Metallization ( Part 2 )

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Metallization ( Part 2 )"

Transcription

1 1 Metallization ( Part 2 ) Chapter 12 : Semiconductor Manufacturing Technology by M. Quirk & J. Serda Saroj Kumar Patra TFE4180 Semiconductor Manufacturing Technology, Norwegian University of Science and Technology ( NTNU ) TFE4180 Semiconductor Manufacturing Technology

2 2 Objectives 1. State the advantages and disadvantages of sputtering. 2. Describe the physics of sputtering and discuss different sputtering tools and applications. 3. Describe the benefits and applications for metal CVD. 4. Explain the fundamentals of copper electroplating. TFE4180 Semiconductor Manufacturing Technology

3 3 Expressions SSI Small Scale Integration devices on die (until late 1960s) MSI Medium Scale Integration. 50 5k devices on die (until mid 1970s) LSI Large Scale Integration. 5k 100k devices on die (until early 1980s) VLSI Very Large Scale Integration. 100k 1 mill. devices on die (until early 1990s) ULSI Ultra Large Scale Integration. > 1 mill. devices on die PVD Physical Vapor Deposition CVD Chemical Vapor Deposition Step coverage The thickness of a deposited film over steps or features relative to the thickness of on the top surface. Gap fill The filling of narrow spaces with a material without creating voids or other defects. Yield The ratio of the number of good units to the total number of units produced. TFE4180 Semiconductor Manufacturing Technology

4 4 Introduction Metallization is the process of depositing metal film over a dielectric film. Most commonly used for metal wires and plugs. Both PVD and CVD processes can be used to deposit metal. TFE4180 Semiconductor Manufacturing Technology

5 5 Metal Deposition Systems Evaporation Sputtering Metal CVD Copper electroplating TFE4180 Semiconductor Manufacturing Technology

6 6 Brief history Evaporation was the main method for metallization during the SSI and MSI era. Sputtering was the main method during the LSI and VLSI era, but is still commonly used. Metal CVD is the main method for the ULSI era. TFE4180 Semiconductor Manufacturing Technology

7 7 Evaporation Early PVD method. Poor step coverage, gap fill and yield. Limitation for depositing alloys. Process: 1. Place target material in a crucible inside a vacuum chamber. 2. Heat material using electron beam until it vaporizes. 3. Vapor condenses when it strikes a surface and forms a film. TFE4180 Semiconductor Manufacturing Technology

8 8 Simple rotating evaporator Rotating servo Wafer(s) Wafer carrier Evaporating metal Crucible Process chamber (bell jar) Hi-Vac valve Hi-Vac pump Roughing pump Figure in Q&S TFE4180 Semiconductor Manufacturing Technology

9 9 Step coverage Conformal step coverage Poor step coverage TFE4180 Semiconductor Manufacturing Technology

10 10 Sputtering PVD method that mostly replaced evaporation systems. Advantages of sputtering: 1. Ability to deposit and maintain complex alloys. 2. Capability to deposit high-temperature and refractory metals. 3. Ability to deposit controlled, uniform films on large wafers. Big improvement in gap fill, but still limited capability for step coverage making it insufficient for ULSI applications. TFE4180 Semiconductor Manufacturing Technology

11 11 Six Basic Sputtering Steps 1. Positive argon ions are generated in a plasma in a high vacuum chamber and accelerated toward a target material at a negative potential 2. During acceleration, the ions gain momentum and strike the target 3. The ions physically dislodge(sputter) atoms from the target which has the desired material composition 4. The dislodged(sputtered) atoms migrate to the wafer surface 5. The sputtered atoms condense and form a thin film on the wafer surface with essentially the same material composition as the target, following the stages for thin film growth 6. Excess material is removed from the chamber by vacuum pump TFE4180 Semiconductor Manufacturing Technology

12 12 DC Diode Sputtering System Gas delivery 1) Electric fields create Ar + ions. Argon atoms Plasma e- e- + Cathode (-) 3) Metallic atoms are dislodged from target. Metal target 2) High-energy Ar + ions collide with metal target. e- Exhaust Electric field 4) Metal atoms migrate toward substrate. 6) Excess matter is removed from chamber by a vacuum pump. 5) Metal deposits on substrate DC diode sputterer Substrate Anode (+) Figure in Q&S TFE4180 Semiconductor Manufacturing Technology

13 13 Physics of Sputtering Argon is used because it is heavy and is a chemically inert gas Positively charged argon ions in the plasma are strongly attracted to the negative potential of the cathode Momentum transfer: argon ions transfers to the target material to dislodge one or more atoms Sputtering ion energy: ev

14 14 Physics of Sputtering Cathode (-) Metal atoms Sputtered metal atom High-energy Ar + ion + 0 Rebounding argon ion recombines with free electron to form a neutral atom. Figure Quirk & Serda

15 15 Sputter yield depends on: 1. Incident angle of the bombarding ions 2. Composition and geometry of the target material 3. Mass of bombarding ions 4. Energy of the bombarding ions

16 16 Three types of sputtering Radio frequency (RF) Magnetron Ionized Metal Plasma (IMP)

17 17 RF sputtering RF field creates the plasma Frequency MHz The electrons and ions in the plasma are exposed to the RF field (electrons responds most strongly) The chamber and electrodes behaves like a diode Limited because it does not have a high sputtering yield, leading to a low deposition rate Not used in wafer fabrication

18 18 RF sputtering Matching network RF generator Electrode Blocking capacitor Microcontroller operator interface Gas flow controller Substrate Target Pressure controller Gas panel Chuck Turbo pump Exhaust Argon Figure Quirk & Serda Roughing pump

