed) This approach has some advantages: It is goal-oriented It has been used to design query languages for XML (e.g., XPath and XQuery). The results for these languages can be used here Navigational operators allow to express natural queries that are not expressible in SPARQL over RDFS M. Arenas RDF y SPARQL: Dos componentes básicos para la Web de datos Valladolid / 61
97 Outline of the talk RDF SPARQL: Syntax and semantics RDFS: RDF Schema Some new features in SPARQL 1.1 Concluding remarks M. Arenas RDF y SPARQL: Dos componentes básicos para la Web de datos Valladolid / 61
98 SPARQL 1.1 A new version of SPARQL has just been released (March 2013): SPARQL 1.1 Some new features in SPARQL 1.1: M. Arenas RDF y SPARQL: Dos componentes básicos para la Web de datos Valladolid / 61
99 SPARQL 1.1 A new version of SPARQL has just been released (March 2013): SPARQL 1.1 Some new features in SPARQL 1.1: Nesting of SELECT expressions M. Arenas RDF y SPARQL: Dos componentes básicos para la Web de datos Valladolid / 61
100 SPARQL 1.1 A new version of SPARQL has just been released (March 2013): SPARQL 1.1 Some new features in SPARQL 1.1: Nesting of SELECT expressions Entailment regime for RDFS M. Arenas RDF y SPARQL: Dos componentes básicos para la Web de datos Valladolid / 61
101 SPARQL 1.1 A new version of SPARQL has just been released (March 2013): SPARQL 1.1 Some new features in SPARQL 1.1: Nesting of SELECT expressions Entailment regime for RDFS Navigational capabilities: Property paths M. Arenas RDF y SPARQL: Dos componentes básicos para la Web de datos Valladolid / 61
102 SPARQL 1.1 A new version of SPARQL has just been released (March 2013): SPARQL 1.1 Some new features in SPARQL 1.1: Nesting of SELECT expressions Entailment regime for RDFS Navigational capabilities: Property paths Aggregates M. Arenas RDF y SPARQL: Dos componentes básicos para la Web de datos Valladolid / 61
103 SPARQL 1.1 A new version of SPARQL has just been released (March 2013): SPARQL 1.1 Some new features in SPARQL 1.1: Nesting of SELECT expressions Entailment regime for RDFS Navigational capabilities: Property paths Aggregates An operator SERVICE to distribute the execution of a query (SERVICE?X P) M. Arenas RDF y SPARQL: Dos componentes básicos para la Web de datos Valladolid / 61
104 SPARQL 1.1 A new version of SPARQL has just been released (March 2013): SPARQL 1.1 Some new features in SPARQL 1.1: Nesting of SELECT expressions Entailment regime for RDFS Navigational capabilities: Property paths Aggregates An operator SERVICE to distribute the execution of a query (SERVICE?X P) M. Arenas RDF y SPARQL: Dos componentes básicos para la Web de datos Valladolid / 61
105 Aggregates in SPARQL 1.1 SELECT COUNT(DISTINCT?Author) WHERE {?Paper dc:creator?author.?paper dct:partof?conf.?conf swrc:series conf:pods. } This query can be executed in the DBLP SPARQL endpoint. M. Arenas RDF y SPARQL: Dos componentes básicos para la Web de datos Valladolid / 61
106 SPARQL provides limited navigational capabilities Paul name URI 1 friendof friendof URI 0 Peter name phone name URI 2 friendof URI 3 name John [email protected] George M. Arenas RDF y SPARQL: Dos componentes básicos para la Web de datos Valladolid / 61
107 SPARQL provides limited navigational capabilities Paul name URI 1 friendof friendof URI 0 Peter name phone name URI 2 friendof URI 3 name John [email protected] George (SELECT?X ((?X, friendof,?y) AND (?Y, name, George))) M. Arenas RDF y SPARQL: Dos componentes básicos para la Web de datos Valladolid / 61
