Sect 8.3 Triangles and Hexagons

Save this PDF as:

Size: px
Start display at page:

Transcription

1 13 Objective 1: Sect 8.3 Tringles nd Hexgons Understnding nd Clssifying Different Types of Polygons. A Polygon is closed two-dimensionl geometric figure consisting of t lest three line segments for its sides. If ll the sides re the sme length (the ngles will lso hve the sme mesure), then the figure is clled Regulr Polygon. The points where the two sides intersect re clled vertices. Tringle Qudrilterl Pentgon Hexgon Octgon 3 sides 4 sides 5 sides 6 sides 8 sides Regulr Polygons Tringle Qudrilterl Pentgon Hexgon Octgon Objective : Understnding nd Clssifying Different Types of Tringles. We cn clssify tringles by their sides: Equilterl Tringle Isosceles Tringle Sclene Tringle All sides re equl. Two sides re equl. No sides re equl. All ngles mesure 60. The two bse ngles re equl. No ngles re equl.

2 An equilterl tringle is lso clled n equingulr tringle. The third ngle in n isosceles tringle formed by the two equl sides is clled the vertex ngle. We cn lso clssify tringles by their ngles: 133 Acute Tringle Right Tringle Obtuse Tringle All ngles re cute. Hs on right ngle. Hs one obtuse ngle. In right tringle, the two sides tht intersect to form the right ngle re clled the legs of the right tringle while the third side (the longest side) of right tringle is clled the hypotenuse of the right tringle. Recll tht the sum of the mesures of the ngles of tringle is equl to 180. Determine wht type of tringle is picture below: Ex. 1 B Ex. X R 144 A C T Since the mesures of the Since TXR nd 144 re supplengles of tringle totl mentry ngles, then 180, then m TXR = = m B + 71 = 180 But, m TXR + m T = m B = 180 = 90. So, R = = = 109 Since the ngles re different, m B = 71. then none of the sides re equl. So, ABC is n Isosceles Thus, XRT is sclene nd nd n Acute Tringle. right tringle. 54

3 134 Objective 3: Right Tringles nd the Pythgoren Theorem To find the squre root of number on scientific clcultor, we will use the x key. Simplify the following (round to the nerest thousndth): Ex Ex. 3b 144 Ex. 3c 0 Ex. 3d Ex. 3e 15 Ex. 3f 3 7 ) 49 = 7. b) 144 = 1. c) 0 = 0. d) 65 = e) Use your clcultor: 15 = f) Use your clcultor. First, find 7 nd then multiply by 3: 3 7 = 3( ) = In right tringle, there is specil reltionship between the length of the legs ( nd b) nd the hypotenuse (c). This is known s the Pythgoren Theorem: Pythgoren Theorem In right tringle, the squre of the hypotenuse (c ) is equl to the sum of the squres of the legs ( + b ) c = + b Some lternte forms of the Pythgoren Theorem re: c b c = + b = c b b = c Keep in mind tht the hypotenuse is the longest side of the right tringle.

4 135 Find the length of the missing sides: Ex m Ex m 6.00 ft ft In this problem, we hve In this problem, we hve one leg the two legs of the tringle nd the hypotenuse nd we re nd we re looking for the looking for the other leg: hypotenuse: c = + b c = + b (15) = (6) + b c = (7.8) + (10.) 5 = 36 + b (solve for b ) c = = 36 c = = b To find c, tke the squre To find b, tke the squre root root* of : of 189: c = ± = ± b = ± 189 = ± c 1.8 m b 13.7 ft * - The eqution c = ctully hs two solutions 1.8 nd 1.8, but the lengths of tringles re positive so we ignore the negtive solution. Find the length of the digonl of the following rectngle: Ex. 6 A rectngle tht is 1 feet by 5 feet. First, drw picture. Since the ngles 5.0 feet of rectngle re right ngles, then the two sides re the legs of right 1.0 feet tringle while the digonl is the hypotenuse of the right tringle. Using the Pythgoren Theorem, we get: c = + b c = (1) + (5) c = = 169 c = ± 169 = ± 13. So, the digonl is 13 feet.

5 Solve the following: Ex. 7 Find the height of AXT if ech side hs length of 17.0 in. The ltitude (height) of the X tringle forms right ngle with the bse of the tringle nd 17.0 in 17.0 in h A 136 divides the bse into two equl prts. Thus, the distnce from point A nd this point of intersection is 17 in = 8.5 in. The right hlf of the tringle together with the ltitude form right tringle with hypotenuse of 17 in, one leg equl to 8.5 in, nd the other leg equl to the height of the equilterl tringle being the length of the other leg. Using the Pythgoren Theorem, we cn find the height: 17 = (8.5) + h 17 in 17.0 in T 89 = h ( 7.5 from both sides) h = h (solve for h) h = ± = ± So, the height is bout 14.7 inches. 8.5 in In generl, the formul for the height of n equilterl tringle with side of length is h = 3. Objective 4: Understnding Heron's Formul. Recll the re of tringle is equl to one-hlf the bse times the height. This formul works well if we hve the bse nd the height of the tringle. But, if we only know the lengths of the sides of the tringle, we cn use Heron's formul to find the re. The key to using Heron's Formul is to first find the perimeter of the tringle nd then divide the rest by two to get the semi-perimeter. We then plug the vlues into the formul. Heron's Formul Let, b, nd c be the lengths of the tringle nd s be the semi-perimeter of the tringle. Then the re of the tringle is A = s(s )(s b)(s c) where s = +b+c b c