19 19 Magnetron sputtering Employs magnets around the target to capture and restrict the electrons Requires a substantial amount of power (3kW-20kW) Cooling of the cathode required Magnet DC power supply Argon inlet Cathode Target Heated wafer chuck Figure Quirk & Serda Vacuum Pump

20 20 Magnetron sputtering Step Coverage: Requires a vacuum environment with high purity argon to avoid contamination from residual gas The atoms dislodged from the target essentially pass on the wafer by following a line-of-sight path Atoms exiting at many different angles

21 21 Magnetron sputtering Collimated Sputtering: Uses to achieve increased coverage on the bottom and side of a contact or via Any neutral species sputtered from the target at a high angle is intercepted and deposited on the collimator A large portion of the sputter will not reach the wafer lowers the sputter yield and increases the cost of deposition

22 22 Magnetron sputtering Collimated Sputtering: Target Collimated Sputtering System Ar Collimator Figure Quirk & Serda Cross section of via showing coverage of resulting sputtered film.

23 23 IMP sputtering The sputtered metal is ionized in an RF plasma Positive metal ions travel in a highly directional, vertical path towards a wafer configured with a negative voltage bias Biasing the wafer enables a higher degree of film conformality in bottoms and corners Achieve good hole-fill for Ti and TiN Is used in production to deposit Ti, TiN and Cu

24 24 IMP sputtering DC supply Titanium target Electrode DC field High-energy Ar + ion + Sputtered Ti atom Plasma RF field e - e - + Ti + ion Induction coil Substrate Electrode DC bias supply RF generator Figure Quirk & Serda

25 25 Metal CVD Tungsten CVD (W) 1. Excellent step coverage and gap-fill, high-aspect ratio vias. 2. High electromigration resistance. Blanket Tungsten CVD Deposition.

26 26 Metal CVD

27 27 Metal CVD Via Ti PECVD SiO 2 Gap fill dielectric Aluminium TiN 1. Interlayer dielectric via etch Tungsten via fill 2. Collimated Ti deposition covers bottom of via Tungsten plug 3. CVD TiN conformal deposition 4. CVD tungsten deposition 5. Tungsten planarization Figure Quirk & Serda

28 28 Copper CVD Thin copper seed layer of Å. Necessary for copper electroplating. Critical to have a continuous seed layer, which is free of pinholes and voids. Precursors: -Cu(I) - CU(II)

29 29 Copper Electroplate Copper replace aluminium. Electroplating Fundamentals. Quantity of copper is proportional to current at wafer surface. Complicated to control because of current density. Use different type of voltage waveforms to assist in planting high-aspect ratio holes. Lots of issues to address: No copper plate on the backside of the wafer, avoid high vacuum or complex heating.

30 30 Copper Electroplating Outlet Copper atom attached to wafer - Cathode Substrate Outlet Copp er ion + Plating solution + + Copper anode Figure Quirk & Serda Inlet

31 31 g{tç~ léâ TFE4180 Semiconductor Manufacturing Technology

Lecture 6 PVD (Physical vapor deposition): Evaporation and Sputtering

Lecture 6 PVD (Physical vapor deposition): Evaporation and Sputtering F. G. Tseng Lec6, Fall/2001, p1 Lecture 6 PVD (Physical vapor deposition): Evaporation and Sputtering Vacuum evaporation 1. Fundamental of Evaporation: The material to be evaporated is heated in an evacuated

More information

Coating Technology: Evaporation Vs Sputtering

Coating Technology: Evaporation Vs Sputtering Satisloh Italy S.r.l. Coating Technology: Evaporation Vs Sputtering Gianni Monaco, PhD R&D project manager, Satisloh Italy 04.04.2016 V1 The aim of this document is to provide basic technical information

More information

Sputtering (cont.) and Other Plasma Processes

Sputtering (cont.) and Other Plasma Processes Sputtering (cont.) and Other Plasma Processes Sputtering Summary Create an ionic plasma by applying a high voltage to a glow tube. Ions bombard the target material at the cathode. Target atoms are ejected

More information

Lecture 12. Physical Vapor Deposition: Evaporation and Sputtering Reading: Chapter 12. ECE 6450 - Dr. Alan Doolittle

Lecture 12. Physical Vapor Deposition: Evaporation and Sputtering Reading: Chapter 12. ECE 6450 - Dr. Alan Doolittle Lecture 12 Physical Vapor Deposition: Evaporation and Sputtering Reading: Chapter 12 Evaporation and Sputtering (Metalization) Evaporation For all devices, there is a need to go from semiconductor to metal.

More information

Vacuum Evaporation Recap

Vacuum Evaporation Recap Sputtering Vacuum Evaporation Recap Use high temperatures at high vacuum to evaporate (eject) atoms or molecules off a material surface. Use ballistic flow to transport them to a substrate and deposit.

More information

Physical Vapor Deposition (PVD): SPUTTER DEPOSITION

Physical Vapor Deposition (PVD): SPUTTER DEPOSITION We saw CVD PECVD Physical Vapor Deposition (PVD): SPUTTER DEPOSITION Gas phase reactants: P g 1 mtorr to 1 atm. Good step coverage, T > > RT Plasma enhanced surface diffusion without need for elevated

More information

Ion Beam Sputtering: Practical Applications to Electron Microscopy

Ion Beam Sputtering: Practical Applications to Electron Microscopy Ion Beam Sputtering: Practical Applications to Electron Microscopy Applications Laboratory Report Introduction Electron microscope specimens, both scanning (SEM) and transmission (TEM), often require a

More information

Exercise 3 Physical Vapour Deposition

Exercise 3 Physical Vapour Deposition Exercise 3 Physical Vapour Deposition Physical Vapour Deposition (PVD) technology consist of the techniques of arc deposition, ion plating, resistance evaporation, electron beam evaporation, sputtering