108 SPARQL provides limited navigational capabilities Paul name URI 1 friendof friendof URI 0 Peter name phone name URI 2 friendof URI 3 name John [email protected] George (SELECT?X ((?X, friendof,?y) AND (?Y, name, George))) M. Arenas RDF y SPARQL: Dos componentes básicos para la Web de datos Valladolid / 61
109 SPARQL provides limited navigational capabilities Paul name URI 1 friendof friendof URI 0 Peter name phone name URI 2 friendof URI 3 name John [email protected] George (SELECT?X ((?X, friendof,?y) AND (?Y, name, George))) M. Arenas RDF y SPARQL: Dos componentes básicos para la Web de datos Valladolid / 61
110 A possible solution: Property paths Paul name URI 1 friendof friendof URI 0 Peter name phone name URI 2 friendof URI 3 name John [email protected] George M. Arenas RDF y SPARQL: Dos componentes básicos para la Web de datos Valladolid / 61
111 A possible solution: Property paths Paul name URI 1 friendof friendof URI 0 Peter name phone name URI 2 friendof URI 3 name John [email protected] George (SELECT?X ((?X, (friendof),?y) AND (?Y, name, George))) M. Arenas RDF y SPARQL: Dos componentes básicos para la Web de datos Valladolid / 61
112 Navigational capabilities in SPARQL 1.1: Property paths Syntax of property paths: where a U exp := a exp/exp exp exp exp M. Arenas RDF y SPARQL: Dos componentes básicos para la Web de datos Valladolid / 61
113 Evaluating property paths The evaluation of a property path over an RDF graph G is defined as follows: M. Arenas RDF y SPARQL: Dos componentes básicos para la Web de datos Valladolid / 61
114 Evaluating property paths The evaluation of a property path over an RDF graph G is defined as follows: a G = {(x,y) (x,a,y) G} M. Arenas RDF y SPARQL: Dos componentes básicos para la Web de datos Valladolid / 61
115 Evaluating property paths The evaluation of a property path over an RDF graph G is defined as follows: a G = {(x,y) (x,a,y) G} exp 1 /exp 2 G = {(x,y) z (x,z) exp 1 G and (z,y) exp 2 G } M. Arenas RDF y SPARQL: Dos componentes básicos para la Web de datos Valladolid / 61
116 Evaluating property paths The evaluation of a property path over an RDF graph G is defined as follows: a G = {(x,y) (x,a,y) G} exp 1 /exp 2 G = {(x,y) z (x,z) exp 1 G and (z,y) exp 2 G } exp 1 exp 2 G = exp 1 G exp 2 G M. Arenas RDF y SPARQL: Dos componentes básicos para la Web de datos Valladolid / 61
117 Evaluating property paths The evaluation of a property path over an RDF graph G is defined as follows: a G = {(x,y) (x,a,y) G} exp 1 /exp 2 G = {(x,y) z (x,z) exp 1 G and (z,y) exp 2 G } exp 1 exp 2 G = exp 1 G exp 2 G exp G = {(a,a) a is a URI in G} exp G exp/exp G exp/exp/exp G M. Arenas RDF y SPARQL: Dos componentes básicos para la Web de datos Valladolid / 61
118 Property paths in SPARQL 1.1 New element in SPARQL 1.1: A triple of the form (x,exp,y) exp is a property path x (resp. y) is either an element from U or a variable M. Arenas RDF y SPARQL: Dos componentes básicos para la Web de datos Valladolid / 61
119 Property paths in SPARQL 1.1 New element in SPARQL 1.1: A triple of the form (x,exp,y) exp is a property path x (resp. y) is either an element from U or a variable Example (?X, (rdf:sc),?y): Verifies whether?x is a subclass of?y (?X, (rdf:sp),?y): Verifies whether?x is a subproperty of?y M. Arenas RDF y SPARQL: Dos componentes básicos para la Web de datos Valladolid / 61