6 137 Find the re of the following tringles: 5.00 m Ex. 8 Ex. 8b Ex. 8c 4.8 cm 9. cm 7.3 cm 5.00 m 5.00 m ) First, clculte the semi-perimeter: s = ( )/ = 1.3/ = cm Now, plug into Heron's Formul: A = 10.65( )( )( ) (subtrct) = 10.65(5.85)(3.35)(1.45) (multiply) = (squre root) = (round to two significnt digits) 17 cm b) First, clculte the semi-perimeter: s = ( )/ = 15/ = 7.5 cm Now, plug into Heron's Formul: A = 7.5(7.5 5)(7.5 5)(7.5 5) (subtrct) = 7.5(.5)(.5)(.5) (multiply) = (squre root) = (round to three significnt digit) 10.8 m c) First, clculte the semi-perimeter: s = ( )/ = 10/ = 5 in Now, plug into Heron's Formul: A = 5(5 3.95)(5 3.95)(5.1) (subtrct) = 5(1.05)(1.05)(.9) (multiply) = (squre root) = (round to two significnt digits) 4.0 in 3.95 in 3.95 in.1 in In generl, we cn use Heron's Formul to derive the formuls for the re of specil types of tringles. For instnce, suppose we wnt to find the

7 formul for the re of n equilterl tringle. Let = the length of one side of n equilterl tringle. Then the semi-perimeter is: s = ( + + )/ = 3 nd the re is: 3 A = ( 3 )( 3 )( 3 ) (subtrct) = = = ( 1 )( 1 )( 1 ) (multiply) (squre root) 138 Objective 5: Understnding Properties of Regulr Hexgons. In regulr hexgon, ll the sides re equl nd ll the ngles re equl. To find the mesure of the ngles of regulr hexgon, we cn split the regulr hexgon into series four of tringles s shown. This mens tht the sum of the mesures of the ngles of hexgon is equl to four times the sum of the mesures of the ngles of tringle or = 70. Since the ngles of regulr hexgon re equl, then ech ngle is equl to 70 6 = 10. To find the re of regulr hexgon, first drw the digonls of the regulr hexgon. Ech digonl bisects the ngle of the hexgon into two 60 ngles. Thus, the regulr hexgon consists of six equilterl tringles. Since the length of of ech side is equl to, then the re of regulr hexgon is six times the re of n equilterl tringle or = 3 3 This lso implies tht the length of the digonl of regulr hexgon, d, is equl to. This is lso referred to s the distnce cross the corners..

8 139 One finl mesurement of regulr hexgon we will need is the distnce cross the flts, f. Notice tht f is twice the height of n equilterl tringle formed by the digonls. As noted in exmple #7, the formul for finding the height of n equilterl tringle is h = Hence, f = h = 3 3. = 3. Let's summrize our findings: Properties of Regulr Hexgons with side of length : d f 1) Ech ngle mesures 10. ) Distnce cross the corners (digonl): d = 3) Distnce cross the flts: f = 3 4) The re: A = 3 3 Complete the following tble: Ex. 9 ) 1 in d f A b) 5 8 cm c) 15.3 mm ) Since = 1 in, then d = = 1 = 4 in f = 3 = 1 3 = in A = 3 3 = 3(1) 3 = in

9 140 b) Since d = 5 cm = 0.65 cm, then 8 d = implies 0.65 = (divide by ) = cm f = 3 = = cm A = 3 3 = 3(0.315) 3 = cm c) Since f = 15.3 mm, then f = 3 implies 15.3 = 3 (divide by 3 ) = mm d = = = mm A = 3 3 = 3( ) 3 = mm d f A ) 1 in 4 in 1 in 370 in b) cm 5 8 cm cm 0.54 cm c) mm mm 15.3 mm 03.3 mm Objective 6: Understnding Composite Figures A Composite Figure is geometric figure tht consists of two or more bsic geometric figures. We wnt to find the perimeter nd re of composite figures. The perimeter of ny figure is the totl length round the outside of the figure. Think of person wlking long the outside of the figure; how fr does the person hve to trvel to get bck to the beginning?

