Trigonometry on Right Triangles. Elementary Functions. Similar Triangles. Similar Triangles

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Trigonometry on Right Triangles. Elementary Functions. Similar Triangles. Similar Triangles"

Transcription

1 Trigonometry on Right Triangles Trigonometry is introduced to students in two different forms, as functions on the unit circle and as functions on a right triangle. The unit circle approach is the most natural setting for the trig functions since trig functions are not just functions of angles between 0 and 180 but instead have as domain the set of all real numbers. The unit circle explains identities such as Part 4, Trigonometry Lecture 4.4a, Trigonometry on Right Triangles (cos θ)2 + (sin θ)2 = 1 Dr. Ken W. Smith and Sam Houston State University cos(θ) = sin(θ + π2 ). However, we would also like to apply trigonometry to right triangles which have a hypotenuse of length different than one. We may do this by using similar triangles. 1 / 22 2 / 22 Previously, to examine our trig functions, we displayed a typical triangle on the unit circle with central angle θ, hypotenuse 1 and point P (x, y) on the unit circle. We can expand that triangle by the ratio r to get a triangle in which the hypotenuse has length r and the point P (x, y) is on a circle of radius r. When this happens, cos(θ) will not be x but x/r. Similarly, sin(θ) will be y/r. 3 / 22 4 / 22

2 Or imagine a triangle with hypotenuse of length H, opposite side of length O, adjacent side of length A. All of these triangles are similar and so the trig functions of the angle θ, as ratios of side lengths, are unchanged. The point P (x, y) sits on the circle of radius H and sin(θ) = O A. 5 / 22 6 / 22 If we are willing to draw a right triangle and use the Pythagorean theorem, then we can solve any right triangle problem in which we are given a side and another angle. Some worked problems using similar triangles. 1 Find sec(θ) if sin(θ) = Find tan(θ) if cos(θ) = 2 5. Solution. Draw a right triangle which has an angle with cos(θ) = 2 5. (The most obvious triangle will have a hypotenuse of length 5 and an side adjacent to θ with length 2.) The opposite side will then have length 21, by the Pythagorean Theorem. Compute the tangent of the angle θ. (Tangent is the ratio opp adj.) The answer is Solution. Draw a right triangle which has an angle with sin(θ) = 3 5. (A triangle will do.) Then compute the secant of the angle θ. The secant is the reciprocal of cosine and so sec(θ) = hyp adj = H A. The answer is / 22 8 / 22

3 3 Suppose sec θ = the angle θ. Trig on right triangles 7 2 and tan θ is negative. Find all six trig functions of Solution. Since the tangent is negative and cosine (= 27 ) is positive, then we know x is positive and y is negative and so the angle θ points into the fourth quadrant. Draw a line segment of length 7 from the origin into the fourth quadrant, to a point P (2, y). By the Pythagorean theorem, is the absolute value of y = 45 = 9 5 = 3 5. So y = 3 5 and our line segment ends at the point P (2, 3 5). Now read off the values of the various trig functions: cos θ = 27, sin θ = 3 5 7, tan θ = In the next presentation, we will apply our understanding of trigonometry to solving various right triangles. (End) The reciprocals of these are 7 2 sec θ = 72, csc θ = 3 = 7155, cot θ = 3 = / / 22 Applications with right triangles Anytime we have a right triangle, then, if we can measure one of the acute angles and also know the length of a side, then we know everything about the triangle. We will then find one of the acute angles of the triangle (such as θ, drawn in red) and we will also be able to find the length of one of the sides. Part 4, Trigonometry Lecture 4.4b, Applications of Right Triangles Once we have this information, the lengths of the other two sides can be computed using our trig functions. Dr. Ken W. Smith Sam Houston State University 11 / / 22

4 Some worked problems 1 A radio tower is stands on a flat field. I walk 1000 feet away from the base of the radio tower and look up at the top of the tower. I measure a 71 angle between the horizon and the top of the tower. How tall is the tower? Solution. Draw a right triangle. The radio tower is a vertical line perpendicular to the ground. (In the picture, this vertical line segment has length O.) Draw the ground as a horizontal line and mark the length of that horizontal line as A = 1000 feet. The hypotenuse makes an angle θ = 71 with the ground. The tangent of 71 is tan 71 = O A = O Solve for O: O = 1000 tan = 2904 feet 2 I am flying a kite on the beach. The kite is attached to 3000 feet of string. At the time that the string plays out the kite makes an angle with the horizon of 38. Assuming that the 3000 feet of string is a straight line, how high is the kite? Solution. Draw a picture. The kite, the person holding the kite and the ground directly below the kite form three vertices of a right triangle with the right angle at the point on the ground directly below the kite. The hypotenuse of this right triangle is H = 3000 feet. The kite is O feet above the ground. The sine of θ = 38 is sin 38 = O H = O 3000 and so O is equal to O = 3000 sin(38 ) 1847 feet. 13 / / 22 Astronomers use simple right triangles to find the distance to nearby stars. As the earth revolves around the sun, it marks out a ellipse (almost a circle) of radius 93 million miles. Over the course of the year, a nearby star should appear to move back and forth in the night sky as the earth revolves around the sun and so we should be able to measure that angle of apparent motion and use a right triangle (with one side equal to 93,000,000 miles) to compute that distance. 15 / / 22