120 Semantics of property paths Evaluation of t = (?X,exp,?Y) over an RDF graph G is the set of mappings µ such that: M. Arenas RDF y SPARQL: Dos componentes básicos para la Web de datos Valladolid / 61
121 Semantics of property paths Evaluation of t = (?X,exp,?Y) over an RDF graph G is the set of mappings µ such that: The domain of µ is {?X,?Y}, and (µ(?x),µ(?y)) exp G M. Arenas RDF y SPARQL: Dos componentes básicos para la Web de datos Valladolid / 61
122 Semantics of property paths Evaluation of t = (?X,exp,?Y) over an RDF graph G is the set of mappings µ such that: The domain of µ is {?X,?Y}, and (µ(?x),µ(?y)) exp G Example (?X, KLM/(KLM),?Y): It is possible to go from?x to?y by using the airline KLM ((?X, KLM/(KLM),?Y) FILTER (?X =?Y)): Same as before, but now?x,?y must be different M. Arenas RDF y SPARQL: Dos componentes básicos para la Web de datos Valladolid / 61
123 SPARQL 1.1 and RDFS Property paths can help in encoding the semantics of RDFS. Given a SPARQL graph pattern P, we would like to find a SPARQL 1.1 graph pattern Q such that: For every RDF graph G: P rdfs G = Q G M. Arenas RDF y SPARQL: Dos componentes básicos para la Web de datos Valladolid / 61
124 SPARQL 1.1 and RDFS Property paths can help in encoding the semantics of RDFS. Given a SPARQL graph pattern P, we would like to find a SPARQL 1.1 graph pattern Q such that: For every RDF graph G: P rdfs G = Q G We already saw how to encode rdf:sc and rdf:sp. We will consider the example P = (?X,a,?Y), where a U {rdf:sc,rdf:sp,rdf:type,rdf:dom,rdf:range} M. Arenas RDF y SPARQL: Dos componentes básicos para la Web de datos Valladolid / 61
125 The case of P = (?X,a,?Y) What are the difficulties in this case??y rdf:sp rdf:sp rdf:sp a?x M. Arenas RDF y SPARQL: Dos componentes básicos para la Web de datos Valladolid / 61
126 The case of P = (?X,a,?Y) (cont d) Let Q be: ( SELECT {?X,?Y} ) ((?X,?Z,?Y) AND (?Z,(rdf:sp),a)) Then for every RDF graph G: P rdfs G = Q G M. Arenas RDF y SPARQL: Dos componentes básicos para la Web de datos Valladolid / 61
127 Are we done? List the pairs a,b of cities such that there is a way to travel from a to b. transportation service rdf:sp rdf:sp rdf:sp bus service flight service train service rdf:sp rdf:sp rdf:sp the Airline British Airways Renfe Oxford London Madrid Valladolid M. Arenas RDF y SPARQL: Dos componentes básicos para la Web de datos Valladolid / 61
128 Concluding remarks We have witnessed a constant growth in the amount of RDF data available on the Web Two fundamental components of the Semantic Web: RDF and SPARQL Some of the distinctive features of RDF have made the study and implementation of SPARQL challenging SPARQL is still under development: SPARQL 1.1,... M. Arenas RDF y SPARQL: Dos componentes básicos para la Web de datos Valladolid / 61
129 Thank you! M. Arenas RDF y SPARQL: Dos componentes básicos para la Web de datos Valladolid / 61
SPARQL: Un Lenguaje de Consulta para la Web
SPARQL: Un Lenguaje de Consulta para la Web Semántica Marcelo Arenas Pontificia Universidad Católica de Chile y Centro de Investigación de la Web M. Arenas SPARQL: Un Lenguaje de Consulta para la Web Semántica
13 RDFS and SPARQL. Internet Technology. MSc in Communication Sciences 2011-12 Program in Technologies for Human Communication.