More information

Chapter 11 PVD and Metallization

Chapter 11 PVD and Metallization Chapter 11 PVD and Metallization 2006/5/23 1 Metallization Processes that deposit metal thin film on wafer surface. 2006/5/23 2 1 Metallization Definition Applications PVD vs. CVD Methods Vacuum Metals

More information

Module 7 Wet and Dry Etching. Class Notes

Module 7 Wet and Dry Etching. Class Notes Module 7 Wet and Dry Etching Class Notes 1. Introduction Etching techniques are commonly used in the fabrication processes of semiconductor devices to remove selected layers for the purposes of pattern

More information

A Remote Plasma Sputter Process for High Rate Web Coating of Low Temperature Plastic Film with High Quality Thin Film Metals and Insulators

A Remote Plasma Sputter Process for High Rate Web Coating of Low Temperature Plastic Film with High Quality Thin Film Metals and Insulators A Remote Plasma Sputter Process for High Rate Web Coating of Low Temperature Plastic Film with High Quality Thin Film Metals and Insulators Dr Peter Hockley and Professor Mike Thwaites, Plasma Quest Limited

More information

Deposition of Thin Metal Films " (on Polymer Substrates)!

Deposition of Thin Metal Films  (on Polymer Substrates)! Deposition of Thin Metal Films " (on Polymer Substrates)! Shefford P. Baker! Cornell University! Department of Materials Science and Engineering! Ithaca, New York, 14853! MS&E 5420 Flexible Electronics,

More information

Stress Control in AlN and Mo Films for Electro-Acoustic Devices

Stress Control in AlN and Mo Films for Electro-Acoustic Devices Stress Control in AlN and Mo Films for Electro-Acoustic Devices Valery Felmetsger and Pavel Laptev Tegal Corporation IFCS 2008 Paper ID 3077 Slide 1 1 Introduction Piezoelectric AlN films with strong (002)

More information

Lecture 22: Integrated circuit fabrication

Lecture 22: Integrated circuit fabrication Lecture 22: Integrated circuit fabrication Contents 1 Introduction 1 2 Layering 4 3 Patterning 7 4 Doping 8 4.1 Thermal diffusion......................... 10 4.2 Ion implantation.........................

More information

Dry Etching and Reactive Ion Etching (RIE)

Dry Etching and Reactive Ion Etching (RIE) Dry Etching and Reactive Ion Etching (RIE) MEMS 5611 Feb 19 th 2013 Shengkui Gao Contents refer slides from UC Berkeley, Georgia Tech., KU, etc. (see reference) 1 Contents Etching and its terminologies

More information

Electron Beam and Sputter Deposition Choosing Process Parameters

Electron Beam and Sputter Deposition Choosing Process Parameters Electron Beam and Sputter Deposition Choosing Process Parameters General Introduction The choice of process parameters for any process is determined not only by the physics and/or chemistry of the process,

More information

For Touch Panel and LCD Sputtering/PECVD/ Wet Processing

For Touch Panel and LCD Sputtering/PECVD/ Wet Processing production Systems For Touch Panel and LCD Sputtering/PECVD/ Wet Processing Pilot and Production Systems Process Solutions with over 20 Years of Know-how Process Technology at a Glance for Touch Panel,

More information

Enhanced step coverage by oblique angle physical vapor deposition

Enhanced step coverage by oblique angle physical vapor deposition JOURNAL OF APPLIED PHYSICS 97, 150 005 Enhanced step coverage by oblique angle physical vapor deposition Tansel Karabacak a and Toh-Ming Lu Center for Integrated Electronics and Department of Physics,

More information

MMIC Design and Technology. Fabrication of MMIC

MMIC Design and Technology. Fabrication of MMIC MMIC Design and Technology Fabrication of MMIC Instructor Dr. Ali Medi Substrate Process Choice Mobility & Peak Velocity: Frequency Response Band-Gap Energy: Breakdown Voltage (Power-Handling) Resistivity:

More information

Sputter deposition of metallic thin film and direct patterning

Sputter deposition of metallic thin film and direct patterning Sputter deposition of metallic thin film and direct patterning L. Ji a), b), Q. Ji, Y. Chen a), X. Jiang a), and K-N. Leung a) Lawrence Berkeley National Laboratory, University of California, Berkeley,

More information

II. Thin Film Deposition

II. Thin Film Deposition II. Thin Film Deposition Physical Vapor Deposition (PVD) - Film is formed by atoms directly transported from source to the substrate through gas phase Evaporation Thermal evaporation E-beam evaporation

More information

THIN FILM MATERIALS TECHNOLOGY

THIN FILM MATERIALS TECHNOLOGY THIN FILM MATERIALS TECHNOLOGY Sputtering of Compound Materials by Kiyotaka Wasa Yokohama City University Yokohama, Japan Makoto Kitabatake Matsushita Electric Industrial Co., Ltd. Kyoto, Japan Hideaki

More information

Thin Film Deposition Processes

Thin Film Deposition Processes International Journal of Modern Physics and Applications Vol. 1, No. 4, 2015, pp. 193-199 http://www.aiscience.org/journal/ijmpa Thin Film Deposition Processes 1, 2, * Dler Adil Jameel 1 School of Physics

More information

Damage-free, All-dry Via Etch Resist and Residue Removal Processes

Damage-free, All-dry Via Etch Resist and Residue Removal Processes Damage-free, All-dry Via Etch Resist and Residue Removal Processes Nirmal Chaudhary Siemens Components East Fishkill, 1580 Route 52, Bldg. 630-1, Hopewell Junction, NY 12533 Tel: (914)892-9053, Fax: (914)892-9068

More information

High Rate Oxide Deposition onto Web by Reactive Sputtering from Rotatable Magnetrons