10 141 In terms of the re of the composite figure, think of how much pint is needed to pint the inside of the figure. The key to solving composite figure problem is to split it prt into set of bsic figures. Let's look t some exmples. Ex.10 ) Find the perimeter of the following. b) Find the re of the following m 9.00 m 4.4 m 4.4 m ) We begin by splitting the figure prt: 6.00 m 9.00 m 9.00 m 4.4 m 4.4 m The perimeter of this figure is the sum of the lengths of the three sides of the rectngle plus the two sides of the tringle. Thus, the perimeter is: P = ( ) meters = 3.48 meters

11 14 b) We begin by splitting the figure prt: 6.00 m 6.00 m 4.4 m 4.4 m 9.00 m The re of this figure is the sum of the re of the rectngle nd the re of the tringle. The re of the rectngle is L w = 6 9 = 54 m. To find the re of the tringle, we will use Heron's Formul: s = ( ) = = 7.4 m A = 7.4(7.4 6)( )( ) (subtrct) = 7.4(1.4)(3)(3) (multiply) = (squre root) = m Thus, the totl re = = m. Ex. 11 Find the re of the following figure: 13 m 14 m 4 m 5 m 9 m First, we will need to split the figure prt nd determine if there ny dimensions we will need to find:

12 m 14 m 4 m 4 m 5 m 9 m We need to find the height of the tringles nd the width of the rectngle. Notice tht the width of the rectngle is 4 m less thn the height of the tringles. Consider the tringle on the left. We hve the hypotenuse nd leg of right tringle. We cn use the Pythgoren Theorem to solve for the unknown side: + 5 = = m = m = ± 144, so = 1 m since > 0. Thus, the heights of the two tringles re 1 m. Now, we cn find the width of the rectngle. 5 m 1 m 4 m The dshed side corresponds to the width of the rectngle in the middle. Since the height of the tringle is 1 m nd the length of side from the bse of the tringle to the rectngle is 4 m, then the width of the rectngle is 1 4 = 8 m. We cn find the re of the composite figure by dding the res of the tringle nd the re of the rectngle:

13 144 8 m 1 m 1 m 14 m 5 m 9 m A = 1 bh + Lw + 1 bh = [ 1 (5)(1) + 14(8) + 1 (9)(1)] m = [ ] m = 196 m 00 m. Ex. 1 A wooden door hs 9 rectngulr pieces of glss embedded in it. If ech piece of glss is 1/3 ft by 1/ ft, find the re of the wood. Round to the nerest hlf-foot. (See figure) 3 ft 7 ft The re of the wood is equl to the re of the door minus the re of the nine pieces of glss: A = Lw 9Lw A = 3(7) 9(1/3)(1/) = = 19 1 ft

Geometry 7-1 Geometric Mean and the Pythagorean Theorem

Geometry 7-1 Geometric Men nd the Pythgoren Theorem. Geometric Men 1. Def: The geometric men etween two positive numers nd is the positive numer x where: = x. x Ex 1: Find the geometric men etween the

Use Geometry Expressions to create a more complex locus of points. Find evidence for equivalence using Geometry Expressions.

Lerning Objectives Loci nd Conics Lesson 3: The Ellipse Level: Preclculus Time required: 120 minutes In this lesson, students will generlize their knowledge of the circle to the ellipse. The prmetric nd

The remaining two sides of the right triangle are called the legs of the right triangle.

10 MODULE 6. RADICAL EXPRESSIONS 6 Pythgoren Theorem The Pythgoren Theorem An ngle tht mesures 90 degrees is lled right ngle. If one of the ngles of tringle is right ngle, then the tringle is lled right

RIGHT TRIANGLES AND THE PYTHAGOREAN TRIPLETS

RIGHT TRIANGLES AND THE PYTHAGOREAN TRIPLETS Known for over 500 yers is the fct tht the sum of the squres of the legs of right tringle equls the squre of the hypotenuse. Tht is +b c. A simple proof is

Square Roots Teacher Notes

Henri Picciotto Squre Roots Techer Notes This unit is intended to help students develop n understnding of squre roots from visul / geometric point of view, nd lso to develop their numer sense round this

Operations with Polynomials

38 Chpter P Prerequisites P.4 Opertions with Polynomils Wht you should lern: Write polynomils in stndrd form nd identify the leding coefficients nd degrees of polynomils Add nd subtrct polynomils Multiply

Binary Representation of Numbers Autar Kaw

Binry Representtion of Numbers Autr Kw After reding this chpter, you should be ble to: 1. convert bse- rel number to its binry representtion,. convert binry number to n equivlent bse- number. In everydy

Lesson 8.1 Areas of Rectangles and Parallelograms

Leon 8.1 Are of Rectngle nd Prllelogrm In Eercie 1 4, find the re of the hded region. 1.. 1 cm 1 cm. 17 cm 4. 9 cm 5 cm 1.5 cm 1 cm cm cm 5. Rectngle ABCD h re 684 m nd width 44 m. Find it length. 6. Drw

Math 135 Circles and Completing the Square Examples

Mth 135 Circles nd Completing the Squre Exmples A perfect squre is number such tht = b 2 for some rel number b. Some exmples of perfect squres re 4 = 2 2, 16 = 4 2, 169 = 13 2. We wish to hve method for

The Math Learning Center PO Box 12929, Salem, Oregon 97309 0929 Math Learning Center

Resource Overview Quntile Mesure: Skill or Concept: 1010Q Determine perimeter using concrete models, nonstndrd units, nd stndrd units. (QT M 146) Use models to develop formuls for finding res of tringles,

AREA OF A SURFACE OF REVOLUTION

AREA OF A SURFACE OF REVOLUTION h cut r πr h A surfce of revolution is formed when curve is rotted bout line. Such surfce is the lterl boundr of solid of revolution of the tpe discussed in Sections 7.