MSc in Communication Sciences 2011-12 Program in Technologies for Human Communication Davide Eynard nternet Technology 13 RDFS and SPARQL 2 RDF - Summary Main characteristics of RDF: Abstract syntax based
Logic and Reasoning in the Semantic Web (part I RDF/RDFS)
Logic and Reasoning in the Semantic Web (part I RDF/RDFS) Fulvio Corno, Laura Farinetti Politecnico di Torino Dipartimento di Automatica e Informatica e-lite Research Group http://elite.polito.it Outline
Semantic Interoperability
Ivan Herman Semantic Interoperability Olle Olsson Swedish W3C Office Swedish Institute of Computer Science (SICS) Stockholm Apr 27 2011 (2) Background Stockholm Apr 27, 2011 (2) Trends: from
We have big data, but we need big knowledge
We have big data, but we need big knowledge Weaving surveys into the semantic web ASC Big Data Conference September 26 th 2014 So much knowledge, so little time 1 3 takeaways What are linked data and the
RDF Resource Description Framework
RDF Resource Description Framework Fulvio Corno, Laura Farinetti Politecnico di Torino Dipartimento di Automatica e Informatica e-lite Research Group http://elite.polito.it Outline RDF Design objectives
Semantic Modeling with RDF. DBTech ExtWorkshop on Database Modeling and Semantic Modeling Lili Aunimo
DBTech ExtWorkshop on Database Modeling and Semantic Modeling Lili Aunimo Expected Outcomes You will learn: Basic concepts related to ontologies Semantic model Semantic web Basic features of RDF and RDF
Formalization of the CRM: Initial Thoughts
Formalization of the CRM: Initial Thoughts Carlo Meghini Istituto di Scienza e Tecnologie della Informazione Consiglio Nazionale delle Ricerche Pisa CRM SIG Meeting Iraklio, October 1st, 2014 Outline Overture:
Taming Big Data Variety with Semantic Graph Databases. Evren Sirin CTO Complexible
Taming Big Data Variety with Semantic Graph Databases Evren Sirin CTO Complexible About Complexible Semantic Tech leader since 2006 (née Clark & Parsia) software, consulting W3C leadership Offices in DC
12 The Semantic Web and RDF
MSc in Communication Sciences 2011-12 Program in Technologies for Human Communication Davide Eynard nternet Technology 12 The Semantic Web and RDF 2 n the previous episodes... A (video) summary: Michael
SPARQL UniProt.RDF. Get these slides! Tutorial plan. Everyone has had some introduction slash knowledge of RDF.
SPARQL UniProt.RDF Everyone has had some introduction slash knowledge of RDF. Jerven Bolleman Developer Swiss-Prot Group Swiss Institute of Bioinformatics Get these slides! https://sites.google.com/a/jerven.eu/jerven/home/
Layering the Semantic Web: Problems and Directions
First International Semantic Web Conference (ISWC2002), Sardinia, Italy, June 2002. Layering the Semantic Web: Problems and Directions Peter F. Patel-Schneider and Dieter Fensel Bell Labs Research Murray
Programming the Semantic Web
Master s Thesis Programming the Semantic Web - A Microformats Compatible GRDDL Implementation for ActiveRDF Christian Planck Larsen Department of Computer Science, Aalborg University 24th of August 2007
technische universiteit eindhoven WIS & Engineering Geert-Jan Houben
WIS & Engineering Geert-Jan Houben Contents Web Information System (WIS) Evolution in Web data WIS Engineering Languages for Web data XML (context only!) RDF XML Querying: XQuery (context only!) RDFS SPARQL
Linked Medieval Data: Semantic Enrichment and Contextualisation to Enhance Understanding and Collaboration
: Semantic Enrichment and Contextualisation to Enhance Understanding and Collaboration Prof. Dr. Stefan Gradmann Humboldt-Universität zu Berlin / School of Library and Information Science [email protected]
SPARQL By Example: The Cheat Sheet