5 Let the sun form a right angle vertex of a triangle. Set the earth and star as the other two vertices. If the star does not move, it would appear to form a right angle with the earth in this figure. But if the star is nearby then the line of sight to the star forms an angle α with the anticipated line of sight. The star appears to have moved. By a standard result from geometry, this angle α (the apparent motion of the star) is also the acute angle of the triangle at the vertex given by the star. If A is the distance from the star to the sun and O = 93, 000, 000 = miles then the cotangent of α is A O and so A = cot α. 17 / 22 The ancient Greeks thought of this idea and attempted to measure parallax. But when they did this, the stars didn t seem to move!! So either this picture was wrong (maybe the earth was the center of the universe?) or the stars must be billions of miles away! Convinced that the universe could not be billions of miles in size, most Greeks agreed with Aristotle s belief that the earth was the center of the universe and that the sun revolved around the earth. Now we know better and indeed, with modern equipment, we have been able to measure the parallax of some stars. 18 / 22 A worked problem. The closest star to us, Proxima Centauri has a parallax of 0.77, that is, 0.77 arcseconds. How far away is Proxima Centauri? Solution. A minute of arc is one-sixtieth of a degree; a second of arc is 1 one-sixtieth of a minute. So an arcsecond is = degrees. The angle 0.77 arcseconds is equal to 0.77 = degrees. The tangent of this angle is tan( ) The cotangent of is the reciprocal of this, approximately So the distance to Proxima Centauri is = ( ) ( ) miles, about miles! 19 / / 22

6 A worked problem. Trig on Right Triangles The distance to Proxima Centauri is = ( ) ( ) miles or about miles! The fastest rocket ever made reaches speeds of 25,000 miles per hour. A rocket traveling at that speed would take over one hundred thousand years to reach Proxima Centauri. Light travels about miles in a year, so this distance is about 4.24 light years. And this is our closest star... It is no wonder that the Greeks could not measure parallax; the universe is indeed unbelievably large! In the next presentation, we will look at graphs of the six trig functions. (End) 21 / / 22

y = rsin! (opp) x = z cos! (adj) sin! = y z = The Other Trig Functions

y = rsin! (opp) x = z cos! (adj) sin! = y z = The Other Trig Functions MATH 7 Right Triangle Trig Dr. Neal, WKU Previously, we have seen the right triangle formulas x = r cos and y = rsin where the hypotenuse r comes from the radius of a circle, and x is adjacent to and y

More information

4.1 Radian and Degree Measure

4.1 Radian and Degree Measure Date: 4.1 Radian and Degree Measure Syllabus Objective: 3.1 The student will solve problems using the unit circle. Trigonometry means the measure of triangles. Terminal side Initial side Standard Position

More information

Pre-Calculus II. where 1 is the radius of the circle and t is the radian measure of the central angle.

Pre-Calculus II. where 1 is the radius of the circle and t is the radian measure of the central angle. Pre-Calculus II 4.2 Trigonometric Functions: The Unit Circle The unit circle is a circle of radius 1, with its center at the origin of a rectangular coordinate system. The equation of this unit circle

More information

Trigonometric Functions: The Unit Circle

Trigonometric Functions: The Unit Circle Trigonometric Functions: The Unit Circle This chapter deals with the subject of trigonometry, which likely had its origins in the study of distances and angles by the ancient Greeks. The word trigonometry

More information

You can solve a right triangle if you know either of the following: Two side lengths One side length and one acute angle measure

You can solve a right triangle if you know either of the following: Two side lengths One side length and one acute angle measure Solving a Right Triangle A trigonometric ratio is a ratio of the lengths of two sides of a right triangle. Every right triangle has one right angle, two acute angles, one hypotenuse, and two legs. To solve

More information

2. Right Triangle Trigonometry

2. Right Triangle Trigonometry 2. Right Triangle Trigonometry 2.1 Definition II: Right Triangle Trigonometry 2.2 Calculators and Trigonometric Functions of an Acute Angle 2.3 Solving Right Triangles 2.4 Applications 2.5 Vectors: A Geometric

More information

4.3 & 4.8 Right Triangle Trigonometry. Anatomy of Right Triangles

4.3 & 4.8 Right Triangle Trigonometry. Anatomy of Right Triangles 4.3 & 4.8 Right Triangle Trigonometry Anatomy of Right Triangles The right triangle shown at the right uses lower case a, b and c for its sides with c being the hypotenuse. The sides a and b are referred

More information

Introduction to Vectors

Introduction to Vectors Introduction to Vectors A vector is a physical quantity that has both magnitude and direction. An example is a plane flying NE at 200 km/hr. This vector is written as 200 Km/hr at 45. Another example is

More information

Chapter 6 Trigonometric Functions of Angles

Chapter 6 Trigonometric Functions of Angles 6.1 Angle Measure Chapter 6 Trigonometric Functions of Angles In Chapter 5, we looked at trig functions in terms of real numbers t, as determined by the coordinates of the terminal point on the unit circle.