PROF. BOYAN KOSTADINOV NEW YORK CITY COLLEGE OF TECHNOLOGY, CUNY

MAT 0630 INTERNET RESOURCES, REVIEW OF CONCEPTS AND COMMON MISTAKES PROF. BOYAN KOSTADINOV NEW YORK CITY COLLEGE OF TECHNOLOGY, CUNY Contents 1. ACT Compss Prctice Tests 1 2. Common Mistkes 2 3. Distributive

PROBLEMS 13 - APPLICATIONS OF DERIVATIVES Page 1

PROBLEMS - APPLICATIONS OF DERIVATIVES Pge ( ) Wter seeps out of conicl filter t the constnt rte of 5 cc / sec. When the height of wter level in the cone is 5 cm, find the rte t which the height decreses.

Math 314, Homework Assignment 1. 1. Prove that two nonvertical lines are perpendicular if and only if the product of their slopes is 1.

Mth 4, Homework Assignment. Prove tht two nonverticl lines re perpendiculr if nd only if the product of their slopes is. Proof. Let l nd l e nonverticl lines in R of slopes m nd m, respectively. Suppose

Graphs on Logarithmic and Semilogarithmic Paper

0CH_PHClter_TMSETE_ 3//00 :3 PM Pge Grphs on Logrithmic nd Semilogrithmic Pper OBJECTIVES When ou hve completed this chpter, ou should be ble to: Mke grphs on logrithmic nd semilogrithmic pper. Grph empiricl

Double Integrals over General Regions

Double Integrls over Generl egions. Let be the region in the plne bounded b the lines, x, nd x. Evlute the double integrl x dx d. Solution. We cn either slice the region verticll or horizontll. ( x x Slicing

Section 5-4 Trigonometric Functions

5- Trigonometric Functions Section 5- Trigonometric Functions Definition of the Trigonometric Functions Clcultor Evlution of Trigonometric Functions Definition of the Trigonometric Functions Alternte Form

Example 27.1 Draw a Venn diagram to show the relationship between counting numbers, whole numbers, integers, and rational numbers.

2 Rtionl Numbers Integers such s 5 were importnt when solving the eqution x+5 = 0. In similr wy, frctions re importnt for solving equtions like 2x = 1. Wht bout equtions like 2x + 1 = 0? Equtions of this

Eponents nd Rdicls -: The Rel Numer Sstem Unit : Eponents nd Rdicls Pure Mth 0 Notes Nturl Numers (N): - counting numers. {,,,,, } Whole Numers (W): - counting numers with 0. {0,,,,,, } Integers (I): -

QUANTITATIVE REASONING

Guide For Exminees Inter-University Psychometric Entrnce Test QUNTITTIVE RESONING The Quntittive Resoning domin tests your bility to use numbers nd mthemticl concepts to solve mthemticl problems, s well

Sect 9.5 - Perimeters and Areas of Polygons

Sect 9.5 - Perimeters and Areas of Polygons Ojective a: Understanding Perimeters of Polygons. The Perimeter is the length around the outside of a closed two - dimensional figure. For a polygon, the perimeter

4 Geometry: Shapes. 4.1 Circumference and area of a circle. FM Functional Maths AU (AO2) Assessing Understanding PS (AO3) Problem Solving HOMEWORK 4A

Geometry: Shpes. Circumference nd re of circle HOMEWORK D C 3 5 6 7 8 9 0 3 U Find the circumference of ech of the following circles, round off your nswers to dp. Dimeter 3 cm Rdius c Rdius 8 m d Dimeter

. At first sight a! b seems an unwieldy formula but use of the following mnemonic will possibly help. a 1 a 2 a 3 a 1 a 2

7 CHAPTER THREE. Cross Product Given two vectors = (,, nd = (,, in R, the cross product of nd written! is defined to e: " = (!,!,! Note! clled cross is VECTOR (unlike which is sclr. Exmple (,, " (4,5,6

Lesson 4.1 Triangle Sum Conjecture

Lesson 4.1 ringle um onjecture Nme eriod te n ercises 1 9, determine the ngle mesures. 1. p, q 2., y 3., b 31 82 p 98 q 28 53 y 17 79 23 50 b 4. r, s, 5., y 6. y t t s r 100 85 100 y 30 4 7 y 31 7. s 8.