SPARQL By Example: The Cheat Sheet Accompanies slides at: http://www.cambridgesemantics.com/2008/09/sparql-by-example/ Comments & questions to: Lee Feigenbaum VP Technology
Towards the Integration of a Research Group Website into the Web of Data
Towards the Integration of a Research Group Website into the Web of Data Mikel Emaldi, David Buján, and Diego López-de-Ipiña Deusto Institute of Technology - DeustoTech, University of Deusto Avda. Universidades
A Comparison of Database Query Languages: SQL, SPARQL, CQL, DMX
ISSN: 2393-8528 Contents lists available at www.ijicse.in International Journal of Innovative Computer Science & Engineering Volume 3 Issue 2; March-April-2016; Page No. 09-13 A Comparison of Database
OSLC Primer Learning the concepts of OSLC
OSLC Primer Learning the concepts of OSLC It has become commonplace that specifications are precise in their details but difficult to read and understand unless you already know the basic concepts. A good
excellent graph matching capabilities with global graph analytic operations, via an interface that researchers can use to plug in their own
Steve Reinhardt 2 The urika developers are extending SPARQL s excellent graph matching capabilities with global graph analytic operations, via an interface that researchers can use to plug in their own
Federated Data Management and Query Optimization for Linked Open Data
Chapter 5 Federated Data Management and Query Optimization for Linked Open Data Olaf Görlitz and Steffen Staab Institute for Web Science and Technologies, University of Koblenz-Landau, Germany {goerlitz,staab}@uni-koblenz.de
JOURNAL OF COMPUTER SCIENCE AND ENGINEERING
Exploration on Service Matching Methodology Based On Description Logic using Similarity Performance Parameters K.Jayasri Final Year Student IFET College of engineering [email protected] R.Rajmohan
Ampersand and the Semantic Web
Ampersand and the Semantic Web The Ampersand Conference 2015 Lloyd Rutledge The Semantic Web Billions and billions of data units Triples (subject-predicate-object) of URI s Your data readily integrated
G-SPARQL: A Hybrid Engine for Querying Large Attributed Graphs
G-SPARQL: A Hybrid Engine for Querying Large Attributed Graphs Sherif Sakr National ICT Australia UNSW, Sydney, Australia [email protected] Sameh Elnikety Microsoft Research Redmond, WA, USA [email protected]
Publishing Linked Data Requires More than Just Using a Tool
Publishing Linked Data Requires More than Just Using a Tool G. Atemezing 1, F. Gandon 2, G. Kepeklian 3, F. Scharffe 4, R. Troncy 1, B. Vatant 5, S. Villata 2 1 EURECOM, 2 Inria, 3 Atos Origin, 4 LIRMM,
DISTRIBUTED RDF QUERY PROCESSING AND REASONING FOR BIG DATA / LINKED DATA. A THESIS IN Computer Science
DISTRIBUTED RDF QUERY PROCESSING AND REASONING FOR BIG DATA / LINKED DATA A THESIS IN Computer Science Presented to the Faculty of the University of Missouri-Kansas City in partial fulfillment of the requirements
Big Data Analytics. Rasoul Karimi
Big Data Analytics Rasoul Karimi Information Systems and Machine Learning Lab (ISMLL) Institute of Computer Science University of Hildesheim, Germany Big Data Analytics Big Data Analytics 1 / 1 Introduction
ONTOLOGIES A short tutorial with references to YAGO Cosmina CROITORU
ONTOLOGIES p. 1/40 ONTOLOGIES A short tutorial with references to YAGO Cosmina CROITORU Unlocking the Secrets of the Past: Text Mining for Historical Documents Blockseminar, 21.2.-11.3.2011 ONTOLOGIES
City Data Pipeline. A System for Making Open Data Useful for Cities. [email protected]
City Data Pipeline A System for Making Open Data Useful for Cities Stefan Bischof 1,2, Axel Polleres 1, and Simon Sperl 1 1 Siemens AG Österreich, Siemensstraße 90, 1211 Vienna, Austria {bischof.stefan,axel.polleres,simon.sperl}@siemens.com
RDF Support in Oracle Oracle USA Inc.