High Rate Oxide Deposition onto Web by Reactive Sputtering from Rotatable Magnetrons High Rate Oxide Deposition onto Web by Reactive Sputtering from Rotatable Magnetrons D.Monaghan, V. Bellido-Gonzalez, M. Audronis. B. Daniel Gencoa, Physics Rd, Liverpool, L24 9HP, UK. www.gencoa.com,

More information

Neuere Entwicklungen zur Herstellung optischer Schichten durch reaktive. Wolfgang Hentsch, Dr. Reinhard Fendler. FHR Anlagenbau GmbH

Neuere Entwicklungen zur Herstellung optischer Schichten durch reaktive. Wolfgang Hentsch, Dr. Reinhard Fendler. FHR Anlagenbau GmbH Neuere Entwicklungen zur Herstellung optischer Schichten durch reaktive Sputtertechnologien Wolfgang Hentsch, Dr. Reinhard Fendler FHR Anlagenbau GmbH Germany Contents: 1. FHR Anlagenbau GmbH in Brief

More information

III. Wet and Dry Etching

III. Wet and Dry Etching III. Wet and Dry Etching Method Environment and Equipment Advantage Disadvantage Directionality Wet Chemical Solutions Atmosphere, Bath 1) Low cost, easy to implement 2) High etching rate 3) Good selectivity

More information

Deposition Overview for Microsytems

Deposition Overview for Microsytems Deposition Overview for Microsytems Deposition PK Activity Terminology Participant Guide www.scme-nm.org Deposition Overview for Microsystems Primary Knowledge Participant Guide Description and Estimated

More information

Physical Vapor Deposition

Physical Vapor Deposition Physical Vapor Deposition May 2008 2 Contents 8.1 Atomistic Deposition............................... 4 8.2 Evaporation.................................... 5 8.2.1 Source of heat..............................

More information

Nanoscale Fabrication Methods

Nanoscale Fabrication Methods Nanoscale Fabrication Methods Top down Bottom up take away material to form nanoscale objects assemble nanoscale objects out of even smaller units (e.g., atoms and molecules) Semiconductor chips Micromachines

More information

High performance components from Gencoa for Research and Development Simply better tools to build your devices

High performance components from Gencoa for Research and Development Simply better tools to build your devices High performance components from Gencoa for Research and Development Simply better tools to build your devices With the range of Gencoa advanced thin film development tools at your disposal your research

More information

SPUTTERING OPERATIONS TABLE 12 KEY ADVANTAGES OF SPUTTERING Radio Frequency (RF) and Direct Current (DC) Diode Sputtering...

SPUTTERING OPERATIONS TABLE 12 KEY ADVANTAGES OF SPUTTERING Radio Frequency (RF) and Direct Current (DC) Diode Sputtering... CHAPTER ONE: INTRODUCTION... 1 STUDY GOAL AND OBJECTIVES... 1 REASONS FOR DOING THE STUDY... 1 INTENDED AUDIENCE... 1 SCOPE OF REPORT... 2 METHODOLOGY... 2 INFORMATION SOURCES... 2 ANALYST S CREDENTIALS...

More information

Reactive Sputtering Using a Dual-Anode Magnetron System

Reactive Sputtering Using a Dual-Anode Magnetron System Reactive Sputtering Using a Dual-Anode Magnetron System A. Belkind and Z. Zhao, Stevens Institute of Technology, Hoboken, NJ; and D. Carter, G. McDonough, G. Roche, and R. Scholl, Advanced Energy Industries,

More information

Conductivity of silicon can be changed several orders of magnitude by introducing impurity atoms in silicon crystal lattice.

Conductivity of silicon can be changed several orders of magnitude by introducing impurity atoms in silicon crystal lattice. CMOS Processing Technology Silicon: a semiconductor with resistance between that of conductor and an insulator. Conductivity of silicon can be changed several orders of magnitude by introducing impurity

More information

2. Deposition process

2. Deposition process Properties of optical thin films produced by reactive low voltage ion plating (RLVIP) Antje Hallbauer Thin Film Technology Institute of Ion Physics & Applied Physics University of Innsbruck Investigations

More information

MOS (metal-oxidesemiconductor) 李 2003/12/19

MOS (metal-oxidesemiconductor) 李 2003/12/19 MOS (metal-oxidesemiconductor) 李 2003/12/19 Outline Structure Ideal MOS The surface depletion region Ideal MOS curves The SiO 2 -Si MOS diode (real case) Structure A basic MOS consisting of three layers.

More information

Chemical Vapor Deposition

Chemical Vapor Deposition Chemical Vapor Deposition Physical Vapor Deposition (PVD) So far we have seen deposition techniques that physically transport material from a condensed phase source to a substrate. The material to be deposited

More information

Application Note Argon ion milling of FIB lift-out samples

Application Note Argon ion milling of FIB lift-out samples Application Note Argon ion milling of FIB lift-out samples Introduction The high-resolution TEM and combined analytical methods became more and more important in the recent investigations of material science.

More information

Planar Magnetron Sputtering Sources

Planar Magnetron Sputtering Sources Planar Magnetron puttering ources INTRODUCTION TABLE OF CONTENT PAGE Introduction........................ 2 MAK 1.3...........................3 MAK 2............................4 MAK 3............................5

More information

Electrical Discharge Machining

Electrical Discharge Machining Training Objectives After watching the video and reviewing this printed material, the viewer will gain knowledge and understanding of electrical discharge machining, or EDM, principles and capabilities.