Vectors 2. 1. Recap of vectors

Vectors 2. Recp of vectors Vectors re directed line segments - they cn be represented in component form or by direction nd mgnitude. We cn use trigonometry nd Pythgors theorem to switch between the forms

State the size of angle x. Sometimes the fact that the angle sum of a triangle is 180 and other angle facts are needed. b y 127

ngles 2 CHTER 2.1 Tringles Drw tringle on pper nd lel its ngles, nd. Ter off its orners. Fit ngles, nd together. They mke stright line. This shows tht the ngles in this tringle dd up to 180 ut it is not

Example A rectangular box without lid is to be made from a square cardboard of sides 18 cm by cutting equal squares from each corner and then folding

1 Exmple A rectngulr box without lid is to be mde from squre crdbord of sides 18 cm by cutting equl squres from ech corner nd then folding up the sides. 1 Exmple A rectngulr box without lid is to be mde

Mathematics. Vectors. hsn.uk.net. Higher. Contents. Vectors 128 HSN23100

hsn.uk.net Higher Mthemtics UNIT 3 OUTCOME 1 Vectors Contents Vectors 18 1 Vectors nd Sclrs 18 Components 18 3 Mgnitude 130 4 Equl Vectors 131 5 Addition nd Subtrction of Vectors 13 6 Multipliction by

SPECIAL PRODUCTS AND FACTORIZATION

MODULE - Specil Products nd Fctoriztion 4 SPECIAL PRODUCTS AND FACTORIZATION In n erlier lesson you hve lernt multipliction of lgebric epressions, prticulrly polynomils. In the study of lgebr, we come

EQUATIONS OF LINES AND PLANES

EQUATIONS OF LINES AND PLANES MATH 195, SECTION 59 (VIPUL NAIK) Corresponding mteril in the ook: Section 12.5. Wht students should definitely get: Prmetric eqution of line given in point-direction nd twopoint

Lesson 12.1 Trigonometric Ratios

Lesson 12.1 rigonometric Rtios Nme eriod Dte In Eercises 1 6, give ech nswer s frction in terms of p, q, nd r. 1. sin 2. cos 3. tn 4. sin Q 5. cos Q 6. tn Q p In Eercises 7 12, give ech nswer s deciml

Physics 43 Homework Set 9 Chapter 40 Key

Physics 43 Homework Set 9 Chpter 4 Key. The wve function for n electron tht is confined to x nm is. Find the normliztion constnt. b. Wht is the probbility of finding the electron in. nm-wide region t x

Review Problems for the Final of Math 121, Fall 2014

Review Problems for the Finl of Mth, Fll The following is collection of vrious types of smple problems covering sections.,.5, nd.7 6.6 of the text which constitute only prt of the common Mth Finl. Since

Mathematics Higher Level

Mthemtics Higher Level Higher Mthemtics Exmintion Section : The Exmintion Mthemtics Higher Level. Structure of the exmintion pper The Higher Mthemtics Exmintion is divided into two ppers s detiled below:

15.6. The mean value and the root-mean-square value of a function. Introduction. Prerequisites. Learning Outcomes. Learning Style

The men vlue nd the root-men-squre vlue of function 5.6 Introduction Currents nd voltges often vry with time nd engineers my wish to know the verge vlue of such current or voltge over some prticulr time

Factoring Polynomials

Fctoring Polynomils Some definitions (not necessrily ll for secondry school mthemtics): A polynomil is the sum of one or more terms, in which ech term consists of product of constnt nd one or more vribles

Volumes of solids of revolution

Volumes of solids of revolution We sometimes need to clculte the volume of solid which cn be obtined by rotting curve bout the x-xis. There is strightforwrd technique which enbles this to be done, using

Polynomial Functions. Polynomial functions in one variable can be written in expanded form as ( )

Polynomil Functions Polynomil functions in one vrible cn be written in expnded form s n n 1 n 2 2 f x = x + x + x + + x + x+ n n 1 n 2 2 1 0 Exmples of polynomils in expnded form re nd 3 8 7 4 = 5 4 +

Lecture 15 - Curve Fitting Techniques

Lecture 15 - Curve Fitting Techniques Topics curve fitting motivtion liner regression Curve fitting - motivtion For root finding, we used given function to identify where it crossed zero where does fx

9.3. The Scalar Product. Introduction. Prerequisites. Learning Outcomes

The Sclr Product 9.3 Introduction There re two kinds of multipliction involving vectors. The first is known s the sclr product or dot product. This is so-clled becuse when the sclr product of two vectors

10 AREA AND VOLUME 1. Before you start. Objectives

10 AREA AND VOLUME 1 The Tower of Pis is circulr bell tower. Construction begn in the 1170s, nd the tower strted lening lmost immeditely becuse of poor foundtion nd loose soil. It is 56.7 metres tll, with

Ratio and Proportion

Rtio nd Proportion Rtio: The onept of rtio ours frequently nd in wide vriety of wys For exmple: A newspper reports tht the rtio of Repulins to Demorts on ertin Congressionl ommittee is 3 to The student/fulty

LINEAR TRANSFORMATIONS AND THEIR REPRESENTING MATRICES

LINEAR TRANSFORMATIONS AND THEIR REPRESENTING MATRICES DAVID WEBB CONTENTS Liner trnsformtions 2 The representing mtrix of liner trnsformtion 3 3 An ppliction: reflections in the plne 6 4 The lgebr of

Radius of the Earth - Radii Used in Geodesy James R. Clynch February 2006

dius of the Erth - dii Used in Geodesy Jmes. Clynch Februry 006 I. Erth dii Uses There is only one rdius of sphere. The erth is pproximtely sphere nd therefore, for some cses, this pproximtion is dequte.