RDF Support in Oracle Oracle USA Inc. 1. Introduction Resource Description Framework (RDF) is a standard for representing information that can be identified using a Universal Resource Identifier (URI).
Rigorous Software Development CSCI-GA 3033-009
Rigorous Software Development CSCI-GA 3033-009 Instructor: Thomas Wies Spring 2013 Lecture 11 Semantics of Programming Languages Denotational Semantics Meaning of a program is defined as the mathematical
An Ontology-based e-learning System for Network Security
An Ontology-based e-learning System for Network Security Yoshihito Takahashi, Tomomi Abiko, Eriko Negishi Sendai National College of Technology [email protected] Goichi Itabashi Graduate School
Scope. Cognescent SBI Semantic Business Intelligence
Cognescent SBI Semantic Business Intelligence Scope...1 Conceptual Diagram...2 Datasources...3 Core Concepts...3 Resources...3 Occurrence (SPO)...4 Links...4 Statements...4 Rules...4 Types...4 Mappings...5
Masterarbeit. Entwicklung und Implementierung eines Domain Brokers für das Semantic Web
Georg-August-Universität Göttingen Zentrum für Informatik ISSN 1612-6793 Nummer ZFI-BM-2006-35 Masterarbeit im Studiengang "Angewandte Informatik" Entwicklung und Implementierung eines Domain Brokers für
Building the Multilingual Web of Data: A Hands-on tutorial (ISWC 2014, Riva del Garda - Italy)
Building the Multilingual Web of Data: A Hands-on tutorial (ISWC 2014, Riva del Garda - Italy) Multilingual Word Sense Disambiguation and Entity Linking on the Web based on BabelNet Roberto Navigli, Tiziano
An Efficient and Scalable Management of Ontology
An Efficient and Scalable Management of Ontology Myung-Jae Park 1, Jihyun Lee 1, Chun-Hee Lee 1, Jiexi Lin 1, Olivier Serres 2, and Chin-Wan Chung 1 1 Korea Advanced Institute of Science and Technology,
Scalable and Reactive Programming for Semantic Web Developers
Proceedings of the ESWC2015 Developers Workshop 47 Scalable and Reactive Programming for Semantic Web Developers Jean-Paul Calbimonte LSIR Distributed Information Systems Lab, EPFL, Switzerland. [email protected]
A Semantic web approach for e-learning platforms
A Semantic web approach for e-learning platforms Miguel B. Alves 1 1 Laboratório de Sistemas de Informação, ESTG-IPVC 4900-348 Viana do Castelo. [email protected] Abstract. When lecturers publish contents
Semantic Web Standard in Cloud Computing
ETIC DEC 15-16, 2011 Chennai India International Journal of Soft Computing and Engineering (IJSCE) Semantic Web Standard in Cloud Computing Malini Siva, A. Poobalan Abstract - CLOUD computing is an emerging
A Secure Mediator for Integrating Multiple Level Access Control Policies
A Secure Mediator for Integrating Multiple Level Access Control Policies Isabel F. Cruz Rigel Gjomemo Mirko Orsini ADVIS Lab Department of Computer Science University of Illinois at Chicago {ifc rgjomemo
Integrating and Exchanging XML Data using Ontologies
Integrating and Exchanging XML Data using Ontologies Huiyong Xiao and Isabel F. Cruz Department of Computer Science University of Illinois at Chicago {hxiao ifc}@cs.uic.edu Abstract. While providing a
The Ontological Approach for SIEM Data Repository
The Ontological Approach for SIEM Data Repository Igor Kotenko, Olga Polubelova, and Igor Saenko Laboratory of Computer Science Problems, Saint-Petersburg Institute for Information and Automation of Russian
HybIdx: Indexes for Processing Hybrid Graph Patterns Over Text-Rich Data Graphs Technical Report