More information

Plasma diagnostics focused on new magnetron sputtering devices for thin film deposition

Plasma diagnostics focused on new magnetron sputtering devices for thin film deposition Université Paris-Sud XI Laboratoire de Physique des Gaz et des Plasmas Orsay, France & Masaryk University in Brno Department of Physical Electronics Brno, Czech Republic Plasma diagnostics focused on new

More information

Balzers Sputter Coater SCD 050

Balzers Sputter Coater SCD 050 Balzers Sputter Coater SCD 050 The SCD 050 is a bench top, sputter deposition system designed for thin films on substrates up to 6 inches. Morphology and thickness is user controlled using power, pressure,

More information

Study of tungsten oxidation in O 2 /H 2 /N 2 downstream plasma

Study of tungsten oxidation in O 2 /H 2 /N 2 downstream plasma Study of tungsten oxidation in O 2 /H 2 /N 2 downstream plasma Songlin Xu a and Li Diao Mattson Technology, Inc., Fremont, California 94538 Received 17 September 2007; accepted 21 February 2008; published

More information

OPTIMIZING OF THERMAL EVAPORATION PROCESS COMPARED TO MAGNETRON SPUTTERING FOR FABRICATION OF TITANIA QUANTUM DOTS

OPTIMIZING OF THERMAL EVAPORATION PROCESS COMPARED TO MAGNETRON SPUTTERING FOR FABRICATION OF TITANIA QUANTUM DOTS OPTIMIZING OF THERMAL EVAPORATION PROCESS COMPARED TO MAGNETRON SPUTTERING FOR FABRICATION OF TITANIA QUANTUM DOTS Vojtěch SVATOŠ 1, Jana DRBOHLAVOVÁ 1, Marian MÁRIK 1, Jan PEKÁREK 1, Jana CHOMOCKÁ 1,

More information

How compact discs are made

How compact discs are made How compact discs are made Explained by a layman for the laymen By Kevin McCormick For Science project at the Mountain View Los Altos High School Abstract As the major media for music distribution for

More information

Types of Epitaxy. Homoepitaxy. Heteroepitaxy

Types of Epitaxy. Homoepitaxy. Heteroepitaxy Epitaxy Epitaxial Growth Epitaxy means the growth of a single crystal film on top of a crystalline substrate. For most thin film applications (hard and soft coatings, optical coatings, protective coatings)

More information

Lecture 11. Etching Techniques Reading: Chapter 11. ECE 6450 - Dr. Alan Doolittle

Lecture 11. Etching Techniques Reading: Chapter 11. ECE 6450 - Dr. Alan Doolittle Lecture 11 Etching Techniques Reading: Chapter 11 Etching Techniques Characterized by: 1.) Etch rate (A/minute) 2.) Selectivity: S=etch rate material 1 / etch rate material 2 is said to have a selectivity

More information

Cathode Ray Tube. Introduction. Functional principle

Cathode Ray Tube. Introduction. Functional principle Introduction The Cathode Ray Tube or Braun s Tube was invented by the German physicist Karl Ferdinand Braun in 897 and is today used in computer monitors, TV sets and oscilloscope tubes. The path of the

More information

MODEL 1080. PicoMill. TEM specimen preparation system. Achieve ultimate specimen quality free from amorphous and implanted layers

MODEL 1080. PicoMill. TEM specimen preparation system. Achieve ultimate specimen quality free from amorphous and implanted layers MODEL 1080 PicoMill TEM specimen preparation system Combines an ultra-low energy, inert gas ion source, and a scanning electron column with multiple detectors to yield optimal TEM specimens. POST-FIB PROCESSING

More information

Methods of plasma generation and plasma sources

Methods of plasma generation and plasma sources Methods of plasma generation and plasma sources PlasTEP trainings course and Summer school 2011 Warsaw/Szczecin Indrek Jõgi, University of Tartu Partfinanced by the European Union (European Regional Development

More information

Physical Vapor Deposition of Coatings On Glass D. J. O Shaughnessy

Physical Vapor Deposition of Coatings On Glass D. J. O Shaughnessy Physical Vapor Deposition of Coatings On Glass D. J. O Shaughnessy Acknowledgements: Tom Waynar, Andrew Wagner, Ed Kapura, (PPG Industries, Inc.) PPG Confidential and Proprietary Information Outline Solar

More information

LAB 8: Electron Charge-to-Mass Ratio

LAB 8: Electron Charge-to-Mass Ratio Name Date Partner(s) OBJECTIVES LAB 8: Electron Charge-to-Mass Ratio To understand how electric and magnetic fields impact an electron beam To experimentally determine the electron charge-to-mass ratio.

More information

Implementation Of High-k/Metal Gates In High-Volume Manufacturing

Implementation Of High-k/Metal Gates In High-Volume Manufacturing White Paper Implementation Of High-k/Metal Gates In High-Volume Manufacturing INTRODUCTION There have been significant breakthroughs in IC technology in the past decade. The upper interconnect layers of

More information

Chapter 7-1. Definition of ALD

Chapter 7-1. Definition of ALD Chapter 7-1 Atomic Layer Deposition (ALD) Definition of ALD Brief history of ALD ALD process and equipments ALD applications 1 Definition of ALD ALD is a method of applying thin films to various substrates

More information

SALES SPECIFICATION. SC7640 Auto/Manual High Resolution Sputter Coater

SALES SPECIFICATION. SC7640 Auto/Manual High Resolution Sputter Coater SALES SPECIFICATION SC7640 Auto/Manual High Resolution Sputter Coater Document Number SS-SC7640 Issue 1 (01/02) Disclaimer The components and packages described in this document are mutually compatible

More information

DEPOSITION OF THIN ALUMINUM FILM ON ACRYLIC SUBSTRATE USING PHYSICAL VAPOR DEPOSITION TECHNIQUE (PVD)