Lecture 3 Gaussian Probability Distribution

Lecture 3 Gussin Probbility Distribution Introduction l Gussin probbility distribution is perhps the most used distribution in ll of science. u lso clled bell shped curve or norml distribution l Unlike

P.3 Polynomials and Factoring. P.3 an 1. Polynomial STUDY TIP. Example 1 Writing Polynomials in Standard Form. What you should learn

33337_0P03.qp 2/27/06 24 9:3 AM Chpter P Pge 24 Prerequisites P.3 Polynomils nd Fctoring Wht you should lern Polynomils An lgeric epression is collection of vriles nd rel numers. The most common type of

10.6 Applictions of Qudrtic Equtions In this section we wnt to look t the pplictions tht qudrtic equtions nd functions hve in the rel world. There re severl stndrd types: problems where the formul is given,

Section A-4 Rational Expressions: Basic Operations

A- Appendi A A BASIC ALGEBRA REVIEW 7. Construction. A rectngulr open-topped bo is to be constructed out of 9- by 6-inch sheets of thin crdbord by cutting -inch squres out of ech corner nd bending the

Assuming all values are initially zero, what are the values of A and B after executing this Verilog code inside an always block? C=1; A <= C; B = C;

B-26 Appendix B The Bsics of Logic Design Check Yourself ALU n [Arthritic Logic Unit or (rre) Arithmetic Logic Unit] A rndom-numer genertor supplied s stndrd with ll computer systems Stn Kelly-Bootle,

Heron s Formula. Key Words: Triangle, area, Heron s formula, angle bisectors, incenter

Heron s Formula Lesson Summary: Students will investigate the Heron s formula for finding the area of a triangle. The lab has students find the area using three different methods: Heron s, the basic formula,

Right Triangles and Trigonometry

9 Right Tringles nd Trigonometry 9.1 The Pythgoren Theorem 9. Specil Right Tringles 9.3 Similr Right Tringles 9.4 The Tngent Rtio 9.5 The Sine nd osine Rtios 9.6 Solving Right Tringles 9.7 Lw of Sines

1 Numerical Solution to Quadratic Equations

cs42: introduction to numericl nlysis 09/4/0 Lecture 2: Introduction Prt II nd Solving Equtions Instructor: Professor Amos Ron Scribes: Yunpeng Li, Mrk Cowlishw Numericl Solution to Qudrtic Equtions Recll

The Triangle and its Properties

THE TRINGLE ND ITS PROPERTIES 113 The Triangle and its Properties Chapter 6 6.1 INTRODUCTION triangle, you have seen, is a simple closed curve made of three line segments. It has three vertices, three

MATH 150 HOMEWORK 4 SOLUTIONS

MATH 150 HOMEWORK 4 SOLUTIONS Section 1.8 Show tht the product of two of the numbers 65 1000 8 2001 + 3 177, 79 1212 9 2399 + 2 2001, nd 24 4493 5 8192 + 7 1777 is nonnegtive. Is your proof constructive

Intermediate Algebra with Trigonometry. J. Avery 4/99 (last revised 11/03)

Intermediate lgebra with Trigonometry J. very 4/99 (last revised 11/0) TOPIC PGE TRIGONOMETRIC FUNCTIONS OF CUTE NGLES.................. SPECIL TRINGLES............................................ 6 FINDING

and thus, they are similar. If k = 3 then the Jordan form of both matrices is

Homework ssignment 11 Section 7. pp. 249-25 Exercise 1. Let N 1 nd N 2 be nilpotent mtrices over the field F. Prove tht N 1 nd N 2 re similr if nd only if they hve the sme miniml polynomil. Solution: If

4.11 Inner Product Spaces

314 CHAPTER 4 Vector Spces 9. A mtrix of the form 0 0 b c 0 d 0 0 e 0 f g 0 h 0 cnnot be invertible. 10. A mtrix of the form bc d e f ghi such tht e bd = 0 cnnot be invertible. 4.11 Inner Product Spces

Section 7-4 Translation of Axes

62 7 ADDITIONAL TOPICS IN ANALYTIC GEOMETRY Section 7-4 Trnsltion of Aes Trnsltion of Aes Stndrd Equtions of Trnslted Conics Grphing Equtions of the Form A 2 C 2 D E F 0 Finding Equtions of Conics In the

5.2. LINE INTEGRALS 265. Let us quickly review the kind of integrals we have studied so far before we introduce a new one.

5.2. LINE INTEGRALS 265 5.2 Line Integrls 5.2.1 Introduction Let us quickly review the kind of integrls we hve studied so fr before we introduce new one. 1. Definite integrl. Given continuous rel-vlued

Algebra Review. How well do you remember your algebra?