More information

Trigonometry Chapter 3 Lecture Notes

Trigonometry Chapter 3 Lecture Notes Ch Notes Morrison Trigonometry Chapter Lecture Notes Section. Radian Measure I. Radian Measure A. Terminology When a central angle (θ) intercepts the circumference of a circle, the length of the piece

More information

Basic Electrical Theory

Basic Electrical Theory Basic Electrical Theory Mathematics Review PJM State & Member Training Dept. Objectives By the end of this presentation the Learner should be able to: Use the basics of trigonometry to calculate the different

More information

Find the length of the arc on a circle of radius r intercepted by a central angle θ. Round to two decimal places.

Find the length of the arc on a circle of radius r intercepted by a central angle θ. Round to two decimal places. SECTION.1 Simplify. 1. 7π π. 5π 6 + π Find the measure of the angle in degrees between the hour hand and the minute hand of a clock at the time shown. Measure the angle in the clockwise direction.. 1:0.

More information

RIGHT TRIANGLE TRIGONOMETRY

RIGHT TRIANGLE TRIGONOMETRY RIGHT TRIANGLE TRIGONOMETRY The word Trigonometry can be broken into the parts Tri, gon, and metry, which means Three angle measurement, or equivalently Triangle measurement. Throughout this unit, we will

More information

Right Triangles A right triangle, as the one shown in Figure 5, is a triangle that has one angle measuring

Right Triangles A right triangle, as the one shown in Figure 5, is a triangle that has one angle measuring Page 1 9 Trigonometry of Right Triangles Right Triangles A right triangle, as the one shown in Figure 5, is a triangle that has one angle measuring 90. The side opposite to the right angle is the longest

More information

5.2 Unit Circle: Sine and Cosine Functions

5.2 Unit Circle: Sine and Cosine Functions Chapter 5 Trigonometric Functions 75 5. Unit Circle: Sine and Cosine Functions In this section, you will: Learning Objectives 5..1 Find function values for the sine and cosine of 0 or π 6, 45 or π 4 and

More information

Solution Guide for Chapter 6: The Geometry of Right Triangles

Solution Guide for Chapter 6: The Geometry of Right Triangles Solution Guide for Chapter 6: The Geometry of Right Triangles 6. THE THEOREM OF PYTHAGORAS E-. Another demonstration: (a) Each triangle has area ( ). ab, so the sum of the areas of the triangles is 4 ab

More information

Trigonometry Review with the Unit Circle: All the trig. you ll ever need to know in Calculus

Trigonometry Review with the Unit Circle: All the trig. you ll ever need to know in Calculus Trigonometry Review with the Unit Circle: All the trig. you ll ever need to know in Calculus Objectives: This is your review of trigonometry: angles, six trig. functions, identities and formulas, graphs:

More information

Angles and Quadrants. Angle Relationships and Degree Measurement. Chapter 7: Trigonometry

Angles and Quadrants. Angle Relationships and Degree Measurement. Chapter 7: Trigonometry Chapter 7: Trigonometry Trigonometry is the study of angles and how they can be used as a means of indirect measurement, that is, the measurement of a distance where it is not practical or even possible

More information

Trigonometric Functions and Triangles

Trigonometric Functions and Triangles Trigonometric Functions and Triangles Dr. Philippe B. Laval Kennesaw STate University August 27, 2010 Abstract This handout defines the trigonometric function of angles and discusses the relationship between

More information

Right Triangles 4 A = 144 A = 16 12 5 A = 64

Right Triangles 4 A = 144 A = 16 12 5 A = 64 Right Triangles If I looked at enough right triangles and experimented a little, I might eventually begin to notice a relationship developing if I were to construct squares formed by the legs of a right

More information

Section 6-3 Double-Angle and Half-Angle Identities

Section 6-3 Double-Angle and Half-Angle Identities 6-3 Double-Angle and Half-Angle Identities 47 Section 6-3 Double-Angle and Half-Angle Identities Double-Angle Identities Half-Angle Identities This section develops another important set of identities

More information

Solutions to Exercises, Section 5.1

Solutions to Exercises, Section 5.1 Instructor s Solutions Manual, Section 5.1 Exercise 1 Solutions to Exercises, Section 5.1 1. Find all numbers t such that ( 1 3,t) is a point on the unit circle. For ( 1 3,t)to be a point on the unit circle

More information

D.3. Angles and Degree Measure. Review of Trigonometric Functions

D.3. Angles and Degree Measure. Review of Trigonometric Functions APPENDIX D Precalculus Review D7 SECTION D. Review of Trigonometric Functions Angles and Degree Measure Radian Measure The Trigonometric Functions Evaluating Trigonometric Functions Solving Trigonometric

More information

Integration Involving Trigonometric Functions and Trigonometric Substitution

Integration Involving Trigonometric Functions and Trigonometric Substitution Integration Involving Trigonometric Functions and Trigonometric Substitution Dr. Philippe B. Laval Kennesaw State University September 7, 005 Abstract This handout describes techniques of integration involving

More information

Chapter 5 The Trigonometric Functions

Chapter 5 The Trigonometric Functions P a g e 40 Chapter 5 The Trigonometric Functions Section 5.1 Angles Initial side Terminal side Standard position of an angle Positive angle Negative angle Coterminal Angles Acute angle Obtuse angle Complementary