DEPOSITION OF THIN ALUMINUM FILM ON ACRYLIC SUBSTRATE USING PHYSICAL VAPOR DEPOSITION TECHNIQUE (PVD) DEPOSITION OF THIN ALUMINUM FILM ON ACRYLIC SUBSTRATE USING PHYSICAL VAPOR DEPOSITION TECHNIQUE (PVD) Marwa A. Elajel *, Sana M. Sbeta ** Plasma Research Lab., Tripoli Libya E-mail: * marwa_ali_77@yahoo.com,

More information

TOF FUNDAMENTALS TUTORIAL

TOF FUNDAMENTALS TUTORIAL TOF FUNDAMENTALS TUTORIAL Presented By: JORDAN TOF PRODUCTS, INC. 990 Golden Gate Terrace Grass Valley, CA 95945 530-272-4580 / 530-272-2955 [fax] www.rmjordan.com [web] info@rmjordan.com [e-mail] This

More information

Vacuum Pumping of Large Vessels and Modelling of Extended UHV Systems

Vacuum Pumping of Large Vessels and Modelling of Extended UHV Systems Vacuum Pumping of Large Vessels and Modelling of Extended UHV Systems Georgy L. Saksaganski D.V. Efremov Institute, St Petersburg, Russia gruss@niiefa.spb.su An overview of the methods for reducing of

More information

High performance. Architectural glazings utilise thin. low-emissivity coating. Coating technology

High performance. Architectural glazings utilise thin. low-emissivity coating. Coating technology Coating technology High performance low-emissivity coating Growing concern with energy efficiency has sparked the development of double low-emissivity coatings in architectural glass. BOC Coating has designed

More information

Solar Photovoltaic (PV) Cells

Solar Photovoltaic (PV) Cells Solar Photovoltaic (PV) Cells A supplement topic to: Mi ti l S Micro-optical Sensors - A MEMS for electric power generation Science of Silicon PV Cells Scientific base for solar PV electric power generation

More information

By Randy Heckman, Gregory Roche, James R. Usher of Advanced Energy Industries, Inc.

By Randy Heckman, Gregory Roche, James R. Usher of Advanced Energy Industries, Inc. WHITEPAPER By Randy Heckman, Gregory Roche, James R. Usher of Advanced Energy Industries, Inc. THE EVOLUTION OF RF POWER DELIVERY IN Radio frequency (RF) technology has been around since the beginnings

More information

Module 3 : Fabrication Process and Layout Design Rules Lecture 12 : CMOS Fabrication Technologies

Module 3 : Fabrication Process and Layout Design Rules Lecture 12 : CMOS Fabrication Technologies Module 3 : Fabrication Process and Layout Design Rules Lecture 12 : CMOS Fabrication Technologies Objectives In this course you will learn the following Introduction Twin Well/Tub Technology Silicon on

More information

Lecture 9. Surface Treatment, Coating, Cleaning

Lecture 9. Surface Treatment, Coating, Cleaning 1 Lecture 9. Surface Treatment, Coating, Cleaning These processes are sometimes referred to as post-processing. They play a very important role in the appearance, function and life of the product. Broadly,

More information

PVD/PACVD Technology and Equipments of Hauzer Techno Coating

PVD/PACVD Technology and Equipments of Hauzer Techno Coating PVD/PACVD Technology and Equipments of Hauzer Techno Coating AYAME Yoshihiko : Thin Film Equipment & Coating Project Department, Industrial Machinery & Environmental Equipment Operations As a company that

More information

Nanotechnology Center

Nanotechnology Center PLASMA RIE Birck ETCHING Nanotechnology Center FUNDAMENTALS AND APPLICATIONS 1 Outline 1. Introductory Concepts 2. Plasma Fundamentals 3. The Physics and Chemistry of Plasmas 4. Anisotropy Mechanisms 5.

More information

Introduction to VLSI Fabrication Technologies. Emanuele Baravelli

Introduction to VLSI Fabrication Technologies. Emanuele Baravelli Introduction to VLSI Fabrication Technologies Emanuele Baravelli 27/09/2005 Organization Materials Used in VLSI Fabrication VLSI Fabrication Technologies Overview of Fabrication Methods Device simulation

More information

Making of a Chip Illustrations

Making of a Chip Illustrations Making of a Chip Illustrations 22nm 3D/Trigate Transistors Version January 2012 1 The illustrations on the following foils are low resolution images that visually support the explanations of the individual

More information

Electroplating with Photoresist Masks

Electroplating with Photoresist Masks Electroplating with Photoresist Masks Revised: 2014-01-17 Source: www.microchemicals.com/downloads/application_notes.html Electroplating - Basic Requirements on the Photoresist Electroplating with photoresist

More information

Deposition of Silicon Oxide, Silicon Nitride and Silicon Carbide Thin Films by New Plasma Enhanced Chemical Vapor Deposition Source Technology

Deposition of Silicon Oxide, Silicon Nitride and Silicon Carbide Thin Films by New Plasma Enhanced Chemical Vapor Deposition Source Technology General Plasma, Inc. 546 East 25th Street Tucson, Arizona 85713 tel. 520-882-5100 fax. 520-882-5165 and Silicon Carbide Thin Films by New Plasma Enhanced Chemical Vapor Deposition Source Technology M.