Algebr Review How well do you remember your lgebr? 1 The Order of Opertions Wht do we men when we write + 4? If we multiply we get 6 nd dding 4 gives 10. But, if we dd + 4 = 7 first, then multiply by then

Appendix D: Completing the Square and the Quadratic Formula. In Appendix A, two special cases of expanding brackets were considered:

Appendi D: Completing the Squre nd the Qudrtic Formul Fctoring qudrtic epressions such s: + 6 + 8 ws one of the topics introduced in Appendi C. Fctoring qudrtic epressions is useful skill tht cn help you

Surface Area and Volume

Surfce Are nd Volume Student Book - Series J- Mthletics Instnt Workooks Copyright Surfce re nd volume Student Book - Series J Contents Topics Topic - Surfce re of right prism Topic 2 - Surfce re of right

A.7.1 Trigonometric interpretation of dot product... 324. A.7.2 Geometric interpretation of dot product... 324

A P P E N D I X A Vectors CONTENTS A.1 Scling vector................................................ 321 A.2 Unit or Direction vectors...................................... 321 A.3 Vector ddition.................................................

Integration. 148 Chapter 7 Integration

48 Chpter 7 Integrtion 7 Integrtion t ech, by supposing tht during ech tenth of second the object is going t constnt speed Since the object initilly hs speed, we gin suppose it mintins this speed, but

Square & Square Roots

Squre & Squre Roots Squre : If nuber is ultiplied by itself then the product is the squre of the nuber. Thus the squre of is x = eg. x x Squre root: The squre root of nuber is one of two equl fctors which

Lecture 5. Inner Product

Lecture 5 Inner Product Let us strt with the following problem. Given point P R nd line L R, how cn we find the point on the line closest to P? Answer: Drw line segment from P meeting the line in right

Review guide for the final exam in Math 233

Review guide for the finl exm in Mth 33 1 Bsic mteril. This review includes the reminder of the mteril for mth 33. The finl exm will be cumultive exm with mny of the problems coming from the mteril covered

1. Find the zeros Find roots. Set function = 0, factor or use quadratic equation if quadratic, graph to find zeros on calculator

AP Clculus Finl Review Sheet When you see the words. This is wht you think of doing. Find the zeros Find roots. Set function =, fctor or use qudrtic eqution if qudrtic, grph to find zeros on clcultor.

Angles 2.1. Exercise 2.1... Find the size of the lettered angles. Give reasons for your answers. a) b) c) Example

2.1 Angles Reognise lternte n orresponing ngles Key wors prllel lternte orresponing vertilly opposite Rememer, prllel lines re stright lines whih never meet or ross. The rrows show tht the lines re prllel

THE RATIONAL NUMBERS CHAPTER

CHAPTER THE RATIONAL NUMBERS When divided by b is not n integer, the quotient is frction.the Bbylonins, who used number system bsed on 60, epressed the quotients: 0 8 s 0 60 insted of 8 s 7 60,600 0 insted

Experiment 6: Friction

Experiment 6: Friction In previous lbs we studied Newton s lws in n idel setting, tht is, one where friction nd ir resistnce were ignored. However, from our everydy experience with motion, we know tht

Intro to Circle Geometry By Raymond Cheong

Into to Cicle Geomety By Rymond Cheong Mny poblems involving cicles cn be solved by constucting ight tingles then using the Pythgoen Theoem. The min chllenge is identifying whee to constuct the ight tingle.

Vectors. The magnitude of a vector is its length, which can be determined by Pythagoras Theorem. The magnitude of a is written as a.

Vectors mesurement which onl descries the mgnitude (i.e. size) of the oject is clled sclr quntit, e.g. Glsgow is 11 miles from irdrie. vector is quntit with mgnitude nd direction, e.g. Glsgow is 11 miles

G.GMD.1 STUDENT NOTES WS #5 1 REGULAR POLYGONS

G.GMD.1 STUDENT NOTES WS #5 1 REGULAR POLYGONS Regul polygon e of inteet to u becue we begin looking t the volume of hexgonl pim o Tethedl nd to do thee type of clcultion we need to be ble to olve fit

6.2 Volumes of Revolution: The Disk Method

mth ppliction: volumes of revolution, prt ii Volumes of Revolution: The Disk Method One of the simplest pplictions of integrtion (Theorem ) nd the ccumultion process is to determine so-clled volumes of

11-4 Areas of Regular Polygons and Composite Figures

1. In the figure, square ABDC is inscribed in F. Identify the center, a radius, an apothem, and a central angle of the polygon. Then find the measure of a central angle. Center: point F, radius:, apothem:,

www.mathsbox.org.uk e.g. f(x) = x domain x 0 (cannot find the square root of negative values)

www.mthsbo.org.uk CORE SUMMARY NOTES Functions A function is rule which genertes ectl ONE OUTPUT for EVERY INPUT. To be defined full the function hs RULE tells ou how to clculte the output from the input

Reasoning to Solve Equations and Inequalities

Lesson4 Resoning to Solve Equtions nd Inequlities In erlier work in this unit, you modeled situtions with severl vriles nd equtions. For exmple, suppose you were given usiness plns for concert showing

Sect 6.7 - Solving Equations Using the Zero Product Rule

Sect 6.7 - Solving Equations Using the Zero Product Rule 116 Concept #1: Definition of a Quadratic Equation A quadratic equation is an equation that can be written in the form ax 2 + bx + c = 0 (referred

GEOMETRY FINAL EXAM REVIEW

GEOMETRY FINL EXM REVIEW I. MTHING reflexive. a(b + c) = ab + ac transitive. If a = b & b = c, then a = c. symmetric. If lies between and, then + =. substitution. If a = b, then b = a. distributive E.