More information

Triangle Trigonometry and Circles

Triangle Trigonometry and Circles Math Objectives Students will understand that trigonometric functions of an angle do not depend on the size of the triangle within which the angle is contained, but rather on the ratios of the sides of

More information

UNIT 8 RIGHT TRIANGLES NAME PER. I can define, identify and illustrate the following terms

UNIT 8 RIGHT TRIANGLES NAME PER. I can define, identify and illustrate the following terms UNIT 8 RIGHT TRIANGLES NAME PER I can define, identify and illustrate the following terms leg of a right triangle short leg long leg radical square root hypotenuse Pythagorean theorem Special Right Triangles

More information

Geometry Mathematics Curriculum Guide Unit 6 Trig & Spec. Right Triangles 2016 2017

Geometry Mathematics Curriculum Guide Unit 6 Trig & Spec. Right Triangles 2016 2017 Unit 6: Trigonometry and Special Right Time Frame: 14 Days Primary Focus This topic extends the idea of triangle similarity to indirect measurements. Students develop properties of special right triangles,

More information

Math Placement Test Practice Problems

Math Placement Test Practice Problems Math Placement Test Practice Problems The following problems cover material that is used on the math placement test to place students into Math 1111 College Algebra, Math 1113 Precalculus, and Math 2211

More information

1. Introduction circular definition Remark 1 inverse trigonometric functions

1. Introduction circular definition Remark 1 inverse trigonometric functions 1. Introduction In Lesson 2 the six trigonometric functions were defined using angles determined by points on the unit circle. This is frequently referred to as the circular definition of the trigonometric

More information

Section 3.1 Radian Measure

Section 3.1 Radian Measure Section.1 Radian Measure Another way of measuring angles is with radians. This allows us to write the trigonometric functions as functions of a real number, not just degrees. A central angle is an angle

More information

Give an expression that generates all angles coterminal with the given angle. Let n represent any integer. 9) 179

Give an expression that generates all angles coterminal with the given angle. Let n represent any integer. 9) 179 Trigonometry Chapters 1 & 2 Test 1 Name Provide an appropriate response. 1) Find the supplement of an angle whose measure is 7. Find the measure of each angle in the problem. 2) Perform the calculation.

More information

Right Triangle Trigonometry

Right Triangle Trigonometry Section 6.4 OBJECTIVE : Right Triangle Trigonometry Understanding the Right Triangle Definitions of the Trigonometric Functions otenuse osite side otenuse acent side acent side osite side We will be concerned

More information

Trigonometry Hard Problems

Trigonometry Hard Problems Solve the problem. This problem is very difficult to understand. Let s see if we can make sense of it. Note that there are multiple interpretations of the problem and that they are all unsatisfactory.

More information

Using the Quadrant. Protractor. Eye Piece. You can measure angles of incline from 0º ( horizontal ) to 90º (vertical ). Ignore measurements >90º.

Using the Quadrant. Protractor. Eye Piece. You can measure angles of incline from 0º ( horizontal ) to 90º (vertical ). Ignore measurements >90º. Using the Quadrant Eye Piece Protractor Handle You can measure angles of incline from 0º ( horizontal ) to 90º (vertical ). Ignore measurements 90º. Plumb Bob ø

More information

Pre-Calculus II. 4.3 Right Angle Trigonometry

Pre-Calculus II. 4.3 Right Angle Trigonometry Pre-Calculus II 4.3 Right Angle Trigonometry y P=(x,y) y P=(x,y) 1 1 y x x x We construct a right triangle by dropping a line segment from point P perpendicular to the x-axis. So now we can view as the

More information

Lesson Plan. Students will be able to define sine and cosine functions based on a right triangle

Lesson Plan. Students will be able to define sine and cosine functions based on a right triangle Lesson Plan Header: Name: Unit Title: Right Triangle Trig without the Unit Circle (Unit in 007860867) Lesson title: Solving Right Triangles Date: Duration of Lesson: 90 min. Day Number: Grade Level: 11th/1th

More information

Name Period Right Triangles and Trigonometry Section 9.1 Similar right Triangles

Name Period Right Triangles and Trigonometry Section 9.1 Similar right Triangles Name Period CHAPTER 9 Right Triangles and Trigonometry Section 9.1 Similar right Triangles Objectives: Solve problems involving similar right triangles. Use a geometric mean to solve problems. Ex. 1 Use

More information

Angles and Their Measure

Angles and Their Measure Trigonometry Lecture Notes Section 5.1 Angles and Their Measure Definitions: A Ray is part of a line that has only one end point and extends forever in the opposite direction. An Angle is formed by two

More information

Pythagorean Theorem: 9. x 2 2

Pythagorean Theorem: 9. x 2 2 Geometry Chapter 8 - Right Triangles.7 Notes on Right s Given: any 3 sides of a Prove: the is acute, obtuse, or right (hint: use the converse of Pythagorean Theorem) If the (longest side) 2 > (side) 2

More information

Extra Credit Assignment Lesson plan. The following assignment is optional and can be completed to receive up to 5 points on a previously taken exam.