HybIdx: Indexes for Processing Hybrid Graph Patterns Over Text-Rich Data Graphs Technical Report Günter Ladwig Thanh Tran Institute AIFB, Karlsruhe Institute of Technology, Germany {guenter.ladwig,ducthanh.tran}@kit.edu
Benchmarking the Performance of Storage Systems that expose SPARQL Endpoints
Benchmarking the Performance of Storage Systems that expose SPARQL Endpoints Christian Bizer 1 and Andreas Schultz 1 1 Freie Universität Berlin, Web-based Systems Group, Garystr. 21, 14195 Berlin, Germany
Application of ontologies for the integration of network monitoring platforms
Application of ontologies for the integration of network monitoring platforms Jorge E. López de Vergara, Javier Aracil, Jesús Martínez, Alfredo Salvador, José Alberto Hernández Networking Research Group,
Towards a Semantic Wiki Wiki Web
Towards a Semantic Wiki Wiki Web Roberto Tazzoli, Paolo Castagna, and Stefano Emilio Campanini Abstract. This article describes PlatypusWiki, an enhanced Wiki Wiki Web using technologies from the Semantic
Building the Semantic Web on XML
The First International Semantic Web Conference (ISWC2002), Sardinia, Italy, June 2002. Building the Semantic Web on XML Peter F. Patel-Schneider and Jérôme Siméon Bell Labs Research, Murray Hill, NJ,
BUSINESS VALUE OF SEMANTIC TECHNOLOGY
BUSINESS VALUE OF SEMANTIC TECHNOLOGY Preliminary Findings Industry Advisory Council Emerging Technology (ET) SIG Information Sharing & Collaboration Committee July 15, 2005 Mills Davis Managing Director
Managing enterprise applications as dynamic resources in corporate semantic webs an application scenario for semantic web services.
Managing enterprise applications as dynamic resources in corporate semantic webs an application scenario for semantic web services. Fabien Gandon, Moussa Lo, Olivier Corby, Rose Dieng-Kuntz ACACIA in short
Chapter 2 AN INTRODUCTION TO THE OWL WEB ONTOLOGY LANGUAGE 1. INTRODUCTION. Jeff Heflin Lehigh University
Chapter 2 AN INTRODUCTION TO THE OWL WEB ONTOLOGY LANGUAGE Jeff Heflin Lehigh University Abstract: Key words: 1. INTRODUCTION The OWL Web Ontology Language is an international standard for encoding and
Mining the Web of Linked Data with RapidMiner
Mining the Web of Linked Data with RapidMiner Petar Ristoski, Christian Bizer, and Heiko Paulheim University of Mannheim, Germany Data and Web Science Group {petar.ristoski,heiko,chris}@informatik.uni-mannheim.de
THE SEMANTIC WEB AND IT`S APPLICATIONS
15-16 September 2011, BULGARIA 1 Proceedings of the International Conference on Information Technologies (InfoTech-2011) 15-16 September 2011, Bulgaria THE SEMANTIC WEB AND IT`S APPLICATIONS Dimitar Vuldzhev
Getting Started Guide
TopBraid Composer Getting Started Guide Version 2.0 July 21, 2007 TopBraid Composer, Copyright 2006 TopQuadrant, Inc. 1 of 58 Revision History Date Version Revision August 1, 2006 1.0 Initial version September
Semantic Web Technologies and Data Management
Semantic Web Technologies and Data Management Li Ma, Jing Mei, Yue Pan Krishna Kulkarni Achille Fokoue, Anand Ranganathan IBM China Research Laboratory IBM Software Group IBM Watson Research Center Bei
Performance Analysis, Data Sharing, Tools Integration: New Approach based on Ontology
Performance Analysis, Data Sharing, Tools Integration: New Approach based on Ontology Hong-Linh Truong Institute for Software Science, University of Vienna, Austria [email protected] Thomas Fahringer
Query Processing in Data Integration Systems