Answer, Key Homework 4 David McIntyre Mar 25,

Answer, Key Homework 4 Dvid McIntyre 45123 Mr 25, 2004 1 his print-out should hve 18 questions. Multiple-choice questions my continue on the next column or pe find ll choices before mkin your selection.

Each pair of opposite sides of a parallelogram is congruent to each other.

Find the perimeter and area of each parallelogram or triangle. Round to the nearest tenth if necessary. 1. Use the Pythagorean Theorem to find the height h, of the parallelogram. 2. Each pair of opposite

Applications to Physics and Engineering

Section 7.5 Applictions to Physics nd Engineering Applictions to Physics nd Engineering Work The term work is used in everydy lnguge to men the totl mount of effort required to perform tsk. In physics

Brillouin Zones. Physics 3P41 Chris Wiebe

Brillouin Zones Physics 3P41 Chris Wiebe Direct spce to reciprocl spce * = 2 i j πδ ij Rel (direct) spce Reciprocl spce Note: The rel spce nd reciprocl spce vectors re not necessrily in the sme direction

EXPONENTS. To the applicant: KEY WORDS AND CONVERTING WORDS TO EQUATIONS

To the applicant: The following information will help you review math that is included in the Paraprofessional written examination for the Conejo Valley Unified School District. The Education Code requires

69. The Shortest Distance Between Skew Lines

69. The Shortest Distnce Between Skew Lines Find the ngle nd distnce between two given skew lines. (Skew lines re non-prllel non-intersecting lines.) This importnt problem is usully encountered in one

1 foot (ft) = 12 inches (in) 1 yard (yd) = 3 feet (ft) 1 mile (mi) = 5280 feet (ft) Replace 1 with 1 ft/12 in. 1ft

2 MODULE 6. GEOMETRY AND UNIT CONVERSION 6a Applications The most common units of length in the American system are inch, foot, yard, and mile. Converting from one unit of length to another is a requisite

25 The Law of Cosines and Its Applications

Arkansas Tech University MATH 103: Trigonometry Dr Marcel B Finan 5 The Law of Cosines and Its Applications The Law of Sines is applicable when either two angles and a side are given or two sides and an

Area. Area Overview. Define: Area:

Define: Area: Area Overview Kite: Parallelogram: Rectangle: Rhombus: Square: Trapezoid: Postulates/Theorems: Every closed region has an area. If closed figures are congruent, then their areas are equal.

Multiplication and Division - Left to Right. Addition and Subtraction - Left to Right.

Order of Opertions r of Opertions Alger P lese Prenthesis - Do ll grouped opertions first. E cuse Eponents - Second M D er Multipliction nd Division - Left to Right. A unt S hniqu Addition nd Sutrction

Chapter 2 The Number System (Integers and Rational Numbers)

Chpter 2 The Number System (Integers nd Rtionl Numbers) In this second chpter, students extend nd formlize their understnding of the number system, including negtive rtionl numbers. Students first develop

A new algorithm for generating Pythagorean triples

A new lgorithm for generting Pythgoren triples RH Dye 1 nd RWD Nicklls 2 The Mthemticl Gzette (1998); 82 (Mrch, No. 493), p. 86 91 (JSTOR rchive) http://www.nicklls.org/dick/ppers/mths/pythgtriples1998.pdf

Treatment Spring Late Summer Fall 0.10 5.56 3.85 0.61 6.97 3.01 1.91 3.01 2.13 2.99 5.33 2.50 1.06 3.53 6.10 Mean = 1.33 Mean = 4.88 Mean = 3.

The nlysis of vrince (ANOVA) Although the t-test is one of the most commonly used sttisticl hypothesis tests, it hs limittions. The mjor limittion is tht the t-test cn be used to compre the mens of only

Solve each right triangle. Round side measures to the nearest tenth and angle measures to the nearest degree.

Solve each right triangle. Round side measures to the nearest tenth and angle measures to the nearest degree. 42. The sum of the measures of the angles of a triangle is 180. Therefore, The sine of an angle

Repeated multiplication is represented using exponential notation, for example:

Appedix A: The Lws of Expoets Expoets re short-hd ottio used to represet my fctors multiplied together All of the rules for mipultig expoets my be deduced from the lws of multiplictio d divisio tht you

1.7 Find Perimeter, Circumference,

.7 Find Perimeter, Circumference, and rea Goal p Find dimensions of polygons. Your Notes FORMULS FOR PERIMETER P, RE, ND CIRCUMFERENCE C Square Rectangle side length s length l and width w P 5 P 5 s 5

Or more simply put, when adding or subtracting quantities, their uncertainties add.

Propgtion of Uncertint through Mthemticl Opertions Since the untit of interest in n eperiment is rrel otined mesuring tht untit directl, we must understnd how error propgtes when mthemticl opertions re