Extra Credit Assignment Lesson plan. The following assignment is optional and can be completed to receive up to 5 points on a previously taken exam. Extra Credit Assignment Lesson plan The following assignment is optional and can be completed to receive up to 5 points on a previously taken exam. The extra credit assignment is to create a typed up lesson

More information

6.1 Basic Right Triangle Trigonometry

6.1 Basic Right Triangle Trigonometry 6.1 Basic Right Triangle Trigonometry MEASURING ANGLES IN RADIANS First, let s introduce the units you will be using to measure angles, radians. A radian is a unit of measurement defined as the angle at

More information

Chapter 5: Trigonometric Functions of Angles

Chapter 5: Trigonometric Functions of Angles Chapter 5: Trigonometric Functions of Angles In the previous chapters we have explored a variety of functions which could be combined to form a variety of shapes. In this discussion, one common shape has

More information

Trigonometry LESSON ONE - Degrees and Radians Lesson Notes

Trigonometry LESSON ONE - Degrees and Radians Lesson Notes 210 180 = 7 6 Trigonometry Example 1 Define each term or phrase and draw a sample angle. Angle Definitions a) angle in standard position: Draw a standard position angle,. b) positive and negative angles:

More information

Topic 2: The Trigonometric Ratios Finding Sides

Topic 2: The Trigonometric Ratios Finding Sides Topic 2: The Trigonometric Ratios Fining Sies Labelling sies To use the Trigonometric Ratios, commonly calle the Trig Ratios, it is important to learn how to label the right angle triangle. The hypotenuse

More information

PHYSICS 151 Notes for Online Lecture #6

PHYSICS 151 Notes for Online Lecture #6 PHYSICS 151 Notes for Online Lecture #6 Vectors - A vector is basically an arrow. The length of the arrow represents the magnitude (value) and the arrow points in the direction. Many different quantities

More information

Centroid: The point of intersection of the three medians of a triangle. Centroid

Centroid: The point of intersection of the three medians of a triangle. Centroid Vocabulary Words Acute Triangles: A triangle with all acute angles. Examples 80 50 50 Angle: A figure formed by two noncollinear rays that have a common endpoint and are not opposite rays. Angle Bisector:

More information

Using Trigonometry to Find Missing Sides of Right Triangles

Using Trigonometry to Find Missing Sides of Right Triangles Using Trigonometry to Find Missing Sides of Right Triangles A. Using a Calculator to Compute Trigonometric Ratios 1. Introduction: Find the following trigonometric ratios by using the definitions of sin(),

More information

4.1 Euclidean Parallelism, Existence of Rectangles

4.1 Euclidean Parallelism, Existence of Rectangles Chapter 4 Euclidean Geometry Based on previous 15 axioms, The parallel postulate for Euclidean geometry is added in this chapter. 4.1 Euclidean Parallelism, Existence of Rectangles Definition 4.1 Two distinct

More information

Geometry Notes PERIMETER AND AREA

Geometry Notes PERIMETER AND AREA Perimeter and Area Page 1 of 57 PERIMETER AND AREA Objectives: After completing this section, you should be able to do the following: Calculate the area of given geometric figures. Calculate the perimeter

More information

Pre-Calculus Review Problems Solutions

Pre-Calculus Review Problems Solutions MATH 1110 (Lecture 00) August 0, 01 1 Algebra and Geometry Pre-Calculus Review Problems Solutions Problem 1. Give equations for the following lines in both point-slope and slope-intercept form. (a) The

More information

Right Triangles and SOHCAHTOA: Finding the Measure of an Angle Given any Two Sides (ONLY for ACUTE TRIANGLES Why?)

Right Triangles and SOHCAHTOA: Finding the Measure of an Angle Given any Two Sides (ONLY for ACUTE TRIANGLES Why?) Name Period Date Right Triangles and SOHCAHTOA: Finding the Measure of an Angle Given any Two Sides (ONLY for ACUTE TRIANGLES Why?) Preliminary Information: SOH CAH TOA is an acronym to represent the following

More information

Chapter 6: Periodic Functions

Chapter 6: Periodic Functions Chapter 6: Periodic Functions In the previous chapter, the trigonometric functions were introduced as ratios of sides of a triangle, and related to points on a circle. We noticed how the x and y values

More information

Trigonometry Lesson Objectives

Trigonometry Lesson Objectives Trigonometry Lesson Unit 1: RIGHT TRIANGLE TRIGONOMETRY Lengths of Sides Evaluate trigonometric expressions. Express trigonometric functions as ratios in terms of the sides of a right triangle. Use the

More information

SAT Subject Math Level 2 Facts & Formulas

SAT Subject Math Level 2 Facts & Formulas Numbers, Sequences, Factors Integers:..., -3, -2, -1, 0, 1, 2, 3,... Reals: integers plus fractions, decimals, and irrationals ( 2, 3, π, etc.) Order Of Operations: Arithmetic Sequences: PEMDAS (Parentheses

More information

Algebra Geometry Glossary. 90 angle

Algebra Geometry Glossary. 90 angle lgebra Geometry Glossary 1) acute angle an angle less than 90 acute angle 90 angle 2) acute triangle a triangle where all angles are less than 90 3) adjacent angles angles that share a common leg Example:

More information

Lesson 1: Exploring Trigonometric Ratios

Lesson 1: Exploring Trigonometric Ratios Lesson 1: Exploring Trigonometric Ratios Common Core Georgia Performance Standards MCC9 12.G.SRT.6 MCC9 12.G.SRT.7 Essential Questions 1. How are the properties of similar triangles used to create trigonometric

More information

4-1 Right Triangle Trigonometry

4-1 Right Triangle Trigonometry Find the exact values of the six trigonometric functions of θ 1 The length of the side opposite θ is 8 is 18, the length of the side adjacent to θ is 14, and the length of the hypotenuse 2 The length of

More information

Who uses this? Engineers can use angles measured in radians when designing machinery used to train astronauts. (See Example 4.)