More information

Coating Thickness and Composition Analysis by Micro-EDXRF

Coating Thickness and Composition Analysis by Micro-EDXRF Application Note: XRF Coating Thickness and Composition Analysis by Micro-EDXRF www.edax.com Coating Thickness and Composition Analysis by Micro-EDXRF Introduction: The use of coatings in the modern manufacturing

More information

Chapter 1 Introduction to The Semiconductor Industry 2005 VLSI TECH. 1

Chapter 1 Introduction to The Semiconductor Industry 2005 VLSI TECH. 1 Chapter 1 Introduction to The Semiconductor Industry 1 The Semiconductor Industry INFRASTRUCTURE Industry Standards (SIA, SEMI, NIST, etc.) Production Tools Utilities Materials & Chemicals Metrology Tools

More information

J H Liao 1, Jianshe Tang 2,b, Ching Hwa Weng 2, Wei Lu 2, Han Wen Chen 2, John TC Lee 2

J H Liao 1, Jianshe Tang 2,b, Ching Hwa Weng 2, Wei Lu 2, Han Wen Chen 2, John TC Lee 2 Solid State Phenomena Vol. 134 (2008) pp 359-362 Online available since 2007/Nov/20 at www.scientific.net (2008) Trans Tech Publications, Switzerland doi:10.4028/www.scientific.net/ssp.134.359 Metal Hard

More information

Silicon-On-Glass MEMS. Design. Handbook

Silicon-On-Glass MEMS. Design. Handbook Silicon-On-Glass MEMS Design Handbook A Process Module for a Multi-User Service Program A Michigan Nanofabrication Facility process at the University of Michigan March 2007 TABLE OF CONTENTS Chapter 1...

More information

Nanometer-scale imaging and metrology, nano-fabrication with the Orion Helium Ion Microscope

Nanometer-scale imaging and metrology, nano-fabrication with the Orion Helium Ion Microscope andras@nist.gov Nanometer-scale imaging and metrology, nano-fabrication with the Orion Helium Ion Microscope Bin Ming, András E. Vladár and Michael T. Postek National Institute of Standards and Technology

More information

Transmission Electron Microscopy 7. Pumps and Holders

Transmission Electron Microscopy 7. Pumps and Holders Transmission Electron Microscopy 7. Pumps and Holders EMA 6518 Spring 2007 01/29/07 Outline Vacuums Roughing Pumps High/Ultra-High Vacuum Pumps Diffusion Pumps Turbomolecular Pumps Ion Pumps Cryogenic

More information

Plasma Electronic is Partner of. Tailor-Made Surfaces by Plasma Technology

Plasma Electronic is Partner of. Tailor-Made Surfaces by Plasma Technology Precision Fair 2013 Stand 171 Plasma Electronic is Partner of Tailor-Made Surfaces by Plasma Technology Dr. J. Geng, Plasma Electronic GmbH Modern Surface Technology in 1900 Overview A short introduction

More information

Physical Vapor Deposition (PVD) Methods for Synthesis of Thin Films: A Comparative Study

Physical Vapor Deposition (PVD) Methods for Synthesis of Thin Films: A Comparative Study Available online atwww.scholarsresearchlibrary.com Archives of Applied Science Research, 2016, 8 (5):1-8 (http://scholarsresearchlibrary.com/archive.html) ISSN 0975-508X CODEN (USA) AASRC9 Physical Vapor

More information

histaris Inline Sputtering Systems

histaris Inline Sputtering Systems vistaris histaris Inline Sputtering Systems Inline Sputtering Systems with Vertical Substrate Transport Modular System for Different Applications VISTARIS Sputtering Systems The system with the brand name

More information

Hello and Welcome to this presentation on LED Basics. In this presentation we will look at a few topics in semiconductor lighting such as light

Hello and Welcome to this presentation on LED Basics. In this presentation we will look at a few topics in semiconductor lighting such as light Hello and Welcome to this presentation on LED Basics. In this presentation we will look at a few topics in semiconductor lighting such as light generation from a semiconductor material, LED chip technology,

More information

HAVING VARIOUS CONFIGURATIONS

HAVING VARIOUS CONFIGURATIONS NASA TECHNICAL NOTE NASA TN D-3707 ~0 h ~F n 2 4 r/l 4 z DEPOSITION OF THIN FILMS BY ION PLATING ON SURFACES HAVING VARIOUS CONFIGURATIONS by Tulivuldis Spulvins, John S. Przy byszewski, und Donuld H.

More information

Secondary Ion Mass Spectrometry

Secondary Ion Mass Spectrometry Secondary Ion Mass Spectrometry A PRACTICAL HANDBOOK FOR DEPTH PROFILING AND BULK IMPURITY ANALYSIS R. G. Wilson Hughes Research Laboratories Malibu, California F. A. Stevie AT&T Bell Laboratories Allentown,

More information

VI. Pattern Transfer: Additive techniques-physical Vapor Deposition and Chemical Vapor Deposition

VI. Pattern Transfer: Additive techniques-physical Vapor Deposition and Chemical Vapor Deposition VI. Pattern Transfer: Additive techniques-physical Vapor Deposition and Chemical Vapor Deposition Content Physical vapor deposition (PVD) Chemical vapor deposition (CVD) Thermal evaporation Reaction mechanisms

More information

Sputtering. Ion-Solid Interactions

Sputtering. Ion-Solid Interactions ssistant Professor Department of Microelectronic Engineering Rochester Institute of Technology 82 Lomb Memorial Drive Rochester, NY 14623-5604 Tel (716) 475-2923 Fax (716) 475-5041 PDRDV@RIT.EDU Page 1

More information

Advanced VLSI Design CMOS Processing Technology

Advanced VLSI Design CMOS Processing Technology Isolation of transistors, i.e., their source and drains, from other transistors is needed to reduce electrical interactions between them. For technologies

More information

SUPERCHROME PVD Coating A green alternative for chromium-galvanized plastic components. automotive interiors EXPO page 1

SUPERCHROME PVD Coating A green alternative for chromium-galvanized plastic components. automotive interiors EXPO page 1 SUPERCHROME PVD Coating A green alternative for chromium-galvanized plastic components automotive interiors EXPO 2015 automotive interiors EXPO 2015 - page 1 Vergason Technology, Inc. Design, assembly,