Query Processing in Data Integration Systems Diego Calvanese Free University of Bozen-Bolzano BIT PhD Summer School Bressanone July 3 7, 2006 D. Calvanese Data Integration BIT PhD Summer School 1 / 152
Big Data, Fast Data, Complex Data. Jans Aasman Franz Inc
Big Data, Fast Data, Complex Data Jans Aasman Franz Inc Private, founded 1984 AI, Semantic Technology, professional services Now in Oakland Franz Inc Who We Are (1 (2 3) (4 5) (6 7) (8 9) (10 11) (12
How To Write A Drupal 5.5.2.2 Rdf Plugin For A Site Administrator To Write An Html Oracle Website In A Blog Post In A Flashdrupal.Org Blog Post
RDFa in Drupal: Bringing Cheese to the Web of Data Stéphane Corlosquet, Richard Cyganiak, Axel Polleres and Stefan Decker Digital Enterprise Research Institute National University of Ireland, Galway Galway,
OBDA: Query Rewriting or Materialization? In Practice, Both!
OBDA: Query Rewriting or Materialization? In Practice, Both! Juan F. Sequeda 1, Marcelo Arenas 2, and Daniel P. Miranker 1 1 Department of Computer Science, The University of Texas at Austin 2 Department
Secure Semantic Web Service Using SAML
Secure Semantic Web Service Using SAML JOO-YOUNG LEE and KI-YOUNG MOON Information Security Department Electronics and Telecommunications Research Institute 161 Gajeong-dong, Yuseong-gu, Daejeon KOREA
Relational Databases
Relational Databases Jan Chomicki University at Buffalo Jan Chomicki () Relational databases 1 / 18 Relational data model Domain domain: predefined set of atomic values: integers, strings,... every attribute
The Semantic Web: A Network of Content for the Digital City
The Semantic Web: A Network of Content for the Digital City Aaron Swartz 1, and James Hendler 2 1 Co-Founder, Semantic Web Agreement Group 2 Director, Semantic Web and Agent Technologies Maryland Information
Network Graph Databases, RDF, SPARQL, and SNA
Network Graph Databases, RDF, SPARQL, and SNA NoCOUG Summer Conference August 16 2012 at Chevron in San Ramon, CA David Abercrombie Data Analytics Engineer, Tapjoy [email protected] About me
TopBraid Application Development Quickstart Guide. Version 3.3
TopBraid Application Development Quickstart Guide Version 3.3 October 27, 2010 2 TopBraid Application Development Quickstart Guide Introduction TopBraid Application Development Quickstart Guide TOC 3 Contents
Accessing XML Documents using Semantic Meta Data in a P2P Environment
Accessing XML Documents using Semantic Meta Data in a P2P Environment Dominic Battré and Felix Heine and AndréHöing University of Paderborn Paderborn Center for Parallel Computing Fürstenallee 11, 33102
Robust Module-based Data Management
IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. V, NO. N, MONTH YEAR 1 Robust Module-based Data Management François Goasdoué, LRI, Univ. Paris-Sud, and Marie-Christine Rousset, LIG, Univ. Grenoble
analysis of a real online social network using semantic web frameworks Guillaume Erétéo, Michel Buffa, Fabien Gandon, Olivier Corby
analysis of a real online social network using semantic web frameworks Guillaume Erétéo, Michel Buffa, Fabien Gandon, Olivier Corby social media landscape social web amplifies social network effects overwhelming
A Review and Comparison of Rule Languages and Rule-based Inference Engines for the Semantic Web
A Review and Comparison of and -based Inference Engines for the Semantic Web Thanyalak Rattanasawad, Kanda Runapongsa Saikaew Department of Computer Engineering, Faculty of Engineering, Khon Kaen University,