Who uses this? Engineers can use angles measured in radians when designing machinery used to train astronauts. (See Example 4.) 1- The Unit Circle Objectives Convert angle measures between degrees and radians. Find the values of trigonometric functions on the unit circle. Vocabulary radian unit circle California Standards Preview

More information

Trigonometric Functions

Trigonometric Functions Trigonometric Functions 13A Trigonometry and Angles 13-1 Right-Angle Trigonometry 13- Angles of Rotation Lab Explore the Unit Circle 13-3 The Unit Circle 13-4 Inverses of Trigonometric Functions 13B Applying

More information

( ) b.! = 7" 4 has coordinates 2. ( ) d.! = has coordinates! ( ) b.! = 7" 3 has coordinates 1

( ) b.! = 7 4 has coordinates 2. ( ) d.! = has coordinates! ( ) b.! = 7 3 has coordinates 1 Chapter 4: Circular Functions Lesson 4.. 4-. a.! b.! c. i. 0!! " radians 80! " 6 radians 4-. a. and b. ii. iii. 45!! " radians 80! " 4 radians 60!! " radians 80! " radians 4-. Possible patterns that can

More information

G E O M E T R Y CHAPTER 9 RIGHT TRIANGLES AND TRIGONOMETRY. Notes & Study Guide

G E O M E T R Y CHAPTER 9 RIGHT TRIANGLES AND TRIGONOMETRY. Notes & Study Guide G E O M E T R Y CHAPTER 9 RIGHT TRIANGLES AND TRIGONOMETRY Notes & Study Guide 2 TABLE OF CONTENTS SIMILAR RIGHT TRIANGLES... 3 THE PYTHAGOREAN THEOREM... 4 SPECIAL RIGHT TRIANGLES... 5 TRIGONOMETRIC RATIOS...

More information

Inverse Circular Function and Trigonometric Equation

Inverse Circular Function and Trigonometric Equation Inverse Circular Function and Trigonometric Equation 1 2 Caution The 1 in f 1 is not an exponent. 3 Inverse Sine Function 4 Inverse Cosine Function 5 Inverse Tangent Function 6 Domain and Range of Inverse

More information

Pre-Algebra Interactive Chalkboard Copyright by The McGraw-Hill Companies, Inc. Send all inquiries to:

Pre-Algebra Interactive Chalkboard Copyright by The McGraw-Hill Companies, Inc. Send all inquiries to: Pre-Algebra Interactive Chalkboard Copyright by The McGraw-Hill Companies, Inc. Send all inquiries to: GLENCOE DIVISION Glencoe/McGraw-Hill 8787 Orion Place Columbus, Ohio 43240 Click the mouse button

More information

4.6 GRAPHS OF OTHER TRIGONOMETRIC FUNCTIONS. Copyright Cengage Learning. All rights reserved.

4.6 GRAPHS OF OTHER TRIGONOMETRIC FUNCTIONS. Copyright Cengage Learning. All rights reserved. 4.6 GRAPHS OF OTHER TRIGONOMETRIC FUNCTIONS Copyright Cengage Learning. All rights reserved. What You Should Learn Sketch the graphs of tangent functions. Sketch the graphs of cotangent functions. Sketch

More information

South Carolina College- and Career-Ready (SCCCR) Pre-Calculus

South Carolina College- and Career-Ready (SCCCR) Pre-Calculus South Carolina College- and Career-Ready (SCCCR) Pre-Calculus Key Concepts Arithmetic with Polynomials and Rational Expressions PC.AAPR.2 PC.AAPR.3 PC.AAPR.4 PC.AAPR.5 PC.AAPR.6 PC.AAPR.7 Standards Know

More information

Intermediate Algebra with Trigonometry. J. Avery 4/99 (last revised 11/03)

Intermediate Algebra with Trigonometry. J. Avery 4/99 (last revised 11/03) Intermediate lgebra with Trigonometry J. very 4/99 (last revised 11/0) TOPIC PGE TRIGONOMETRIC FUNCTIONS OF CUTE NGLES.................. SPECIL TRINGLES............................................ 6 FINDING

More information

Geometry Notes RIGHT TRIANGLE TRIGONOMETRY

Geometry Notes RIGHT TRIANGLE TRIGONOMETRY Right Triangle Trigonometry Page 1 of 15 RIGHT TRIANGLE TRIGONOMETRY Objectives: After completing this section, you should be able to do the following: Calculate the lengths of sides and angles of a right

More information

Parallel and Perpendicular. We show a small box in one of the angles to show that the lines are perpendicular.