More information

Dry Etch Process Application Note

Dry Etch Process Application Note G-106-0405 pplication ulletin Dry Etch Process pplication Note nthony Ricci Etch Process Overview The etching process removes selected areas from wafer substrates. The two types of etching processes used

More information

Chapter 2 MOS Fabrication Technology

Chapter 2 MOS Fabrication Technology Chapter 2 MOS Fabrication Technology Abstract This chapter is concerned with the fabrication of metal oxide semiconductor (MOS) technology. Various processes such as wafer fabrication, oxidation, mask

More information

Lezioni di Tecnologie e Materiali per l Elettronica

Lezioni di Tecnologie e Materiali per l Elettronica Lezioni di Tecnologie e Materiali per l Elettronica Danilo Manstretta danilo.manstretta@unipv.it microlab.unipv.it Outline Passive components Resistors Capacitors Inductors Printed circuits technologies

More information

MODEL 1040. NanoMill TEM Specimen Preparation System. Ultra-low-energy, inert-gas ion source. Concentrated ion beam with scanning capabilities

MODEL 1040. NanoMill TEM Specimen Preparation System. Ultra-low-energy, inert-gas ion source. Concentrated ion beam with scanning capabilities MODEL 1040 NanoMill TEM Specimen Preparation System The NanoMill system uses an ultra-low energy, concentrated ion beam to produce the highest quality specimens for transmission electron microscopy. Ultra-low-energy,

More information

AN900 APPLICATION NOTE

AN900 APPLICATION NOTE AN900 APPLICATION NOTE INTRODUCTION TO SEMICONDUCTOR TECHNOLOGY INTRODUCTION by Microcontroller Division Applications An integrated circuit is a small but sophisticated device implementing several electronic

More information

Products. Emission spectrometer. NIR sensor. Ultrasonic analysis

Products. Emission spectrometer. NIR sensor. Ultrasonic analysis XXII. Erfahrungsaustausch Mühlleiten 2015 Plasmaanalyse und Prozessoptimierung mittels spektroskopischem Plasmamonitoring in industriellen Anwendungen Swen Marke,, Lichtenau Thomas Schütte, Plasus GmbH,

More information

FLASHSOLDERING - A NEW PROCESS FOR REFLOW SOLDERING INSULATED MAGNET WIRE TO ELECTRONIC CONTACTS

FLASHSOLDERING - A NEW PROCESS FOR REFLOW SOLDERING INSULATED MAGNET WIRE TO ELECTRONIC CONTACTS FLASHSOLDERING - A NEW PROCESS FOR REFLOW SOLDERING INSULATED MAGNET WIRE TO ELECTRONIC CONTACTS David W. Steinmeier microjoining Solutions & Mike Becker Teka Interconnection Systems Abstract: Flashing

More information

Observation of Long Transients in the Electrical Characterization of Thin Film BST Capacitors

Observation of Long Transients in the Electrical Characterization of Thin Film BST Capacitors Integrated Ferroelectrics, 53: 503 511, 2003 Copyright C Taylor & Francis Inc. ISSN: 1058-4587 print/ 1607-8489 online DOI: 10.1080/10584580390258651 Observation of Long Transients in the Electrical Characterization

More information

STS Advanced Silicon Etch DRIE HRM System Trends

STS Advanced Silicon Etch DRIE HRM System Trends Date: Oct. 2007 STS Advanced Silicon Etch DRIE HRM System Trends A- INTRODUCTION The purpose of this document is to help for process development of the ASE DRIE. This document provides general trends but

More information

Section 10.0: Electrode Erosion

Section 10.0: Electrode Erosion Section 10.0: Electrode Erosion The primary reason for failure of plasma torches usually involves the inability of the electrodes to operate as they were designed, or operation under adverse conditions.

More information

FUNDAMENTALS OF CATHODIC PROTECTION

FUNDAMENTALS OF CATHODIC PROTECTION FUNDAMENTALS OF CATHODIC PROTECTION Corrosion is the deterioration of a metal because of a reaction with its environment. For the purpose of this report, corrosion is the result of an electrochemical reaction

More information

Plasma Cleaner: Physics of Plasma

Plasma Cleaner: Physics of Plasma Plasma Cleaner: Physics of Plasma Nature of Plasma A plasma is a partially ionized gas consisting of electrons, ions and neutral atoms or molecules The plasma electrons are at a much higher temperatures

More information

and LUMINOUS CHEMICAL VAPOR DEPOSITION INTERFACE ENGINEERING HirotsuguYasuda University of Missouri-Columbia Columbia, Missouri, U.S.A.

and LUMINOUS CHEMICAL VAPOR DEPOSITION INTERFACE ENGINEERING HirotsuguYasuda University of Missouri-Columbia Columbia, Missouri, U.S.A. LUMINOUS CHEMICAL VAPOR DEPOSITION and INTERFACE ENGINEERING HirotsuguYasuda University of Missouri-Columbia Columbia, Missouri, U.S.A. MARCEL MARCEL DEKKER. NEW YORK DEKKER Contents Preface iii Part I.

More information

. Tutorial #3 Building Complex Targets

. Tutorial #3 Building Complex Targets . Tutorial #3 Building Complex Targets. Mixed Gas/Solid Targets Gas Ionization Chamber Previous Tutorials have covered how to setup TRIM, determine which ion and energy to specify for a semiconductor n-well

More information

Name Date Class ATOMIC STRUCTURE

Name Date Class ATOMIC STRUCTURE Name Date Class 4 ATOMIC STRUCTURE SECTION 4.1 DEFINING THE ATOM (pages 101 103) This section describes early atomic theories of matter and provides ways to understand the tiny size of individual atoms.

More information