Parallel and Perpendicular. We show a small box in one of the angles to show that the lines are perpendicular. CONDENSED L E S S O N. Parallel and Perpendicular In this lesson you will learn the meaning of parallel and perpendicular discover how the slopes of parallel and perpendicular lines are related use slopes

More information

Trigonometry. An easy way to remember trigonometric properties is:

Trigonometry. An easy way to remember trigonometric properties is: Trigonometry It is possible to solve many force and velocity problems by drawing vector diagrams. However, the degree of accuracy is dependent upon the exactness of the person doing the drawing and measuring.

More information

High School Geometry Test Sampler Math Common Core Sampler Test

High School Geometry Test Sampler Math Common Core Sampler Test High School Geometry Test Sampler Math Common Core Sampler Test Our High School Geometry sampler covers the twenty most common questions that we see targeted for this level. For complete tests and break

More information

Solve each right triangle. Round side measures to the nearest tenth and angle measures to the nearest degree.

Solve each right triangle. Round side measures to the nearest tenth and angle measures to the nearest degree. Solve each right triangle. Round side measures to the nearest tenth and angle measures to the nearest degree. 42. The sum of the measures of the angles of a triangle is 180. Therefore, The sine of an angle

More information

TOMS RIVER REGIONAL SCHOOLS MATHEMATICS CURRICULUM

TOMS RIVER REGIONAL SCHOOLS MATHEMATICS CURRICULUM Content Area: Mathematics Course Title: Precalculus Grade Level: High School Right Triangle Trig and Laws 3-4 weeks Trigonometry 3 weeks Graphs of Trig Functions 3-4 weeks Analytic Trigonometry 5-6 weeks

More information

Chapter 8 Geometry We will discuss following concepts in this chapter.

Chapter 8 Geometry We will discuss following concepts in this chapter. Mat College Mathematics Updated on Nov 5, 009 Chapter 8 Geometry We will discuss following concepts in this chapter. Two Dimensional Geometry: Straight lines (parallel and perpendicular), Rays, Angles

More information

Algebra 2/Trigonometry Practice Test

Algebra 2/Trigonometry Practice Test Algebra 2/Trigonometry Practice Test Part I Answer all 27 questions in this part. Each correct answer will receive 2 credits. No partial credit will be allowed. For each question, write on the separate

More information

Topics Covered on Geometry Placement Exam

Topics Covered on Geometry Placement Exam Topics Covered on Geometry Placement Exam - Use segments and congruence - Use midpoint and distance formulas - Measure and classify angles - Describe angle pair relationships - Use parallel lines and transversals

More information

Mathematical Procedures

Mathematical Procedures CHAPTER 6 Mathematical Procedures 168 CHAPTER 6 Mathematical Procedures The multidisciplinary approach to medicine has incorporated a wide variety of mathematical procedures from the fields of physics,

More information

Conjectures for Geometry for Math 70 By I. L. Tse

Conjectures for Geometry for Math 70 By I. L. Tse Conjectures for Geometry for Math 70 By I. L. Tse Chapter Conjectures 1. Linear Pair Conjecture: If two angles form a linear pair, then the measure of the angles add up to 180. Vertical Angle Conjecture:

More information

MEMORANDUM. All students taking the CLC Math Placement Exam PLACEMENT INTO CALCULUS AND ANALYTIC GEOMETRY I, MTH 145:

MEMORANDUM. All students taking the CLC Math Placement Exam PLACEMENT INTO CALCULUS AND ANALYTIC GEOMETRY I, MTH 145: MEMORANDUM To: All students taking the CLC Math Placement Eam From: CLC Mathematics Department Subject: What to epect on the Placement Eam Date: April 0 Placement into MTH 45 Solutions This memo is an

More information

Advanced Math Study Guide

Advanced Math Study Guide Advanced Math Study Guide Topic Finding Triangle Area (Ls. 96) using A=½ bc sin A (uses Law of Sines, Law of Cosines) Law of Cosines, Law of Cosines (Ls. 81, Ls. 72) Finding Area & Perimeters of Regular

More information

opp (the cotangent function) cot θ = adj opp Using this definition, the six trigonometric functions are well-defined for all angles

opp (the cotangent function) cot θ = adj opp Using this definition, the six trigonometric functions are well-defined for all angles Definition of Trigonometric Functions using Right Triangle: C hp A θ B Given an right triangle ABC, suppose angle θ is an angle inside ABC, label the leg osite θ the osite side, label the leg acent to

More information

Each pair of opposite sides of a parallelogram is congruent to each other.

Each pair of opposite sides of a parallelogram is congruent to each other. Find the perimeter and area of each parallelogram or triangle. Round to the nearest tenth if necessary. 1. Use the Pythagorean Theorem to find the height h, of the parallelogram. 2. Each pair of opposite

More information

Calculus with Analytic Geometry I Exam 10 Take Home part

Calculus with Analytic Geometry I Exam 10 Take Home part Calculus with Analytic Geometry I Exam 10 Take Home part Textbook, Section 47, Exercises #22, 30, 32, 38, 48, 56, 70, 76 1 # 22) Find, correct to two decimal places, the coordinates of the point on the

More information

Unit 6 Trigonometric Identities, Equations, and Applications

Unit 6 Trigonometric Identities, Equations, and Applications Accelerated Mathematics III Frameworks Student Edition Unit 6 Trigonometric Identities, Equations, and Applications nd Edition Unit 6: Page of 3 Table of Contents Introduction:... 3 Discovering the Pythagorean

More information

Semester 2, Unit 4: Activity 21

Semester 2, Unit 4: Activity 21 Resources: SpringBoard- PreCalculus Online Resources: PreCalculus Springboard Text Unit 4 Vocabulary: Identity Pythagorean Identity Trigonometric Identity Cofunction Identity Sum and Difference Identities

More information

Definitions, Postulates and Theorems

Definitions, Postulates and Theorems Definitions, s and s Name: Definitions Complementary Angles Two angles whose measures have a sum of 90 o Supplementary Angles Two angles whose measures have a sum of 180 o A statement that can be proven

More information

INVERSE TRIGONOMETRIC FUNCTIONS

INVERSE TRIGONOMETRIC FUNCTIONS Mathematics, in general, is fundamentally the science of self-evident things. FELIX KLEIN. Introduction In Chapter, we have studied that the inverse of a function f, denoted by f, eists if f is one-one

More information

Section 10.7 Parametric Equations

Section 10.7 Parametric Equations 299 Section 10.7 Parametric Equations Objective 1: Defining and Graphing Parametric Equations. Recall when we defined the x- (rcos(θ), rsin(θ)) and y-coordinates on a circle of radius r as a function of

More information

4.1: Angles and Radian Measure

4.1: Angles and Radian Measure 4.1: Angles and Radian Measure An angle is formed by two rays that have a common endpoint. One ray is called the initial side and the other is called the terminal side. The endpoint that they share is

More information

Algebra and Geometry Review (61 topics, no due date)

Algebra and Geometry Review (61 topics, no due date) Course Name: Math 112 Credit Exam LA Tech University Course Code: ALEKS Course: Trigonometry Instructor: Course Dates: Course Content: 159 topics Algebra and Geometry Review (61 topics, no due date) Properties

More information

TRIGONOMETRY FOR ANIMATION

TRIGONOMETRY FOR ANIMATION TRIGONOMETRY FOR ANIMATION What is Trigonometry? Trigonometry is basically the study of triangles and the relationship of their sides and angles. For example, if you take any triangle and make one of the

More information

DEFINITIONS. Perpendicular Two lines are called perpendicular if they form a right angle.

DEFINITIONS. Perpendicular Two lines are called perpendicular if they form a right angle. DEFINITIONS Degree A degree is the 1 th part of a straight angle. 180 Right Angle A 90 angle is called a right angle. Perpendicular Two lines are called perpendicular if they form a right angle. Congruent

More information

11-4 Areas of Regular Polygons and Composite Figures

11-4 Areas of Regular Polygons and Composite Figures 1. In the figure, square ABDC is inscribed in F. Identify the center, a radius, an apothem, and a central angle of the polygon. Then find the measure of a central angle. Center: point F, radius:, apothem:,

More information

Biggar High School Mathematics Department. National 5 Learning Intentions & Success Criteria: Assessing My Progress

Biggar High School Mathematics Department. National 5 Learning Intentions & Success Criteria: Assessing My Progress Biggar High School Mathematics Department National 5 Learning Intentions & Success Criteria: Assessing My Progress Expressions & Formulae Topic Learning Intention Success Criteria I understand this Approximation

More information

Geometry, Final Review Packet

Geometry, Final Review Packet Name: Geometry, Final Review Packet I. Vocabulary match each word on the left to its definition on the right. Word Letter Definition Acute angle A. Meeting at a point Angle bisector B. An angle with a

More information

TRIGONOMETRICAL RATIOS

TRIGONOMETRICAL RATIOS TRGNMETRCAL RATS Corporate ffice: CP Tower, Road No., PA, Kota (Raj.), Ph: 07-359 TRGN. RAT TRGNMETRCAL RATS Preface T-JEE Syllabus : Trigonometrical Ratios Trigonometrical ratios of compound angles, Trigonometric

More information

Unit 7: Right Triangles and Trigonometry Lesson 7.1 Use Inequalities in a Triangle Lesson 5.5 from textbook

Unit 7: Right Triangles and Trigonometry Lesson 7.1 Use Inequalities in a Triangle Lesson 5.5 from textbook Unit 7: Right Triangles and Trigonometry Lesson 7.1 Use Inequalities in a Triangle Lesson 5.5 from textbook Objectives Use the triangle measurements to decide which side is longest and which angle is largest.

More information

10-4 Inscribed Angles. Find each measure. 1.

10-4 Inscribed Angles. Find each measure. 1. Find each measure. 1. 3. 2. intercepted arc. 30 Here, is a semi-circle. So, intercepted arc. So, 66 4. SCIENCE The diagram shows how light bends in a raindrop to make the colors of the rainbow. If, what

More information

Measuring the Earth s Diameter from a Sunset Photo

Measuring the Earth s Diameter from a Sunset Photo Measuring the Earth s Diameter from a Sunset Photo Robert J. Vanderbei Operations Research and Financial Engineering, Princeton University rvdb@princeton.edu ABSTRACT The Earth is not flat. We all know

More information

New York State Student Learning Objective: Regents Geometry

New York State Student Learning Objective: Regents Geometry New York State Student Learning Objective: Regents Geometry All SLOs MUST include the following basic components: Population These are the students assigned to the course section(s) in this SLO all students

More information